from glasflow import RealNVP import matplotlib.pyplot as plt import matplotlib.patches as patches import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from itertools import chain, permutations from datetime import datetime import pickle from scipy.interpolate import RectBivariateSpline from scipy.integrate import quad import time import shutil import seaborn as sns import os from scipy.stats import norm from scipy.special import expit from nessai.flowsampler import FlowSampler from nessai.model import Model from nessai.utils import setup_logger from nessai.livepoint import dict_to_live_points import corner seed = 8 torch.manual_seed(seed) np.random.seed(seed) sns.set_context("notebook") sns.set_palette("colorblind") device = "cuda" date_id = datetime.today().isoformat() plot_path = '/data/www.astro/chrism/uroboros/{}'.format(date_id) ns_path = './' try: os.mkdir('{}'.format(plot_path)) except: print('unable to make output directory {}'.format(plot_path)) exit(1) shutil.copyfile('./uroboros.py', '{}/uroboros.txt'.format(plot_path)) iterations = 200000 batch_size = 1024 plot_step = 5000 n_test = 8 # number of individual test data samples n_prior = 128 # number of samples used to represent the conditonal prior n_max = 4 # max the number of measurements per sample glob_n_max = n_max n_par = 3 # the number of hyperparameters n_meas = 64 # the size of a measurement n_prior_cc_out = 32 # the size of compressed prior n_meas_cc_out = 16 # the size of compressed measurement n_marg = 0 # the number of parameters per measurememnt to be marginalised n_sigma = 1.0 # the scale of the distance noise n_post = 3000 # the number of posterior samples used for plotting lr = 1e-3 # the learning rate run_id = 'cw_amp_s{}_nmax{}_ntest{}'.format(seed,n_max,n_test) # define the Flow that will estimate the parameters conditional on new data and compressed prior information flow = RealNVP( n_inputs=n_par, # number of params n_transforms=5, n_conditional_inputs=n_prior_cc_out+n_meas_cc_out + 1, # size of compressed prior plus size of measurement plus segment index n_neurons=64, n_blocks_per_transform=2, batch_norm_within_blocks=True, linear_transform='permutation', batch_norm_between_transforms=True, ) flow.to(device) print(f"Created flow and sent to {device}") class MAB(nn.Module): def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False): super(MAB, self).__init__() self.dim_V = dim_V self.num_heads = num_heads self.fc_q = nn.Linear(dim_Q, dim_V) self.fc_k = nn.Linear(dim_K, dim_V) self.fc_v = nn.Linear(dim_K, dim_V) if ln: self.ln0 = nn.LayerNorm(dim_V) self.ln1 = nn.LayerNorm(dim_V) self.fc_o = nn.Linear(dim_V, dim_V) def forward(self, Q, K): Q = self.fc_q(Q) K, V = self.fc_k(K), self.fc_v(K) dim_split = self.dim_V // self.num_heads Q_ = torch.cat(Q.split(dim_split, 2), 0) K_ = torch.cat(K.split(dim_split, 2), 0) V_ = torch.cat(V.split(dim_split, 2), 0) A = torch.softmax(Q_.bmm(K_.transpose(1,2))/np.sqrt(self.dim_V), 2) O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2) O = O if getattr(self, 'ln0', None) is None else self.ln0(O) O = O + F.relu(self.fc_o(O)) O = O if getattr(self, 'ln1', None) is None else self.ln1(O) return O class SAB(nn.Module): def __init__(self, dim_in, dim_out, num_heads, ln=False): super(SAB, self).__init__() self.mab = MAB(dim_in, dim_in, dim_out, num_heads, ln=ln) def forward(self, X): return self.mab(X, X) class ISAB(nn.Module): def __init__(self, dim_in, dim_out, num_heads, num_inds, ln=False): super(ISAB, self).