

Cosmology II - Introduction to Cosmology?

Chris Messenger - University of Glasgow

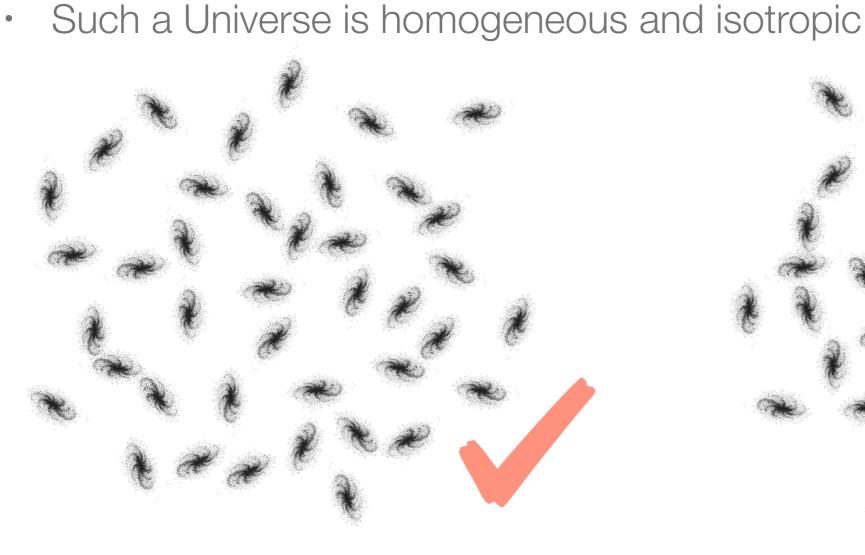
Lecture slides based on those of Leonard Susskind - Stanford University, USA

1

- 1. Newtonian approach
- 2. Adding radiation
- 3. Possible geometries

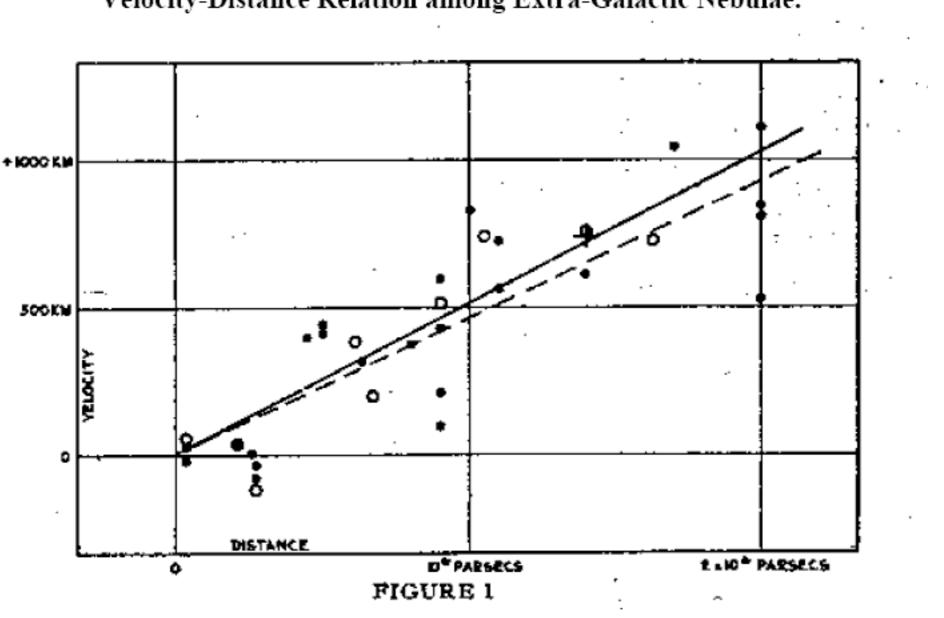
Assumptions

- Standard cosmology makes 2 fundamental assumptions:
 1. The properties of the Universe are isotropic
 2. Our position in the Universe is not preferred to any other (cosmological principle)





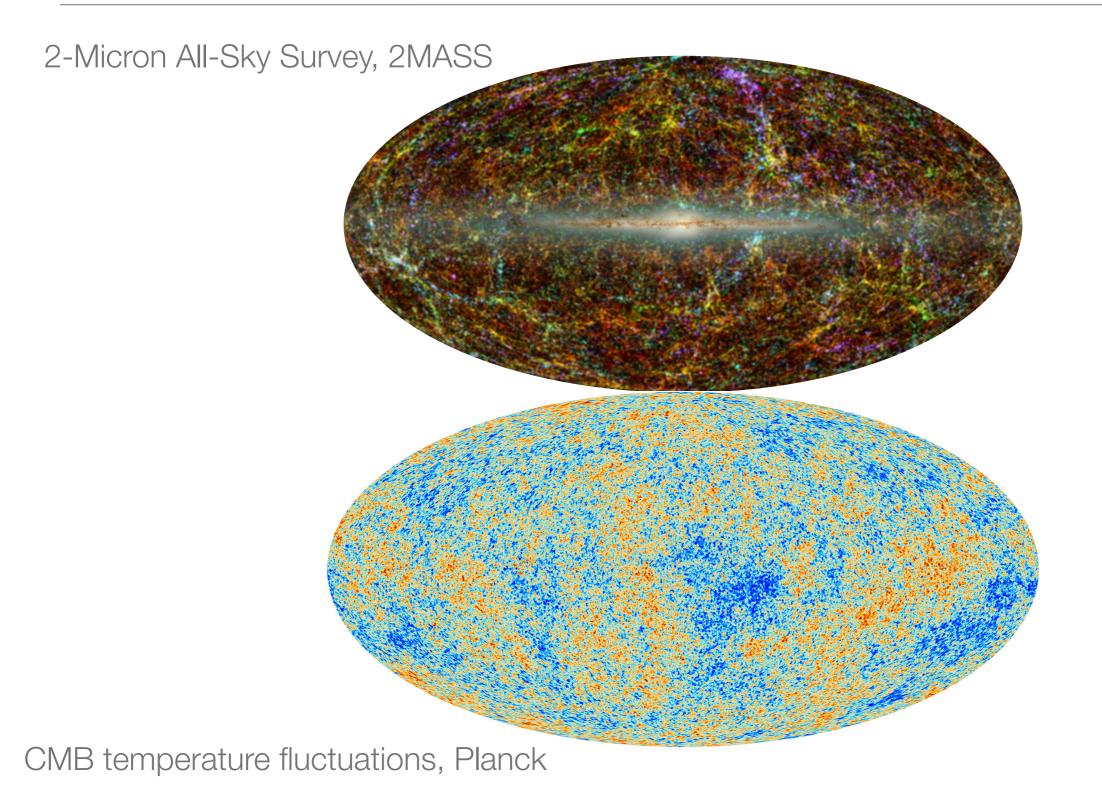
Motivation - Hubble



Velocity-Distance Relation among Extra-Galactic Nebulae.

