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1. Newtonian approach 

2. Adding radiation 

3. Possible geometries
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Assumptions

• Standard cosmology makes 2 fundamental assumptions: 
1. The properties of the Universe are isotropic 
2. Our position in the Universe is not preferred to any other (cosmological principle) 

• Such a Universe is homogeneous and isotropic

Newtonian approach
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Motivation - Hubble

Newtonian approach

Hubble’s original 1929 paper
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Isotropic and Homogeneous

Newtonian approach

2-Micron All-Sky Survey, 2MASS

CMB temperature fluctuations, Planck
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Uniform gas of particles

• Electrically neutral so gravity is the only important force 

• You’d assume that everything just sits still (wrong).

Newtonian approach
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Introduce co-moving coordinates

• Define the lattice of grid points to be 
co-moving with the galaxies 

• Think of the galaxies as fixed to their 
location in the grid. 

• Inherent assumption about behaviour 
of galaxies. Based on observation 
(Hubble). 

• The galaxies themselves do not stretch! 

• The x,y,z coords are not distances, 
they just label the grid lines.

Newtonian approach
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Scale parameter

• Let’s define the scale parameter 
a(t) such that 

• The velocity is 

• We then define the Hubble 
parameter/function

Newtonian approach
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Mass in the model

• The mass within a coordinate 
volume is 

• But the actual volume is 

• So the density is 

• Mass per unit coordinate cell is 
constant but the density will change 
with a(t)

Newtonian approach
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Newtonian Gravity

• Find the relative acceleration 
between us (at origin) and a distant 
galaxy. 

• The acceleration due to the changing 
scale factor is 

• Use Newtons theorem to compute 
the gravitational acceleration on the 
galaxy 

• Equate to Newtonian gravitational 
acceleration

Newtonian approach
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äR = �GM

d2

M

R



Equation of motion

• Since d = a(t)R 

• The volume of the enclosing sphere 
is  

• and since ρ = M/Vsph = ν/a3 we 
get

Newtonian approach
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Equation of motion

• Doesn’t depend on R - true for any 
galaxy (hinges on ν being constant due 
to homogeneity). 

• Also impossible to have a static 
universe (unless it’s empty). 

• Replace 𝜌 by ν/a3 

• Gives us an equation of motion of the 
scale factor - acceleration has to be 
negative

Newtonian approach
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Energy Conservation

• Particle moving away from a large 
mass on x-axis 

• Energy is conserved so 

• If E is positive it ultimately 
escapes, if negative it falls back 

• Escape velocity is therefore

Newtonian approach

13

m vM
1

2
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Energy Conservation - special case

• Replacing and rearranging terms and setting E = 0 gives us 

• remembering that the volume of the sphere is  

• Gives us the Friedmann Equation (not general since we set E = 0)  

• We already know that ä < 0 so ȧ is reducing, but RHS is +ve, so… 

Newtonian approach
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Solve for the scale factor

• Replacing 𝜌 by ν/a3 

• The square of Hubble parameter never gets to zero (in this case) 

• Can always choose ν to be whatever we want so only need to solve 

• Solution is a ~ t2/3 (Newton could have done all of this but didn’t have 
Hubble’s observations to guide him) 

• This particular Universe would have to be spatially flat, infinite,  and 
matter dominated.

Newtonian approach
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Energy - general case

• Looking at the general E ≠ 0 case (@ x = 1, d = a(t) and ḋ = ȧ) 

• Rearrange to get nice ratios  

• Since x = 1 the volume here is Vsph = (4/3)πa3 

• If E > 0 then RHS is always +ve and ȧ > 0 (had to start being +ve) 

Newtonian approach
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Asymptotic behaviour

• For +ve energy (C > 0) at large a the new term dominates and we get a ~ t 

• At small a we get the old result a ~ t2/3 

• For -ve energy (C < 0) the RHS can become zero so there is a turning point 
in the scale factor evolution (ȧ = 0) 

• All of this is for the matter dominated universe (i.e., only considers matter) 

• This is directly related to the geometry of the universe (C is related to the 
curvature of space)

Newtonian approach
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Scale factor evolution 

Newtonian approach
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1. Newtonian approach 

2. Adding radiation 

3. Possible geometries
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Connection to GR

• rearrange our equation to give 

• LHS has geometry, RHS is energy density, looks like Einsteins field 
equation(s) 

• So let’s now include radiation energy  

and see what happens

Adding radiation
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Add photons 

• Consider a photon within our grid 
of coordinates 

• The photons behave in such a 
way as to expand their 
wavelengths in proportion with 
the grid box they are in  

• So since 

• The photon energy changes but 
the total number of photons 
remains constant.

Adding radiation
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Add photons 

• So as a(t) increases the photon 
energy in the box drops. 

• Therefore compared to the mass 
case there is an extra factor of a 
in the denominator. 

• So for radiation only and the zero 
energy case 

•  we get a solution

Adding radiation
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Mass plus radiation

• The general form of the equation will be 

• So at large a matter dominates and at small a radiation dominates 

• So the universe starts expanding at t1/2 but later on switched to t2/3 

• The radiation part is made up of photons, neutrinos, gravitons 
(everything moving at ~speed of light). 

• The matter component includes dark matter (all non-relativistic 
particles)

Adding radiation

23

�
ȧ
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Scale factor evolution 

Newtonian approach
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General spaces

• Lets explore the possibility that space is not flat 
but still homogeneous - only a few options that 
are homogeneous. 