__init__() self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out)) nn.init.xavier_uniform_(self.I) self.mab0 = MAB(dim_out, dim_in, dim_out, num_heads, ln=ln) self.mab1 = MAB(dim_in, dim_out, dim_out, num_heads, ln=ln) def forward(self, X): H = self.mab0(self.I.repeat(X.size(0), 1, 1), X) return self.mab1(X, H) class PMA(nn.Module): def __init__(self, dim, num_heads, num_seeds, ln=False): super(PMA, self).__init__() self.S = nn.Parameter(torch.Tensor(1, num_seeds, dim)) nn.init.xavier_uniform_(self.S) self.mab = MAB(dim, dim, dim, num_heads, ln=ln) def forward(self, X): return self.mab(self.S.repeat(X.size(0), 1, 1), X) class SmallSetTransformer(nn.Module): def __init__(self,): super().__init__() self.enc = nn.Sequential( SAB(dim_in=n_par, dim_out=32, num_heads=4), SAB(dim_in=32, dim_out=32, num_heads=4), ) self.dec = nn.Sequential( PMA(dim=32, num_heads=4, num_seeds=1), nn.Linear(in_features=32, out_features=n_prior_cc_out), nn.Sigmoid(), # I added this ) def forward(self, x): x = self.enc(x) x = self.dec(x) return x.squeeze(-2) class PI_NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.nn1 = nn.Sequential( nn.Linear(n_par, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 64), ) self.nn2 = nn.Sequential( nn.Linear(n_par+1 + 64, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, n_prior_cc_out), ) def forward(self, x0): # the input data has shape (bs,n_prior,n_par+1) # we want to make this (bs*n_prior,n_par) x = x0.flatten(0,1) # new shape (batch*n_prior,ndim) x = self.nn1(x) # output shape (batch*n_prior,64) x = x.reshape(-1,n_prior,64) # reshape to (batch,n_prior,64) print(x.shape,x0.shape) x = torch.concat([x,x0],dim=2) # concat to get (batch, n_prior,64+ndim) x = torch.mean(x,dim=1) # take mean to get (batch,64+ndim) x = self.nn2(x) # process again to get (batch,n_prior_cc_out) return x cc_prior_model = SmallSetTransformer() #PI_NeuralNetwork() cc_prior_model.to(device) # the compression model that takes measurement samples and compresses them cc_meas_model = nn.Sequential( nn.Linear(n_meas, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), #nn.Linear(64, 64), #nn.ReLU(), nn.Linear(64, n_meas_cc_out), nn.Sigmoid() ) cc_meas_model.to(device) #def sig(Asin,Acos,f0,t,i): # """ # phi0 - the phase normalise between 0 and 1 # f0 - the frequency normalised in reference to the nyquist frequency (0-1) # N - the number of samples in teh timeseries # i - the index of the timeseries # """ # f = (0.4 + 0.2*f0) # fraction of the Nyquist frequency (0.4 - 0.6) # #return 0.25*np.sin(2.0*np.pi*(phi0 + f*0.5*(t + i))) # phase = 2.0*np.pi*(f*0.5*(t + i)) # return 0.25*(Asin*np.cos(phase) + Acos*np.sin(phase)) class cw_model(Model): """A simple two-dimensional Gaussian likelihood.""" def __init__(self,n_meas,d=None,i_ref=0): # Names of parameters to sample self.n_meas = n_meas self.dvec = d self.T = 1.0 self.i_ref = i_ref # the starting segment index self.dt = self.T/self.n_meas self.t = torch.arange(self.n_meas)*self.dt # define time vector #self.t = np.arange(self.n_meas)*self.dt self.fmax = 0.5/self.dt self.n_sigma = 1.0 self.SNR_factor = 0.25 #0.25 # a scaling that controls the average SNR self.n_par = 3 # number of parameters self.names = ["Asin", "Acos", "f0"] self.bounds = {"Asin": [-10.0, 10.0], "Acos": [-10.0,10.0], "f0": [0, 1]} self.plot_bounds =[[-3,3],[-3,3],[0,1]] self.repar_bounds =[[0,1],[0,1],[0,3]] #def sig(self,x,i): # """ # We assume that the input shape of x is [n_par,N] where N=n_data*n_max # We assume that the input shape of i is [N] # All tensors are expanded to have an extra dimension of n_meas # Output has shape [N,n_meas] # """ # N = x.shape[1] # number of locations # x = torch.tile(x.reshape(self.n_par,N,1),(1,1,self.n_meas)) # convert to (n_par,N,n_meas) # Asin = x[0] # the phase sin quadrature (N,n_meas) # Acos = x[1] # the phase cos quadrature (N,n_meas) # f0 = x[2] # the frequency normalised in reference to the nyquist frequency (0-1) (N,n_meas) # i = torch.tile(i.reshape(N,1),(1,n_meas)) #i - the index of the timeseries (N,n_meas) # # f = (0.4 + 0.2*f0)*self.fmax # f0 is fraction of the Nyquist frequency (0.4 - 0.6) (N,n_meas) # phase = 2.0*np.pi*f*(torch.tile(self.t.reshape(1,n_meas),(N,1)) + i*self.T) # shift the initial time in reference to first segment (N,n_meas) # return self.SNR_factor*(Asin*np.cos(phase) + Acos*np.sin(phase)) # return timeseries (N,n_meas) def sig(self,Asin,Acos,f0,t,i): """ phi0 - the phase normalise between 0 and 1 f0 - the frequency normalised in reference to the nyquist frequency (0-1) N - the number of samples in teh timeseries i - the index of the timeseries """ f = (0.4 + 0.2*f0) # fraction of the Nyquist frequency (0.4 - 0.6) #return 0.25*np.sin(2.0*np.pi*(phi0 + f*0.5*(t + i))) phase = 2.0*np.pi*(f*0.5*(t + i)) return self.SNR_factor*(Asin*np.cos(phase) + Acos*np.sin(phase)) def gen_pars(self,n_data,n_max): Asin = (torch.randn(size=(n_data,1))).to(device) Acos = (torch.randn(size=(n_data,1))).to(device) f0 = (torch.rand(size=(n_data,1))).to(device) # the true f0 value (bs,1) Omega = (torch.concatenate((Asin,Acos,f0),axis=1)).to(device) return Omega def gen_sig(self,n_data,n_max): Omega = self.gen_pars(n_data,n_max) Asin = Omega[:,0] Acos = Omega[:,1] f0 = Omega[:,2] #Asin = (torch.randn(size=(n_data,1))).to(device) #Acos = (torch.randn(size=(n_data,1))).to(device) #f0 = (torch.rand(size=(n_data,1))).to(device) # the true f0 value (bs,1) #Omega = (torch.concatenate((Asin,Acos,f0),axis=1)).to(device) n = (self.n_sigma*torch.randn(size=(n_data,n_meas,n_max))).to(device) # noise on distance (bs,n_max) # generate the signal - the inputs all have shape (n_data,n_meas,n_max). The output has the same shape. meas = self.sig(torch.tile(Asin.reshape(n_data,1,1),(1,n_meas,n_max)).flatten().cpu(), torch.tile(Acos.reshape(n_data,1,1),(1,n_meas,n_max)).flatten().cpu(), torch.tile(f0.reshape(n_data,1,1),(1,n_meas,n_max)).flatten().cpu(), torch.tile(torch.arange(n_meas).reshape(1,n_meas,1),(n_data,1,n_max)).flatten().cpu(), torch.tile(n_meas*torch.arange(n_max).reshape(1,1,n_max),(n_data,n_meas,1)).flatten().cpu()).reshape(n_data,n_meas,n_max).to(device) + n meas = meas.reshape(n_data,n_meas,n_max).to(device) meas = meas.type(torch.cuda.FloatTensor) return meas, Omega, n def log_prior(self, x): """ Returns log of prior given a live point assuming uniform priors on each parameter. """ # Check if values are in bounds, returns True/False # Then take the log to get 0/-inf and make sure the dtype is float log_p = np.log(self.in_bounds(x), dtype="float") # Iterate through each parameter (x and y) # since the live points are a structured array we can # get each value using just the name #for n in self.names: log_p += norm(scale=self.n_sigma).logpdf(x["Asin"]) + norm(scale=self.n_sigma).logpdf(x["Acos "]) log_p -= np.log(self.bounds["f0"][1] - self.bounds["f0"][0]) # uniform prior return log_p def log_likelihood(self, x): """ Returns log likelihood of given live point assuming a Gaussian likelihood. """ log_l = 0.0 # initialise the log likelihood for i,d in enumerate(self.dvec): # loop over measurements Omega = torch.from_numpy(np.array([x["Asin"],x["Acos"],x["f0"]])).reshape(self.n_par,-1) idx = torch.from_numpy(np.ones(Omega.shape[1])*i) + self.i_ref s = self.sig(Omega,idx) log_l += np.sum(norm.logpdf(s,loc=d,scale=self.n_sigma)) return log_l #def log_likelihood(self, x): # """ # Returns