Hubble's original 1929 paper

Isotropic and Homogeneous



Newtonian approach

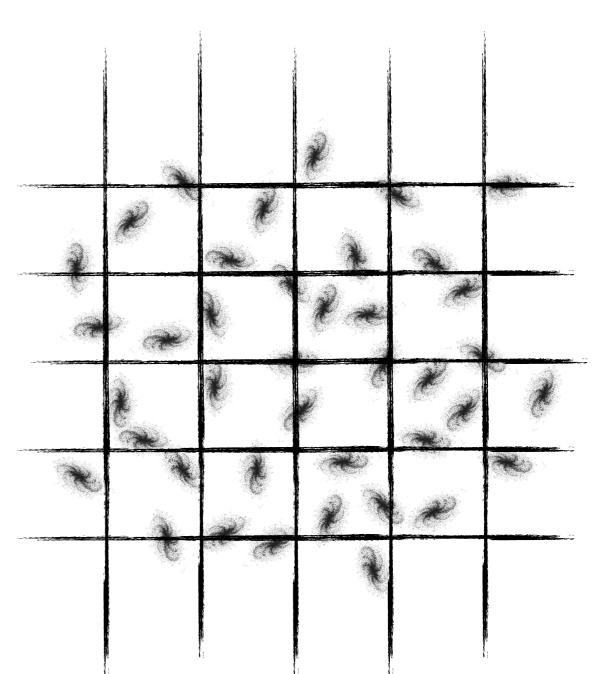
Uniform gas of particles

Electrically neutral so gravity is the only important force

You'd assume that everything just sits still (wrong).

Introduce co-moving coordinates

- Define the lattice of grid points to be co-moving with the galaxies
- Think of the galaxies as fixed to their location in the grid.
- Inherent assumption about behaviour of galaxies. Based on observation (Hubble).
- The galaxies themselves do not stretch!
- The *x*,*y*,*z* coords are *not* distances, they just label the grid lines.



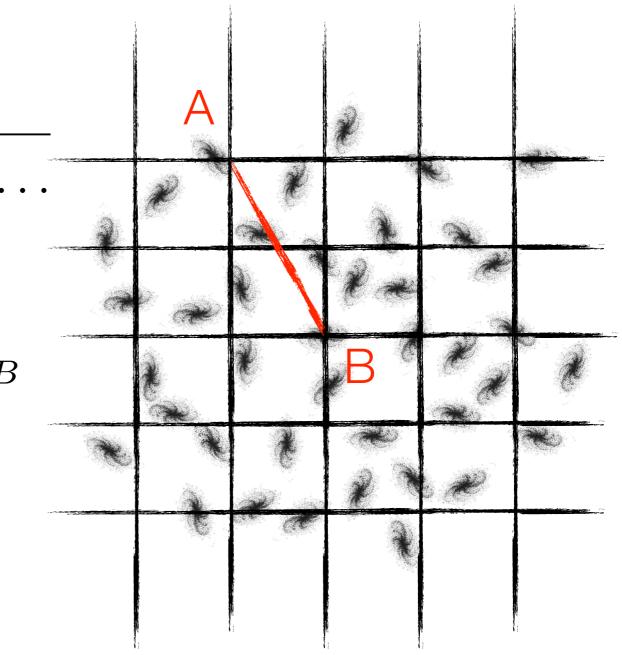
Scale parameter

• Let's define the scale parameter a(t) such that

$$d_{AB} = a(t)\sqrt{\Delta x_{AB}^2 + \Delta y_{AB}^2 + \dots}$$
$$= a(t)R_{AB}$$

- The velocity is $v_{AB} = \dot{a}(t) R_{AB}$
- We then define the Hubble parameter/function

$$H(t) = \frac{\dot{a}}{a} = \frac{v_{AB}}{d_{AB}}$$



Mass in the model

• The mass within a coordinate volume is

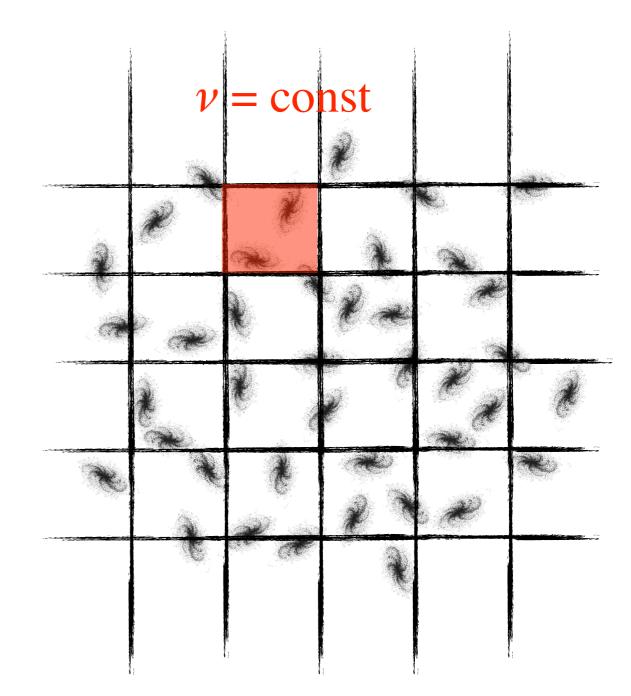
$$\Delta M = \nu \Delta x \Delta y \Delta z$$

• But the actual volume is

$$\Delta V = a^3(t)\Delta x \Delta y \Delta z$$

• So the density is
$$\rho = \frac{\nu}{a^3}$$

• Mass per unit coordinate cell is constant but the density will change with a(t)



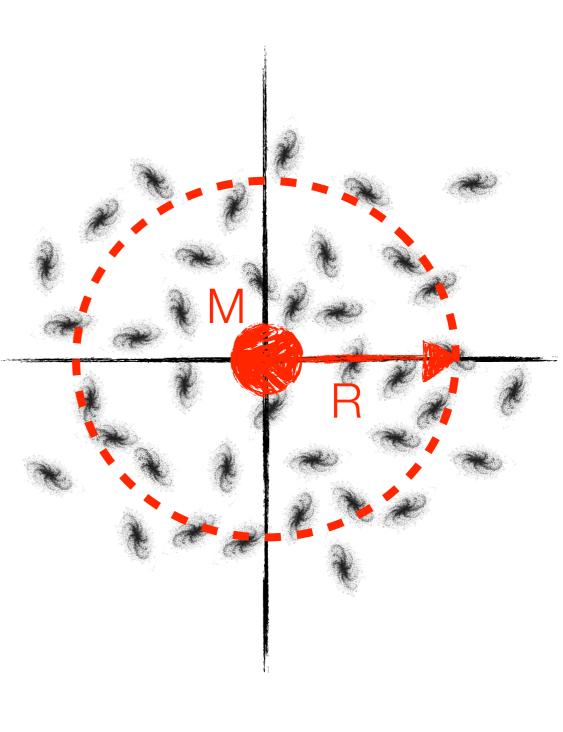
Newtonian Gravity

- Find the *relative* acceleration between us (at origin) and a distant galaxy.
- The acceleration due to the changing scale factor is
 i D

