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1. Newtonian approach
2. Adding radiation

3. Possible geometries



Newtonian approach

Assumptions

Standard cosmology makes 2 fundamental assumptions:
1. The properties of the Universe are isotropic
2. Our position in the Universe is not preferred to any other (cosmological principle)

Such a Universe is homogeneous and isotropic




Newtonian approach

Motivation - Hubble

+K0OC W

300K

Velocity-Distance Relation among Extra-Galactic Nebulae.

—

4
g
=

..'

»

&

e METANCE - -
) DY PARSECS 20 PARSELS
FIGURE 1 -

Hubble’s original 1929 paper



Newtonian approach

Isotropic and Homogeneous

2-Micron All-Sky Survey, 2MASS

CMB temperature fluctuations, Planck
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Newtonian approach

Introduce co-moving coordinates

Define the lattice of grid points to be |
co-moving with the galaxies | | |

Think of the galaxies as fixed to their
location in the grid.

Inherent assumption about behaviour
of galaxies. Based on observation
(Hubble).

The galaxies themselves do not stretch! ™|

The x,y,z coords are not distances,
they just lalbel the grid lines.



Newtonian approach

Scale parameter

Let’s define the scale parameter
a(t) such that

a(t)\/ AT + A + ...
— a(t)RAB

dap

The velocity s VAB = d(t)RAB

We then define the Hubble
parameter/function

@ VAB
H(t) =2 = A8
(t) =~ Tnr



Newtonian approach

Mass in the model

The mass within a coordinate
volume IS

AM = vAxAyAz

But the actual volume Is
AV = a’ () AzAyAz

UV

So the densityis 0 = —3
a

Mass per unit coordinate cell is
constant but the density will change

with a(t)



Newtonian approach

Newtonian Gravity

FIind the relative acceleration
between us (at origin) and a distant
galaxy.

The acceleration due to the changing
scale factor is T
d=aR

Use Newtons theorem to compute
the gravitational acceleration on the
galaxy

Equate to Newtonian gravitational
acceleration QM

alRl =
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Newtonian approach

—guation of motion

Since d = a(f)R

- GM N a GM

a p— e lii—

d? a a3 R3

The volume of the enclosing sphere
S

47
Veph = ?(QR)B

and since 0 = M/Vspn = via’ we
get .
a A

SV,
2 P
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Newtonian approach

—guation of motion

a 47

a 3

Doesn’t depend on R - true for any

galaxy (hinges on v being constant due
to homogeneity).

Gp

Also Impossible to have a static
universe (unless it’s empty).

a 4G
Replace p by via® — =
a 3a3

Gives us an equation of motion of the
scale factor - acceleration has to be
negative
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Newtonian approach

—nergy Conservation

Particle moving away from a large
Mass on x-axis

Energy is conserved so

1 .
2 d

if £ is positive it ultimately
escapes, If negative it falls back

Escape velocity Is therefore
2G M

d

d* =
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Newtonian approach

—nergy Conservation - special case

Replacing and rearranging terms and setting £ = 0 gives us

1 GmM a\® 2GM
zm(a ) aR (a) (aR)3
remembering that the volume of the sphere is
4
Vsph = ?( R)3

Gives us the Friedmann Equation (not general since we set E = ()

N\ 2
a 8T
2] = ¢
We already know that d < 0 so ad is reducing, but RHS is +ve, so...
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Newtonian approach

Solve for the scale factor

N\ 2
Replacing p by v/a? @) _ BrGv — [ (t)
a 3a3

The square of Hubble parameter never gets to zero (in this case)

Can always choose v to be whatever we want so only need to solve

a\? 1
a) a3

Solution is a ~ 1*3> (Newton could have done all of this but didn’t have
Hubble’s observations to guide him)

This particular Universe would have to be spatially flat, infinite, and
Mmatter dominated.
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Newtonian approach

—nergy - general case

Looking at the general E # 0 case (@ x = 1,d = a(f) and d = d)
1 GmM o, 2MG

~“md? —FE =
Zm d . a

Rearrange to get nice ratios

(@)2 OMG  C

= C

a

as a?