1. Flat space 
2. Spheres 
3. Hyperbolic space 
4. Toroidal + … 

• In 2-D things like paraboloids, ellipsoids, bumpy 
spaces, are curved but not homogeneous 

• 2-D flat space (plane) defined by metric 

• Useful to thing in polar coordinates (still flat)

Possible geometries
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1-spheres

• dθ2 is a metric for a particular space (a 
unit circle) - measures the squared 
distance along a circle (total distance is 
2π) 

• a unit circle is a 1-sphere, a 1-D 
sphere - also called Ω1 

• Sometimes refer to dθ2 as dΩ12

• Think of a flat 2-D space composed of 
a nested set of 1-spheres - space is flat

Possible geometries
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2-spheres

• A 2-D astronomer looks away from 
our own position on the 2-sphere 
and is surrounded by 1-spheres. 

• The 1-spheres grow more slowly 
with distance and then get smaller. 

• Use r to measure an angle, 
furthest we can see is r = π 

• The metric in our notation is

Possible geometries
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3-spheres

• A 3-sphere is a 3-d space which is homogeneous and if you go in 
any direction you come back to yourself - hard to think about 

• Look into space at different distances and you see 2-spheres 
around you. Look further and further and the 2 spheres start to get 
smaller - hard to visualise. 

• They are series of nested 2-spheres that grow and collapse as r 
increases. 

• The metric is 

Possible geometries
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Another way to view spheres - embedding

• We can embed a 1-sphere (circle) in 
2-D, and a 2-sphere in 3-D. 

• The extra dimension is just a trick - 
the previous metrics still apply 

• To construct a 3-sphere in this way 
you have to embed it in a 4-D 
space. 

• Clearly not sensible coordinates for 
traversing the space.

Possible geometries
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Testing the geometry

• How could you tell if you live on a 
sphere rather than an infinite flat plane? 

• Use telescopes to determine the 
distances to objects (using tricks like 
the Hubble law). 

• Look at how bright a galaxy is (assume 
all galaxies are the same intrinsic 
brightness) 

• Look at how much angle they subtend 
on the sky? (assume all galaxies are the 
same intrinsic size)

Possible geometries
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Angular diameter - flat space

• In flat 2-D space we use the metric 
to give us 

• and therefore 

• As you might expect

Possible geometries
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Angular diameter - spherical geometry

• In curved 2-D space we have 

• So  

• Since sinr ≤ r, the angle is larger 
than in the flat case. 

• More distant galaxies will of course 
be dimmer (further away) but would 
appear larger than closer ones. 

• Could also count the number of 
galaxies as a function of r

Possible geometries
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Stereographic projection
• Every point on the sphere can be mapped to a point on the plane 

• Just a way of representing it so that you can draw it on a plane (it distorts it) 

• You can do the same thing for a 3-sphere (I can’t draw it).

Possible geometries
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Hyperbolic space

• Harder to imagine that the sphere 

• Instead of dΩ we use d𝓗 - so for 2-D space d𝓗22 = dr2 + sinh2 r dΩ 

• Compare 

• For very large r sinhr is dominated by er and grows exponentially but for 
sinr large r goes back to zero 

• In hyperbolic space you still see circles around you in 2-D but the circles 
grow exponentially 

• In 3-D you get 

Possible geometries
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Hyperbolic space

• In hyperbolic 2-D space we have 

• and therefore 

• For large r we find that 

• So the angle shrinks fast and the 
number of galaxies grows fast 

• You would notice that distant 
galaxies look too small and there 
would be very many of them.

Possible geometries
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Hyperbolic projection

• An embedded  2-sphere can be written 
as 

• For a 2-D hyperbolic space the 
equivalent is (t is a dummy coordinate - 
defines a hyperboloid 

• Doesn’t look like every point is 
equivalent on the hyperboloid but it is 

• Lots of distortion in this projection 

• Just as a sphere has a radius so does 
the hyperboloid

Possible geometries
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Hyperbolic projection

Possible geometries
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Metrics with the scale factor

• The metric of an ordinary sphere of radius a is 

• Same thing for the hyperbolic geometry 

• It is assumed that we live in either the flat, +ve, or -ve curved 
universe. 

• It currently looks flat out to distances that we can detect - the nearby 
distances are small compared to the radius of curvature.

Possible geometries
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Toroidal geometry

• Flat but periodic and homogeneous 

• You would be able to see yourself in 
different directions 

• As long as it was big enough then 
we might mistake it for infinite flat 
space 

• Can do this in 3-D (maybe like 
portal?) 

• A 1-D torus is a circle (1-sphere, Ω1)

Possible geometries
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Space-time

• In ordinary flat Minkowski space (special relativity) 

• A photon travels on a null geodesic so ds2 = 0 and dx = ± dt along 
the x-axis 

• We’ll keep time as it is and substitute one of our geometries into the 
spatial part - also include the scale factor a(t) 

• For the 2-sphere 

• the same for a 3-D universe (change Ω2 to Ω3)

Possible geometries
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Space-time

• If our metric is  

• What’s the distance and relative 
velocity between 2 galaxies separated 
by θ? 

• Then again get the Hubble law 

• Just the same as before (and true for 
all geometries)

Possible geometries

θ

ds2 = �dt2 + a2(t)d�2

d = a�, ḋ = ȧ�
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The 3 cases

• Flat 

• Spherical 

• Hyperbolic 

• All satisfy Hubble’s law 

• Next stage is to use GR to generate 
equations of motion for a(t) - the 
same equations for the Newtonian 3 
energy cases.

Possible geometries
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Thanks for your attention
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