$$\ddot{d} = \ddot{a}R$$

- Use Newtons theorem to compute the gravitational acceleration on the galaxy
- Equate to Newtonian gravitational acceleration GM

$$\ddot{a}R = -\frac{GM}{d^2}$$



Equation of motion

• Since d = a(t)R

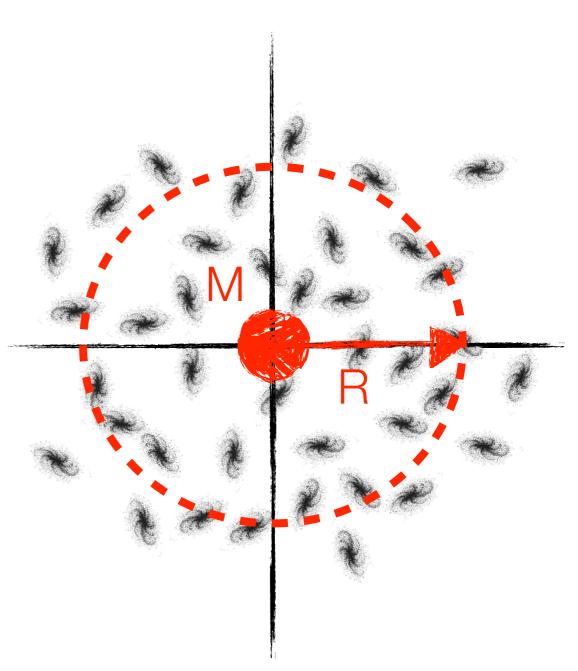
$$\ddot{a}R = -\frac{GM}{d^2} \Rightarrow \frac{\ddot{a}}{a} = -\frac{GM}{a^3R^3}$$

The volume of the enclosing sphere is

$$V_{\rm sph} = \frac{4\pi}{3} (aR)^3$$

• and since $\varrho = M/V_{\rm sph} = \nu/a^3$ we get

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G\rho$$



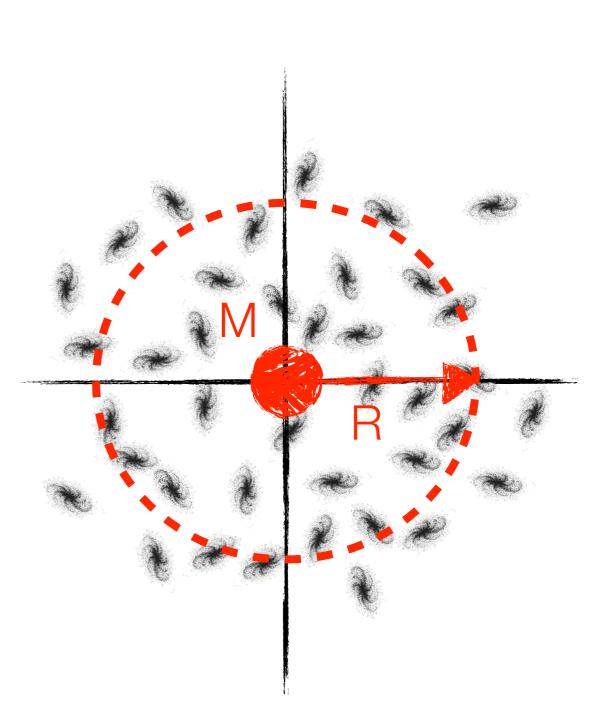
Equation of motion

$$\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G\rho$$

- Doesn't depend on R true for any galaxy (hinges on ν being constant due to homogeneity).
- Also *impossible* to have a static universe (unless it's empty).
- Replace ρ by ν/a^3

$$\frac{\ddot{a}}{a} = -\frac{4\pi G\nu}{3a^3}$$

 Gives us an equation of motion of the scale factor - acceleration has to be negative



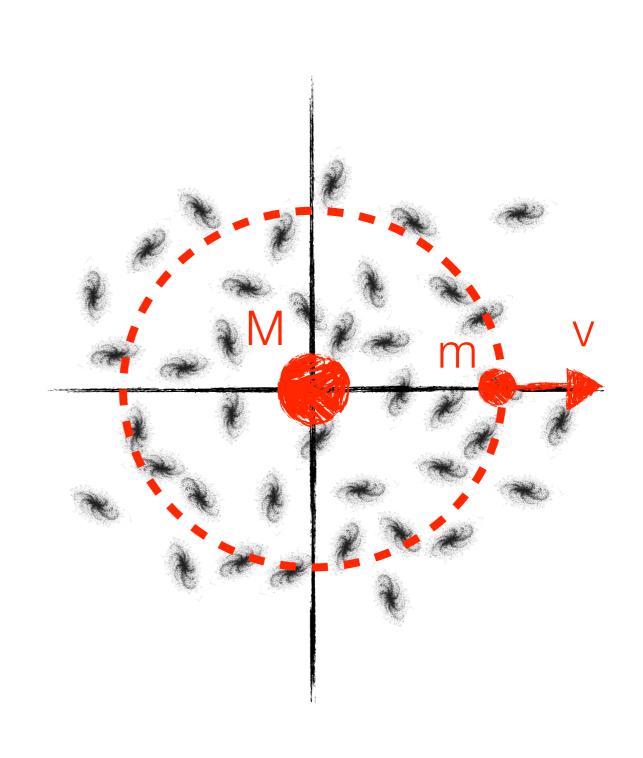
Energy Conservation

- Particle moving away from a large mass on x-axis
- Energy is conserved so

$$\frac{1}{2}m\dot{d}^2 - \frac{GmM}{d} = E$$

- If E is positive it ultimately escapes, if negative it falls back
- Escape velocity is therefore

$$\dot{d}^2 = \frac{2GM}{d}$$



Energy Conservation - special case

• Replacing and rearranging terms and setting E = 0 gives us

$$\frac{1}{2}m(\dot{a}R)^2 - \frac{GmM}{aR} = 0 \Rightarrow \left(\frac{\dot{a}}{a}\right)^2 = \frac{2GM}{(aR)^3}$$

• remembering that the volume of the sphere is

$$V_{\rm sph} = \frac{4\pi}{3} (aR)^3$$

• Gives us the *Friedmann Equation* (not general since we set E = 0)

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho$$

• We already know that $\ddot{a} < 0$ so \dot{a} is reducing, but RHS is +ve, so...

