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« Observed X-ray
spectrum must be (e
related to emitting 4~rR2
electron spectrum

//DOF(E,O)Q(e,E.G)dEd()

* In general electron

distribution will varies
with angle.

4x107 [

* Many models 2x107 -
assume strong '
downwanrd beaming.

(@)]

 However in when -2><10'I7 | (
determining the
electron distribution
from observations an
Isotropic emission is
assumed. ax10” |

2x10” 4x10” 6x107

2x107 |




ata| University

Of Glasgow Previous Studies

* One technique is to look at the centre to lIimb
variation.

* Disadvantage is that variation can only be seen as
an average over a large number of flares.

* More direct approach is the stereoscopic
method. The disadvantage of this is the difficulty in
cross calibrating, leading to large errors.

* Previous research on this problem suggests that
the electron angular distribution is fairly isotropic
with some studies showing directivity at higher
energies
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Albedo Approach

Downward travelling X-
rays can Compton
backscatter low in the

solar atmosphere and
be observed at Earth.

Albedo distorts primary
X-ray spectrum.

This effect will vary
depending on the
fraction of downwanrd to
upward going electrons.

Direct estimate of

downwanrd going
electrons

Photon Flux
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 Divide the electron
flux INto two
components one
going up away from
the solar centre and
one going down

Sun Earth towanrds it.
* Angular dependant
. 1 2 ror cross-section is
Qle, E, bp, @) = 27— cosial] /_0 » Qe E,0')sinfdsde  averaged over two

hemispheres

 Can beusedto
| — (QF L AQ® QB L AQF) ( U) d!stmgwsh between
Fp highly beamed and
ISOtropic cases.
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* Model independent
method I=MF

e Direct inversion too
contaminated by

. — 2

NOISE HMF - IH = min
* Use Tikhonov

Regularisation

« Constraint is that . 5 ,
electron spectrum HMF —IH + ALF|" = min
Is differentiable
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Earlier Application

Fi(E)/F(E)
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Energy, keV
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Energy, keV

Top : Plot of Anisotropy (Fdown/Fup) against electron energy for flares
full impulsive phase of the flare occurring on 20 Aug 2002

Bottom: Confidence bands for the two component electron flux (Kontar
and Brown 2006)

This method was
previously
employed by
Kontar et. Alon 2

fares detected by
RHESSI

Results
suggested a
distribution
consistent with
Isotropic
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Start Time (20-Aug-02 08:24:20)

Flare Studied

s there any
variation in
anisotropy over the
Impulsive phase”?
Suitable flares need
good statistics at
high energies and
be close to disk
centre

Four second time
iINtervals over the
Impulsive peaks
were studied



Count flux (counts 5™ em ™2 kev™)

Count flux (counts 51 em 2 keV™ )
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Count Spectra - 20 Aug 02 Flare - 4s Intervals
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Plots of Count Flux against energy for each 4 second interval (black) with
associated background (magenta)

Photon counts
accumulated
over the
impulsive
phase.

Pseudo
logarithmic
energy bins
used.

Energy range
used — from
10 keV to
mMaximum
where counts
are 3 sigma
above
background
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Electron Fluxes - 20 Aug 02 Flare - 4s Intervals

Regularized Inversion performed on count spectra for
each time interval to determine 20D Electron spectra

Electron
Flux
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Anisotropy Anisotropy .
T

Confidence
iINntervals --
Anisotropy
(Fdown / Fup]
against electron

Anisotropy (Fdown/Fup)
Anisotropy (Fdown/Fup)

energy
T 0w calculated using
Argpi‘ lw _ . Anisotropy error estimates
| on electron
spectra
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* Longer time intervals give better statistics but changes in
anisotropy over shorter timescales wont be apparent.
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* This s consistent with studies which suggest that
the electron spectrum is isotopic at low energies

No evidence of variation on 4 second timescales.

* Where counts are strong enough could be

possible to measure anisotropy for 2 second time
iNtervals.