Since x = 1 the volume here is Vsph = (4/3)71a’

é : B SrGr O
a)  3ad a2

if E > 0 then RHS is always +ve and a > 0 (had to start being +ve)
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Newtonian approach

Asymptotic behaviour

é 2_87TGV | C
a)  3a3 @ a2

For +ve energy (C > 0) at large a the new term dominates and we get a ~ ¢

At small a we get the old result a ~ £*3

For -ve energy (C < 0) the RHS can become zero so there is a turning point
in the scale factor evolution (a@ = 0)

All of this is for the matter dominated universe (i.e., only considers matter)

This is directly related to the geometry of the universe (C is related to the
curvature of space)
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Newtonian approach

Scale factor evolution

A
=
Qv
-
O | s
-+ ; S
O /
© | 7z O
94— 1 ~
o |
< | a=>0
O
7p

S O\N
O~ p\O"‘Ga\\\J SOT -
& m /,/”’/
=) A
e a~t2/3
\¥%

18



1. Newtonian approach
2. Adding radiation

3. Possible geometries
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Adding radiation

Connection to GR

rearrange our equation to give

CN 2

a ¢ 8 .

a 3 3"
LHS has geometry, RHS is energy density, looks like Einsteins field
equation(s)

So let’s now include radiation energy

p= M+~

and see what happens
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Adding radiation

Add photons

Consider a photon within our grid
of coordinates

The photons behave in such a
way as to expand their
wavelengths in proportion with
the grid box they are In

h 1
So since = ne X —

A a

The photon energy changes but
the total number of photons
remains constant.




Adding radiation

Add photons

So as a(t) increases the photon
energy in the box drops.

Therefore compared to the mass

case there Is an extra factor of a
IN the denominator.

So for radiation only and the zero
energy case
2

a B TG

a 3a4

we get a solution a ~ t1/2




Adding radiation

Mass plus radiation

The general form of the equation will be

a\" Cw , C
a) a3 @ a*

So at large a matter dominates and at small a radiation dominates

So the universe starts expanding at #1/2 but later on switched to %3

The radiation part is made up of photons, neutrinos, gravitons
(everything moving at ~speed of light).

The matter component includes dark matter (all non-relativistic
particles)
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Newtonian approach

Scale factor evolution

7
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1. Newtonian approach
2. Adding radiation

3. Possible geometries
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Possible geometries

General spaces

Lets explore the possibility that space is not flat
but still homogeneous - only a few options that
are homogeneous.

1. Flat space

2. Spheres
3. Hyperbolic space
4. Toroidal + ...

In 2-D things like paraboloids, ellipsoids, bumpy
spaces, are curved but not homogeneous

2-D flat space (plane) defined by metric  ds? = dx* + dy2

Useful to thing in polar coordinates (still flat) ds? = dr? + r2d#?
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Possible geometries

1-spheres

- d6? is a metric for a particular space (a

unit circle) - measures the squared
distance along a circle (total distance is

27T)

a unit circle is a 1-sphere, a 1-D
sphere - also called £

Sometimes refer to d@? as d();2
ds® = dr® 4 r?df® = dr* + r*dQ?

Think of a flat 2-D space composed of
a nested set of 1-spheres - space is flat




Possible geometries

2-spheres

A 2-D astronomer looks away from
our own position on the 2-sphere
and is surrounded by 1-spheres.

The 1-spheres grow more slowly
with distance and then get smaller.

Use r to measure an angle,
furthest we canseeisr =7t

The metric In our notation Is

ds® = dr® + sin®rdQ? = dQ3
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Possible geometries

3-spheres

A 3-sphere is a 3-d space which iIs homogeneous and if you go in
any direction you come back to yourself - hard to think about

Look into space at different distances and you see 2-spheres
around you. Look further and further and the 2 spheres start to get
smaller - hard to visualise.

They are series of nested 2-spheres that grow and collapse as r
INncreases.

The metric is & @
r

dQ3 = dr* +sin*rdQ3 =0

=TI
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Possible geometries

Another way to view spheres - embedding

We can embed a 1-sphere (circle) in
2-D, and a 2-sphere in 3-D.

The extra dimension is just a trick -
the previous metrics still apply

To construct a 3-sphere in this way
you have to embed it in a 4-D
space.

2242+ 24wt =1

Clearly not sensible coordinates for
traversing the space.