Solve for the scale factor

• Replacing
$$\rho$$
 by ν/a^3 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\nu}{3a^3} = H^2(t)$

- The square of Hubble parameter never gets to zero (in this case)
- Can always choose ν to be whatever we want so only need to solve

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{1}{a^3}$$

- Solution is $a \sim t^{2/3}$ (Newton could have done all of this but didn't have Hubble's observations to guide him)
- This particular Universe would have to be spatially flat, infinite, and matter dominated.

Energy - general case

• Looking at the general $E \neq 0$ case (@ x = 1, d = a(t) and $\dot{d} = \dot{a}$)

$$\frac{1}{2}m\dot{d}^2 - \frac{GmM}{d} = E \Rightarrow \dot{a}^2 - \frac{2MG}{a} = C$$

• Rearrange to get nice ratios

$$\left(\frac{\dot{a}}{a}\right)^2 - \frac{2MG}{a^3} = \frac{C}{a^2}$$

• Since x = 1 the volume here is $V_{sph} = (4/3)\pi a^3$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\nu}{3a^3} + \frac{C}{a^2}$$

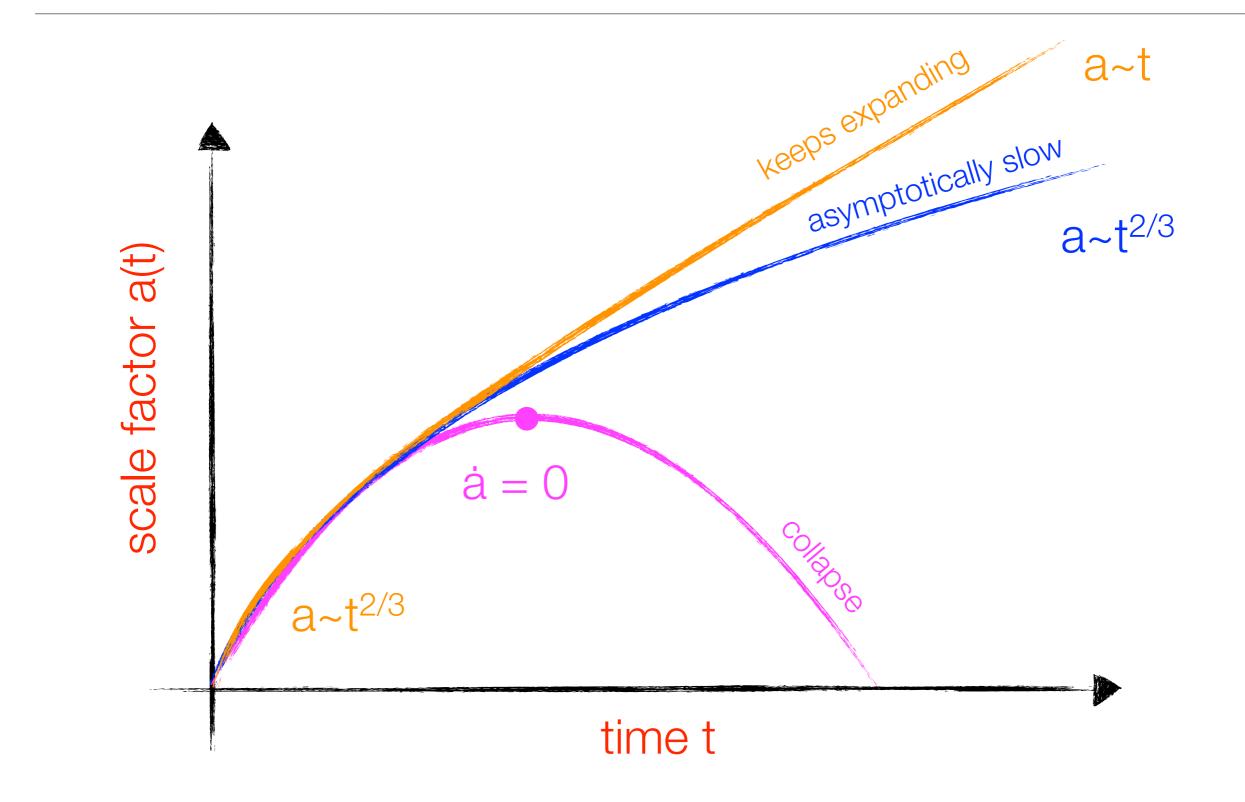
• If E > 0 then RHS is always +ve and $\dot{a} > 0$ (had to start being +ve)

Asymptotic behaviour

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\nu}{3a^3} + \frac{C}{a^2}$$

- For +ve energy (C > 0) at large a the new term dominates and we get $a \sim t$
- At small a we get the old result $a \sim t^{2/3}$
- For -ve energy (C < 0) the RHS can become zero so there is a turning point in the scale factor evolution ($\dot{a} = 0$)
- All of this is for the matter dominated universe (i.e., only considers matter)
- This is directly related to the geometry of the universe (*C* is related to the curvature of space)

Scale factor evolution



- 1. Newtonian approach
- 2. Adding radiation
- 3. Possible geometries

Connection to GR

• rearrange our equation to give

$$\left(\frac{\dot{a}}{a}\right)^2 - \frac{C}{a^3} = \frac{8\pi}{3}G\rho$$

- LHS has geometry, RHS is energy density, looks like Einsteins field equation(s)
- So let's now include radiation energy

$$\rho \Rightarrow M + \gamma$$

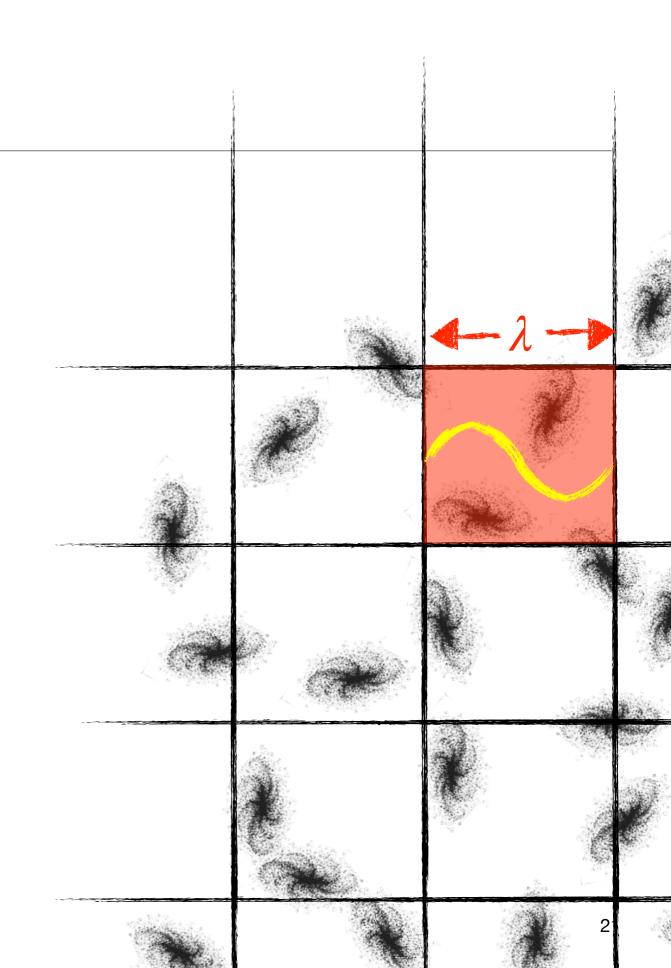
and see what happens

Add photons

- Consider a photon within our grid
 of coordinates
- The photons behave in such a way as to expand their wavelengths in proportion with the grid box they are in

• So since
$$E = \frac{hc}{\lambda} \propto \frac{1}{a}$$

• The photon energy changes but the total number of photons remains constant.