log likelihood of given live point assuming a Gaussian # likelihood. # """ # log_l = 0.0 # for i,d in enumerate(self.dvec): # s = sig(x["Asin"],x["Acos"],x["f0"],np.arange(self.n_meas),self.n_meas*i + self.i_ref*self.n_meas) # log_l += np.sum(norm.logpdf(s,loc=d,scale=n_sigma)) # return log_l def change_vars(self,samples): # convert samples in [Asin, Acos, f0] to [phase, f0, Amp] N = samples.shape[0] new_samples = torch.zeros((N,self.n_par)) new_samples[:,2] = torch.sqrt(samples[:,0]**2 + samples[:,1]**2) new_samples[:,1] = samples[:,2] new_samples[:,0] = torch.remainder(torch.atan2(samples[:,0],samples[:,1]),2*np.pi)/(2.0*np.pi) return new_samples def scatter_plot(self,ax,samples,old_samples,ns_samples,x,nd,n_prior,n_post,n_par,change_vars=False): samples = torch.permute(samples,(0,3,1,2))[0,:,:,:].reshape(nd,n_post,n_par) old_samples = torch.permute(old_samples,(0,3,1,2))[0,:,:,:].reshape(nd,n_prior,n_par) if change_vars==True: samples = signal_model.change_vars(samples[:,:,:n_par].flatten(0,1)).reshape(nd,n_post,n_par).cpu().numpy() old_samples = signal_model.change_vars(old_samples[:,:,:n_par].flatten(0,1)).reshape(nd,n_prior,n_par).cpu().numpy() x = signal_model.change_vars(x.reshape(1,n_par)).flatten().cpu().numpy() ns_samples = signal_model.change_vars(torch.from_numpy(ns_samples).flatten(0,2)).reshape(n_max,-1,2,n_par).cpu().numpy() else: samples = samples.cpu().numpy() old_samples = old_samples.cpu().numpy() x = x.flatten().cpu().numpy() #ns_samples = ns_samples.flatten().reshape(n_max,-1,2,n_par).cpu().numpy() for k in range(nd-1): # prior_s = old_samples[k+1,:,:n_par].reshape(n_prior,n_par) post_s = samples[k,:,:n_par].reshape(n_post,n_par) ax[k].plot(post_s[:,a],post_s[:,b],'.b',alpha=0.5,markersize=1) ax[k].plot(ns_samples[k,:,0,a],ns_samples[k,:,0,b],'.r',alpha=0.5,markersize=1) ax[k].plot(ns_samples[k,:,1,a],ns_samples[k,:,1,b],'.g',alpha=0.5,markersize=1) # #ax[j,k].set_xlim(signal_model.repar_bounds[a]) # #ax[j,k].set_ylim(signal_model.repar_bounds[b]) if change_vars==True: ax[k].set_xlim(self.repar_bounds[a]) ax[k].set_ylim(self.repar_bounds[b]) else: ax[k].set_xlim(self.plot_bounds[a]) ax[k].set_ylim(self.plot_bounds[b]) ax[k].plot(x[a],x[b],'xk',label='truth',markersize=10) ax[nd-1].plot(samples[-1,:,a],samples[-1,:,b],'.b',alpha=0.5,markersize=1) ax[nd-1].plot(ns_samples[-1,:,0,a],ns_samples[-1,:,0,b],'.r',alpha=0.5,markersize=1) ax[nd-1].plot(ns_samples[-1,:,1,a],ns_samples[-1,:,1,b],'.g',alpha=0.5,markersize=1) ax[nd-1].plot(x[a],x[b],'xk',markersize=10) # #ax[j,nd-1].set_xlim(signal_model.repar_bounds[a]) # #ax[j,nd-1].set_ylim(signal_model.repar_bounds[b]) if change_vars==True: ax[nd-1].set_xlim(self.repar_bounds[a]) ax[nd-1].set_ylim(self.repar_bounds[b]) else: ax[nd-1].set_xlim(self.plot_bounds[a]) ax[nd-1].set_ylim(self.plot_bounds[b]) def plot_test_data(self,d_test_tensor,n_test_tensor,plot_path): """ Function to plot the test data """ d_test = d_test_tensor.cpu().numpy() n_test = n_test_tensor.cpu().numpy() fig, ax = plt.subplots(d_test.shape[0],1, figsize=(32, 3*d_test.shape[0]), dpi=100) i = 0 for d,n in zip(d_test,n_test): t = np.linspace(0,self.T*d.shape[1],d.shape[1]*d.shape[0]) ax[i].plot(t,d.flatten()) ax[i].plot(t,d.flatten()-n.flatten()) i += 1 plt.savefig('{}/test_data.png'.format(plot_path)) plt.close() def make_data(n_data,n_prior=100,n_max=1,n_post=None,flow=None,cc_prior_model=None,cc_meas_model=None,meas=None,valtest=False): """ function to make training data n_data = number of training samples to make n_prior = the number of samples to use from the prior before compression n_post = the number of posterior samples