Possible geometries

Testing the geometry

How could you tell if you live on a
sphere rather than an infinite flat plane”?

“velocity

Use telescopes to determine the
distances to objects (using tricks like
the Hubble law).

Look at how bright a galaxy is (assume
all galaxies are the same intrinsic
brightness)

Look at how much angle they subtend
on the sky”? (assume all galaxies are the
same intrinsic size)

31



Possible geometries

Angular diameter - flat space

In flat 2-D space we use the metric
to give us

ds? = r?df? = d?

and therefore

d
46 = —

r

As you might expect
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Possible geometries

Angular diameter - spherical geometry

n curved 2-D space we have  ds? = sin® rd6? = d°
d

SIN 7

So df =

Since sinr < r, the angle is larger
than in the flat case.

More distant galaxies will of course
be dimmer (further away) but would
appear larger than closer ones.

Could also count the number of
galaxies as a function of r
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Possible geometries

Stereographic projection

Every point on the sphere can be mapped to a point on the plane
Just a way of representing it so that you can draw it on a plane (it distorts it)

You can do the same thing for a 3-sphere (I can’t draw it).
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Possible geometries

Hyperbolic space

Harder to imagine that the sphere

Instead of dQ) we use dZ - so for 2-D space d#»? = dr? + sinh? r dQ)

. plir _ o . el — e
Compare sinhr = . . sinr =
21 2

For very large r sinhr is dominated by € and grows exponentially but for
sinz large r goes back to zero

—T

In hyperbolic space you still see circles around you in 2-D but the circles
grow exponentially

n3Dyouget dH3 = dr? + sinh’r d3



Possible geometries

Hyperbolic space

In hyperbolic 2-D space we have

and therefore f = — d
sinhr
2d
For large r we find that 6 ~= —
e

So the angle shrinks fast and the
number of galaxies grows fast

You would notice that distant
galaxies look too small and there
would be very many of them.

ds?

— sinh?r d6? = ¢?
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Possible geometries

Hyperbolic projection

An embedded 2-sphere can be written

as
For a 2-D hyperbolic space the

equivalent is (t is a dummy coordinate -
defines a hyperboloid

12 22 —2 =1

Doesn’t look like every point is
equivalent on the hyperboloid but it is

Lots of distortion in this projection

Just as a sphere has a radius so does
the hyperboloid
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Possible geometries

Hyperbolic projection
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Possible geometries

Metrics with the scale factor

The metric of an ordinary sphere of radius a Is

ds* = a* (dr2 + sin? r dQ%)
Same thing for the hyperbolic geometry

ds* = a? (017“2 + sinh®r d?—[%)

It is assumed that we live In either the flat, +ve, or -ve curved
universe.

It currently looks flat out to distances that we can detect - the nearby
distances are small compared to the radius of curvature.
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Possible geometries

Toroidal geometry

Flat but periodic and homogeneous

You would be able to see yourself in
different directions

As long as it was big enough then
we might mistake it for infinite flat
space

Can do this in 3-D (maybe like
portal?)

A 1-D torus is a circle (1-sphere, £21)
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Possible geometries

Space-time

In ordinary flat Minkowski space (special relativity)
ds® = —dt* + dz? + dy? + dz?

A photon travels on a null geodesic so ds? = 0 and dx = + df along
the x-axis

We'll keep time as it is and substitute one of our geometries into the
spatial part - also include the scale factor a(t)

For the 2-sphere ds* = —dt* + a*(¢)dQ3

the same for a 3-D universe (change £2; to {23)
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Possible geometries

Space-time

fourmetricis  ds? = —dt? + a? (t)d6’2

What'’s the distance and relative
velocity between 2 galaxies separated

by 67

d=ah, d=af

Then again get the Hubble law
a d
H(t)=—- = —
(t)=— =~

Just the same as before (and true for
all geometries)




Possible geometries

The 3 cases

Flat ds® = —dt* + a*(t) (dw2 + dy” + dzz)
Spherical ds® = —dt? + a”(t)d€;
2

Hyperbolic ds? = —dt* + a*(t)dH3

All satisfy Hubble’s law

Next stage is to use GR to generate
equations of motion for a(t) - the
same eqguations for the Newtonian 3

energy cases.
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Thanks for your attention
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