Add photons

- So as *a(t)* increases the photon energy in the box drops.
- Therefore compared to the mass case there is an extra factor of *a* in the denominator.
- So for radiation only and the zero energy case

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\nu}{3a^4}$$

- we get a solution $a \sim t^{1/2}$



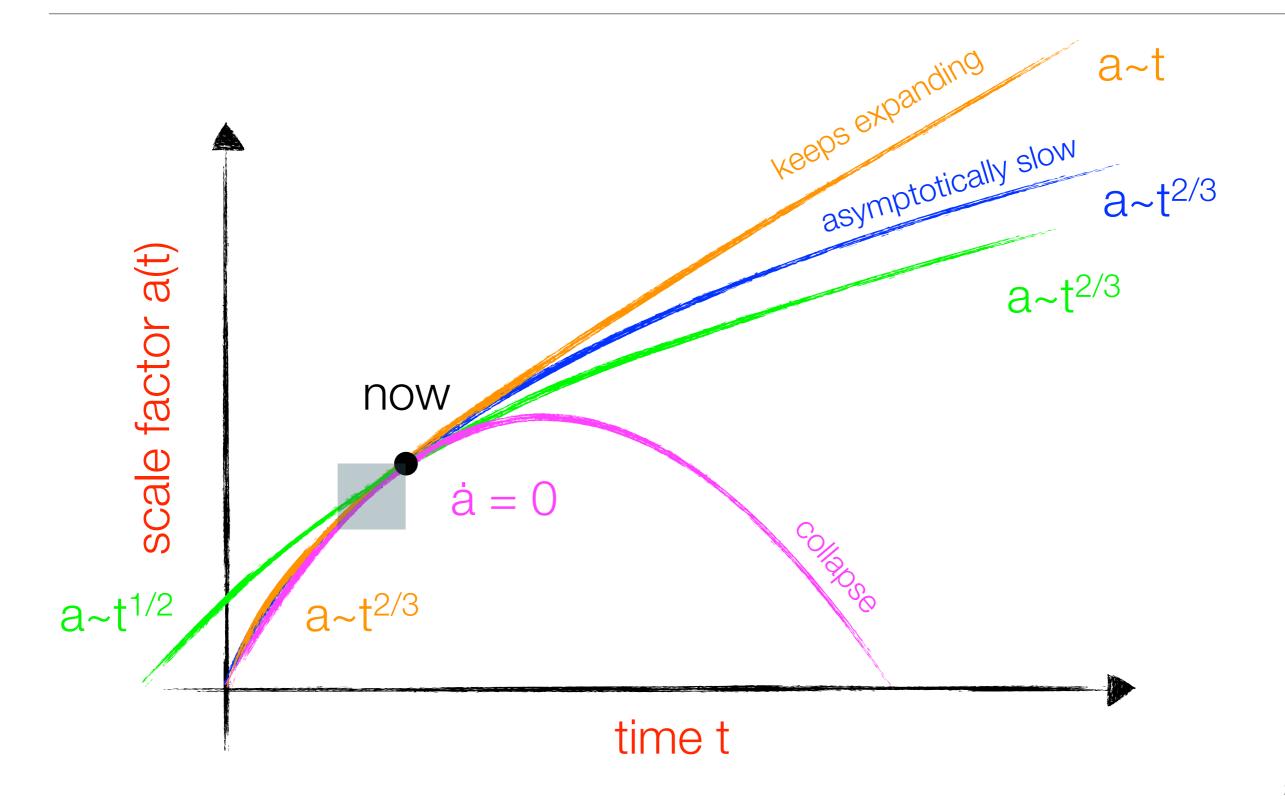
Mass plus radiation

• The general form of the equation will be

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{C_{\rm m}}{a^3} + \frac{C_{\gamma}}{a^4}$$

- So at large a matter dominates and at small a radiation dominates
- So the universe starts expanding at $t^{1/2}$ but later on switched to $t^{2/3}$
- The radiation part is made up of photons, neutrinos, gravitons (everything moving at ~speed of light).
- The matter component includes dark matter (all non-relativistic particles)

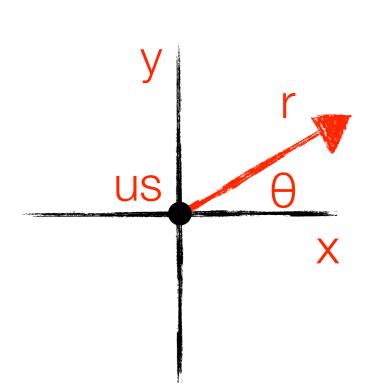
Scale factor evolution



- 1. Newtonian approach
- 2. Adding radiation
- 3. Possible geometries

General spaces

- Lets explore the possibility that space is not flat but still homogeneous - only a few options that are homogeneous.
 - 1. Flat space
 - 2. Spheres
 - 3. Hyperbolic space
 - 4. Toroidal + ...
- In 2-D things like paraboloids, ellipsoids, bumpy spaces, are curved but not homogeneous
- 2-D flat space (plane) defined by metric $ds^2 = dx^2 + dy^2$
- Useful to thing in polar coordinates (still flat) ${\,ds^2=dr^2+r^2d\theta^2}$

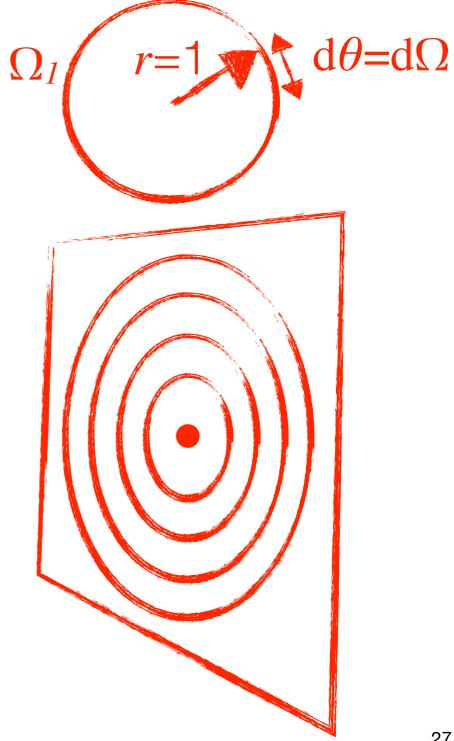


1-spheres

- $d\theta^2$ is a metric for a particular space (a unit circle) - measures the squared distance along a circle (total distance is 2π)
- a unit circle is a 1-sphere, a 1-D sphere - also called Ω_1
- Sometimes refer to $d\theta^2$ as $d\Omega_1^2$ ٠

