So just what is a Thick Target?

Gordon Emslie Western Kentucky University

When is a target "thick"?

• When the particles lose (or gain) a substantial amount of energy in the target

so that

• the emitting particle spectrum (that inferred from radiation diagnostics) is substantially different than the injected spectrum

Example – Coulomb Collisions

- $dE/dN = -K/E = -(K/E^2) E$
- Infinitely thick target: $F(E) \Delta N = (E/K) \int_{E}^{\infty} F_{0}(E_{0}) dE_{0};$ $F_{0} = -d/dE (K \Delta N F(E)/E)|_{E=E0}$

•
$$F \sim E^{-\delta} \rightarrow F_0 \sim E_0^{-\delta-2} = E_0^{-\delta_0}$$

• $\delta = \delta_0 - 2$; emitting spectrum <u>two powers</u> <u>harder</u> than injected spectrum (spectral flattening by collisions)

Example – Coulomb Collisions

- dE/dN = K/E = (K/E²) E
- Infinitely thick target: $F(E) \Delta N = (E/K) \int_{E}^{\infty} F_{0}(E_{0}) dE_{0};$ $F_{0} = -d/dE (K \Delta N F(E)/E)$

•
$$F \sim E^{-\delta} \rightarrow F_0 \sim E^{-\delta-2} = E_0^{-\delta_0}$$

• $\delta = \delta_0 - 2$; emitting spectrum <u>two powers</u> <u>harder</u> than injected spectrum (spectral flattening by collisions)

Example – Coulomb Collisions

- dE/dN = K/E = (K/E²) E
- Infinitely thick target: $F(E) \Delta N = (E/K) \int_{E}^{\infty} F_{0}(E_{0}) dE_{0};$ $F_{0} = -d/dE (K \Delta N F(E)/E)$

•
$$F \sim E^{-\delta} \rightarrow F_0 \sim E^{-\delta-2} = E_0^{-\delta_0}$$

- $\delta = \delta_0 2$; emitting spectrum <u>two powers</u> <u>harder</u> than injected spectrum (spectral flattening by collisions)
- $I(\varepsilon) \sim \varepsilon^{-\gamma} \underline{\delta} = \gamma 1$ (thin), but $\underline{\delta_0} = \gamma + 1$ (thick)

"Partially thick" targets

 Note that for an energy <u>loss</u> scenario (e.g. collisions), <u>an infinitely thick model is the</u> <u>most efficient radiator for a given injected</u> <u>flux</u>

"Partially thick" targets

- The emitting electron spectrum lies between the injected spectrum and that corresponding to an infinitely thick target
 - Low energies ($E^2 \ll K\Delta N$)
 - thick target form $\delta = \delta_0 2$
 - High energies ($E^2 >> K\Delta N$)
 - thin target form $\delta = \delta_0$
- \rightarrow Spectral steepening at high energies
- \rightarrow "Knee energy" gives information on ΔN

Can a (collisional) target be thick enough to produce spectral modification but thin enough to emit negligible radiation (e.g., below the limit set by the RHESSI dynamic range)?

• NO!

- Substantial spectral modification $\Delta E \sim \beta E$
- This requires a column depth ΔN such that $\Delta E \sim K \Delta N/E \sim \beta E \rightarrow \Delta N \sim \beta E^2/K$
- Fraction of emission ~ $\Delta N/N_{stop}$ = $\Delta N / (E^2/2K) ~ \beta$
- [cf. St-Hilaire et al. [2009] critique of Emslie et al. (2003) explanation for difference in footpoint spectral indices]

How thin do the observed "slices" of a thick target have to be before they are each effectively thin?

- Column density (cm⁻²) ~ E²/2K ~ 10¹⁷ E²
- Thickness (cm) ~ 10¹⁷ E² / n(cm⁻³)
- Angular size (arcseconds) ~
 206265 ×10¹⁷ E² / n R(cm) ~ [E(keV)]² / [n₉(cm⁻³)]

Can the acceleration region be "thick"?

- Yes! (cf. JCB remarks)
- In this case the "injected" spectrum is not a well defined quantity