n_max = the max number of measurements per training data sample meas = the distance measurements """ Omega = None ## generate measured data if none has been supplied #if meas is None: # Asin = (torch.randn(size=(n_data,1))).to(device) # Acos = (torch.randn(size=(n_data,1))).to(device) # f0 = (torch.rand(size=(n_data,1))).to(device) # the true f0 value (bs,1) # Omega = (torch.concatenate((Asin,Acos,f0),axis=1)).to(device) # n = (n_sigma*torch.randn(size=(n_data,n_meas,n_max))).to(device) # noise on distance (bs,n_max) # # # generate the signal - the inputs all have shape (n_data,n_meas,n_max). The output has the same shape. # meas = sig(torch.tile(Asin.reshape(n_data,1,1),(1,n_meas,n_max)).flatten().cpu(), # torch.tile(Acos.reshape(n_data,1,1),(1,n_meas,n_max)).flatten().cpu(), # torch.tile(f0.reshape(n_data,1,1),(1,n_meas,n_max)).flatten().cpu(), # torch.tile(torch.arange(n_meas).reshape(1,n_meas,1),(n_data,1,n_max)).flatten().cpu(), # torch.tile(n_meas*torch.arange(n_max).reshape(1,1,n_max),(n_data,n_meas,1)).flatten().cpu()).reshape(n_data,n_meas,n_max).to(device) + n # meas = meas.reshape(n_data,n_meas,n_max).to(device) # meas = meas.type(torch.cuda.FloatTensor) if meas is None: meas, Omega, n = cw_model(n_meas).gen_sig(n_data,n_max) # compress the measured data - we should be in training mode for this since # it is the only place we do the compression if not valtest: cc_meas_model.train() c_meas = torch.zeros(n_data,n_meas_cc_out,n_max).to(device) for i in range(n_max): c_meas[:,:,i] = cc_meas_model(meas[:,:,i].detach()) else: cc_meas_model.eval() c_meas = torch.zeros(n_data,n_meas_cc_out,n_max).to(device) for i in range(n_max): with torch.no_grad(): c_meas[:,:,i] = cc_meas_model(meas[:,:,i].detach()) # initialise the prior samples tensor # there should be a small set of prior samples (and log probs) for each measurement and for each sample prior_label = torch.zeros(n_data,n_prior,n_par,n_max).to(device) # initialise the prior label tensor # PRIOR 1 - for 1st signals sample from the original prior #test = flow.inverse(torch.ones(n_data*n_prior,n_par),conditional=test_cond).to(device) #prior_label[:,:,0,0] = test[:,0].reshape(n_prior,n_data).transpose(1,0).to(device) prior_label[:,:,0,0] = torch.randn(size=(n_data,n_prior)).to(device) prior_label[:,:,1,0] = torch.randn(size=(n_data,n_prior)).to(device) prior_label[:,:,2,0] = torch.rand(size=(n_data,n_prior)).to(device) #prior_label[:,:,3,0] = (-0.5*prior_label[:,:,0,0]**2 - 0.5*prior_label[:,:,1,0]**2 - np.log(2.0*np.pi)).to(device) #torch.zeros(size=(n_data,n_prior)).to(device) # sort the prior samples by log-lik order #temp, idx = torch.sort(prior_label[:,:,3,0],dim=1) #prior_label[:,:,3,0] = temp ############################################################### # we can stop here IF ONLY 1 measurement is being considered # Otherwise we need to put the 1st (nth) measurement through the flow to get a new prior for the 2nd (n+1) measurement flow.eval() # we DO NOT train the flow in the data generation step cc_prior_model.eval() # we DO NOT train the prior compression in the data generation step for i in range(n_max-1): # loop over each event from the zeroth to the n-1'th (we don't want to do the last one) #test = prior_label[:,:,:,i].flatten(1,2) with torch.no_grad(): c_prior = cc_prior_model(prior_label[:,:,:,i]).detach() #.flatten(1,2)).detach() # compress the i'th prior data test_cond = torch.cat((c_meas[:,:,i].detach(),c_prior,(i/float(glob_n_max))*torch.ones(size=(n_data,1)).to(device)),dim=1).to(device) # combine the compressed measurement and prior and measurement indices test_cond = test_cond.tile(n_prior,1).to(device) # tile it to generate n_prior samples for each of n_data (n_data*n_prior,n_cc+n_meas) with torch.no_grad(): # run the current flow state to generate new posterior -> prior samples and log-likelihoods prior_samples = flow.sample(n_data*n_prior,conditional=test_cond).to(device) # output shape should be (n_data*n_prior,n_cos) #prior_samples, _ = flow.inverse(torch.tile(z_prior,(n_data,1)),conditional=test_cond) #prior_logprob = flow.log_prob(prior_samples,conditional=test_cond).to(device) # output shape should be (n_data*n_prior) # fill in the prior labels - these are now the priors for the NEXT measurement prior_label[:,:,0,i+1] = prior_samples[:,0].reshape(n_prior,n_data).transpose(1,0).to(device) prior_label[:,:,1,i+1] = prior_samples[:,1].reshape(n_prior,n_data).transpose(1,0).to(device) prior_label[:,:,2,i+1] = prior_samples[:,2].reshape(n_prior,n_data).transpose(1,0).to(device) #prior_label[:,:,3,i+1] = prior_logprob.reshape(n_prior,n_data).transpose(1,0).to(device) # If we want the iteratively generated posteriors -> priors for plotting then we generate more samples # we still use the fixed lower number of samples generated above for each stage # and we now do compute the posterior after the final measurement post_label = None if n_post is not None: post_label = torch.zeros(n_data,n_post,n_par,n_max).to(device) # initialise the posterior label tensor flow.eval() # we DO NOT train the flow in the data generation step cc_prior_model.eval() # we DO NOT train the prior compression in the data generation step for i in range(n_max): # POST 1 - compress the uniform prior and add the 1st meas condition with torch.no_grad(): c_prior = cc_prior_model(prior_label[:,:,:,i]).detach() #.flatten(1,2)).detach() test_cond = torch.cat((c_meas[:,:,i].detach(),c_prior,(i/float(glob_n_max))*torch.ones(size=(n_data,1)).to(device)),dim=1).to(device) test_cond = test_cond.tile(n_post,1).to(device) # has shape (n_data*n_prior,n_cc+n_meas) # keep doing this stage until we have the desired number of samples AFTER importance sampling #flag = True #rsum = 0 #prior_samples = np.zeros((n_post,n_par)) #prior_logprob = np.zeros(n_post) #while flag: with torch.no_grad(): temp_prior_samples = flow.sample(n_data*n_post,conditional=test_cond).to(device) # output shape should be (n_data*n_post,n_cos) #temp_prior_logprob = flow.log_prob(temp_prior_samples,conditional=test_cond).to(device) # output shape should be (n_data*n_post) # compute true log-probs using analytic likelihood function #fs = cw_model(d[:,:i+1].transpose(1,0).cpu().numpy()) #, output=output, resume=False, seed=1234) #logL = np.zeros((n_post,2)) #t1 = time.time() #for k,s in enumerate(temp_prior_samples.cpu().numpy()): # a = {"Asin": s[0], "Acos": s[1], "f0": s[2]} # logL[k,0] = fs.log_likelihood(a) + fs.log_prior(a) # logL[k,1] = s[-1] #logw = logL[:,0] - logL[:,1] #logw = logw - np.max(logw) #w = np.exp(logw) #idx = np.argwhere(np.random.rand(n_post)=n_post: # flag = False # fill in the posteriors - these are the posteriors AFTER each event post_label[:,:,0,i] = temp_prior_samples[:,0].reshape(n_post,n_data).transpose(1,0).to(device) post_label[:,:,1,i] = temp_prior_samples[:,1].reshape(n_post,n_data).transpose(1,0).to(device) post_label[:,:,2,i] = temp_prior_samples[:,2].reshape(n_post,n_data).transpose(1,0).to(device) #post_label[:,:,3,i] = temp_prior_logprob.reshape(n_post,n_data).transpose(1,0).to(device) # overwrite the prior samples with subset of importance sampled values from posterior #if i+1 int(iterations/4): sub_batch = (batch_size/n_max)*np.ones(n_max) #if i>0 and not i % 50000 and current_n_max