 $ds^{2} = dr^{2} + r^{2}d\theta^{2} \equiv dr^{2} + r^{2}d\Omega_{1}^{2}$

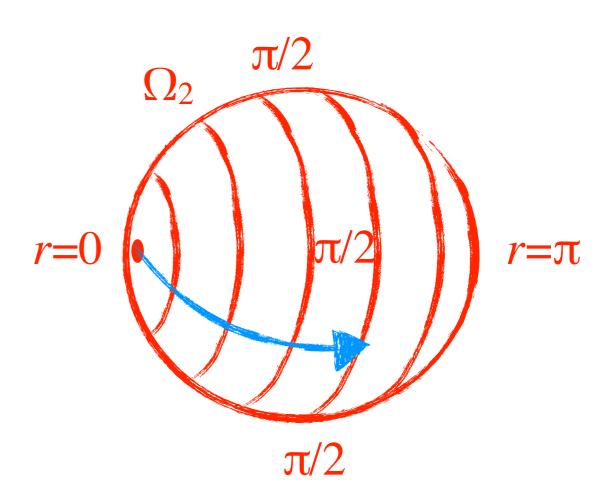
Think of a flat 2-D space composed of ٠ a nested set of 1-spheres - space is flat



2-spheres

- A 2-D astronomer looks away from our own position on the 2-sphere and is surrounded by 1-spheres.
- The 1-spheres grow more slowly with distance and then get smaller.
- Use *r* to measure an angle, furthest we can see is $r = \pi$
- The metric in our notation is

$$\mathrm{d} \mathrm{s}^2 = \mathrm{d} \mathrm{r}^2 + \sin^2 \mathrm{r} \, \mathrm{d} \Omega_1^2 = \mathrm{d} \Omega_2^2$$



3-spheres

- A 3-sphere is a 3-d space which is homogeneous and if you go in any direction you come back to yourself - *hard to think about*
- Look into space at different distances and you see 2-spheres around you. Look further and further and the 2 spheres start to get smaller - *hard to visualise*.
- They are series of nested 2-spheres that grow and collapse as r increases.
- The metric is $d\Omega_3^2 = dr^2 + \sin^2 r \, d\Omega_2^2 \qquad r = 0 \qquad r \qquad r = \pi$

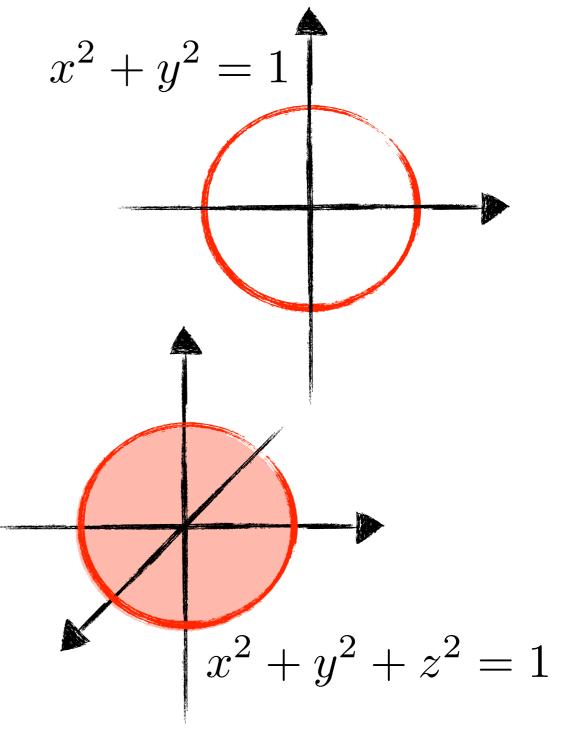
Possible geometries

Another way to view spheres - embedding

- We can embed a 1-sphere (circle) in 2-D, and a 2-sphere in 3-D.
- The extra dimension is just a trick the previous metrics still apply
- To construct a 3-sphere in this way you have to embed it in a 4-D space.

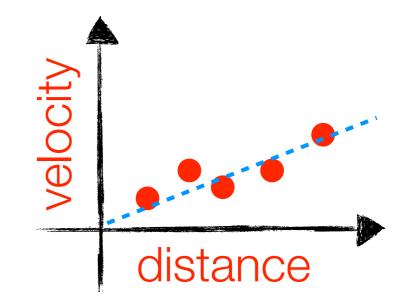
$$x^2 + y^2 + z^2 + w^2 = 1$$

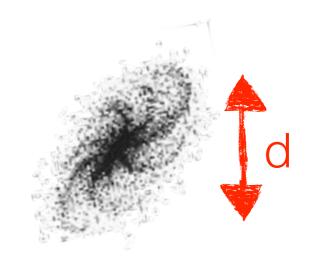
• Clearly not sensible coordinates for traversing the space.



Testing the geometry

- How could you tell if you live on a sphere rather than an infinite flat plane?
- Use telescopes to determine the distances to objects (using tricks like the Hubble law).
- Look at how bright a galaxy is (assume all galaxies are the same intrinsic brightness)
- Look at how much angle they subtend on the sky? (assume all galaxies are the same intrinsic size)





Angular diameter - flat space

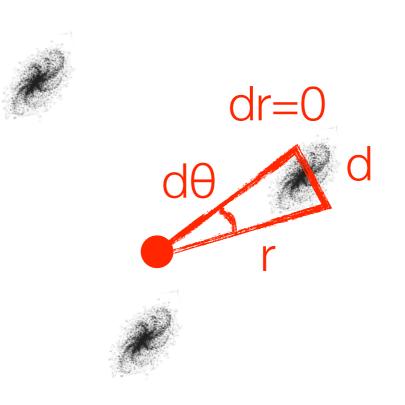
 In flat 2-D space we use the metric to give us

$$\mathrm{ds}^2 = \mathrm{r}^2 \mathrm{d}\theta^2 = \mathrm{d}^2$$

and therefore

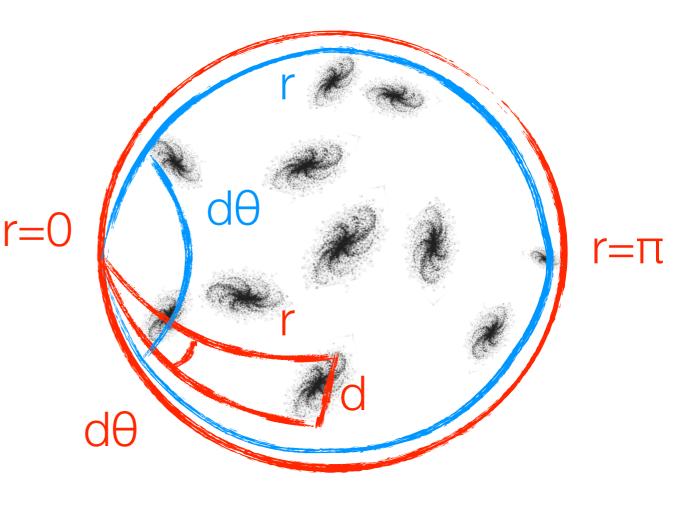
 $\mathrm{d}\theta = \frac{\mathrm{d}}{\mathrm{r}}$

• As you might expect



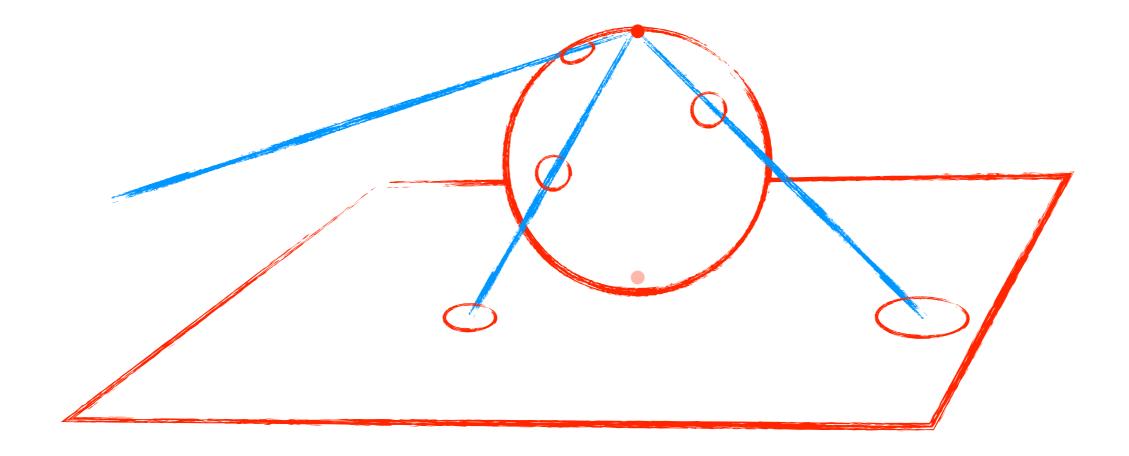
Angular diameter - spherical geometry

- In curved 2-D space we have $ds^2 = sin^2 r d\theta^2 = d^2$
- So $d\theta = \frac{d}{\sin r}$
- Since $sinr \leq r$, the angle is larger than in the flat case.
- More distant galaxies will of course be dimmer (further away) but would appear larger than closer ones.
- Could also count the number of galaxies as a function of *r*



Stereographic projection

- Every point on the sphere can be mapped to a point on the plane
- Just a way of representing it so that you can draw it on a plane (it distorts it)
- You can do the same thing for a 3-sphere (I can't draw it).



Hyperbolic space

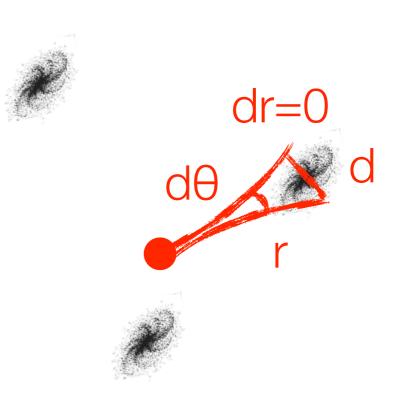
- Harder to imagine that the sphere
- Instead of $d\Omega$ we use $d\mathcal{H}$ so for 2-D space $d\mathcal{H}_2^2 = dr^2 + \sinh^2 r \, d\Omega$

• Compare
$$\sinh r = \frac{e^{ir} - e^{-ir}}{2i}, \quad \sin r = \frac{e^r - e^{-r}}{2}$$

- For very large *r* sinh*r* is dominated by e^r and grows exponentially but for sin*r* large *r* goes back to zero
- In hyperbolic space you still see circles around you in 2-D but the circles grow exponentially
- In 3-D you get $d\mathcal{H}_3^2 = dr^2 + \sinh^2 r \, d\Omega_2^2$

Hyperbolic space

- In hyperbolic 2-D space we have $ds^2 = \sinh^2 r d\theta^2 = d^2$
- and therefore $\theta = \frac{d}{\sinh r}$
- For large **r** we find that $\theta \approx \frac{2d}{e^r}$
- So the angle shrinks fast and the number of galaxies grows fast
- You would notice that distant galaxies look too small and there would be very many of them.



Hyperbolic projection

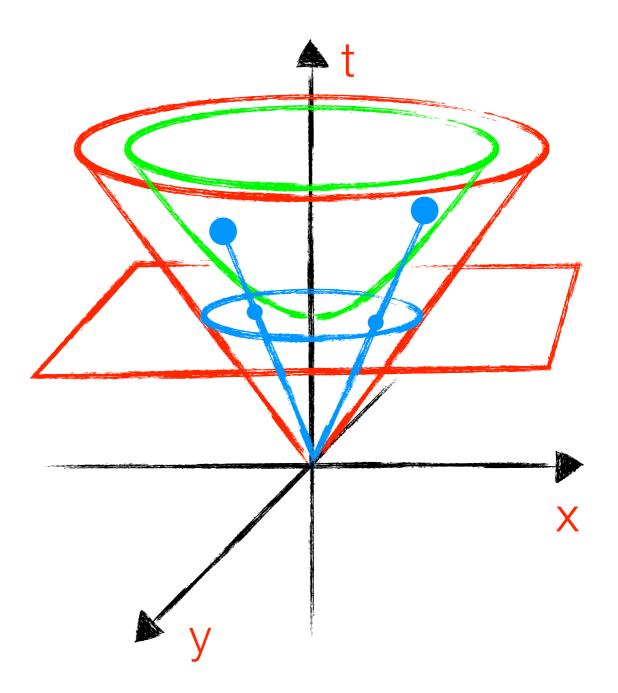
 An embedded 2-sphere can be written as
 2
 2
 2

$$x^2 + y^2 + z^2 = 1$$

 For a 2-D hyperbolic space the equivalent is (t is a dummy coordinate defines a hyperboloid

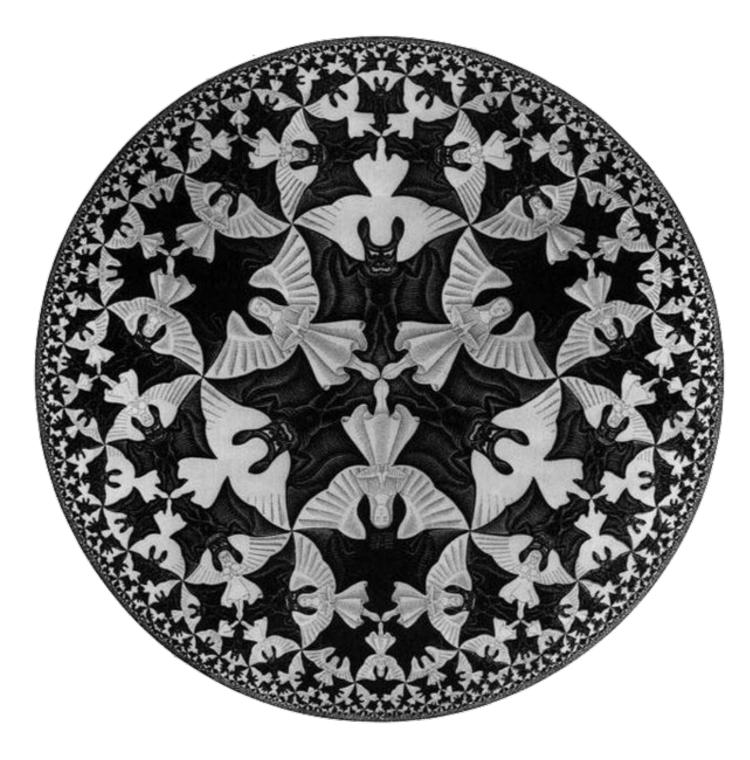
$$t^2 - x^2 - y^2 = 1$$

- Doesn't look like every point is equivalent on the hyperboloid but it is
- Lots of distortion in this projection
- Just as a sphere has a radius so does the hyperboloid



Possible geometries

Hyperbolic projection



Metrics with the scale factor

• The metric of an ordinary sphere of radius *a* is

$$\mathrm{d}s^2 = a^2 \left(\mathrm{d}r^2 + \sin^2 r \,\mathrm{d}\Omega_1^2 \right)$$

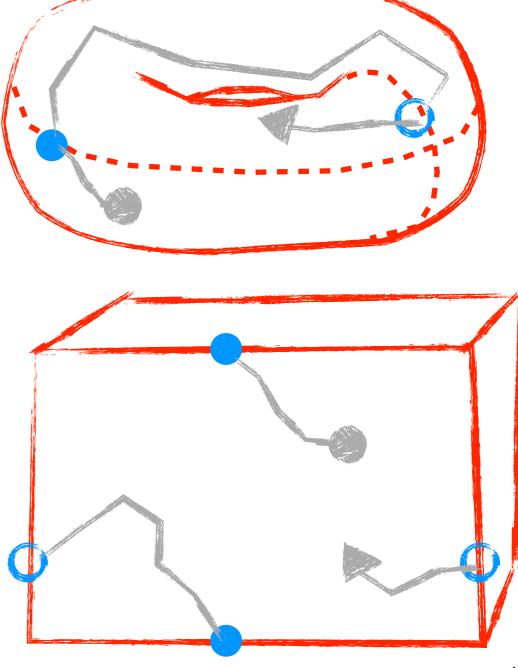
• Same thing for the hyperbolic geometry

$$\mathrm{d}s^2 = a^2 \left(\mathrm{d}r^2 + \mathrm{sinh}^2 r \, \mathrm{d}\mathcal{H}_1^2 \right)$$

- It is assumed that we live in either the flat, +ve, or -ve curved universe.
- It currently looks flat out to distances that we can detect the nearby distances are small compared to the radius of curvature.

Toroidal geometry

- Flat but periodic and homogeneous
- You would be able to see yourself in different directions
- As long as it was big enough then we might mistake it for infinite flat space
- Can do this in 3-D (maybe like portal?)
- A 1-D torus is a circle (1-sphere, Ω_1)



Space-time

• In ordinary flat Minkowski space (special relativity)

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$$

- A photon travels on a null geodesic so $ds^2 = 0$ and $dx = \pm dt$ along the x-axis
- We'll keep time as it is and substitute one of our geometries into the spatial part also include the scale factor a(t)
- For the 2-sphere $ds^2 = -dt^2 + a^2(t)d\Omega_2^2$
- the same for a 3-D universe (change Ω_2 to Ω_3)

Space-time

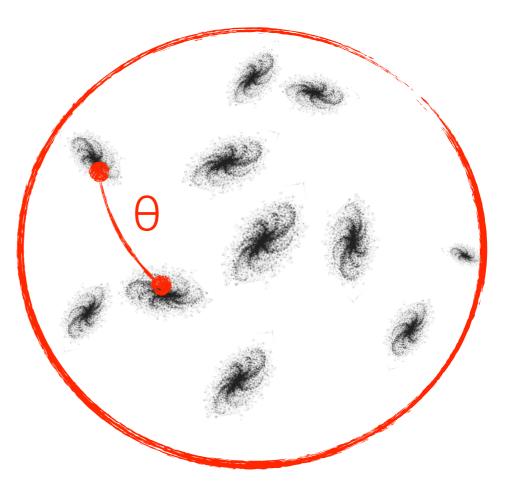
- If our metric is $ds^2 = -dt^2 + a^2(t)d\theta^2$
- What's the distance and relative velocity between 2 galaxies separated by θ ?

$$d = a\theta, \qquad \dot{d} = \dot{a}\theta$$

Then again get the Hubble law

$$H(t) = \frac{\dot{a}}{a} = \frac{\dot{d}}{d}$$

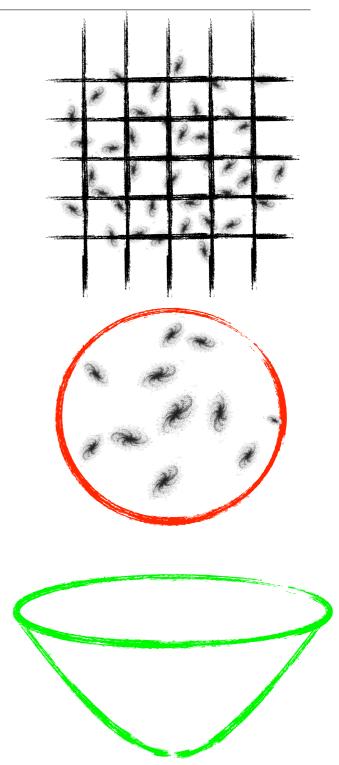
 Just the same as before (and true for all geometries)



The 3 cases

• Flat
$$ds^2 = -dt^2 + a^2(t) (dx^2 + dy^2 + dz^2)$$

- Spherical $ds^2 = -dt^2 + a^2(t)d\Omega_3^2$
- Hyperbolic $\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)\mathrm{d}\mathcal{H}_3^2$
- All satisfy Hubble's law
- Next stage is to use GR to generate equations of motion for a(t) - the same equations for the Newtonian 3 energy cases.



Thanks for your attention