

University Simulation of v_{μ} CCQE events at nuSTORM of Glasgow Conor Hughes - 2086283h@student glasgow

Conor Hughes - 2086283h@student.gla.ac.uk

Conclusions

- SaRoMaN is capable of accurately reconstructing v_{μ} CCQE events.
- It is a work in progress, and with updated algorithms it can be used to perform more accurate simulations of nuSTORM.

Introduction

- nuSTORM is a proposed facility capable of producing a neutrino beam at ~3.8GeV with well-known flavour composition.
- At these energies quasi-elastic (QE) interactions dominate- nuSTORM will produce more accurate neutrino cross-sections for QE than currently available.
- Detector geometry consists of a **Totally Active Scintillating Detector** (TASD) and a Magnetised Iron Neutrino Detector (MIND) array.

Aims

- Project goal was to use SaRoMaN -(Simulation and Reconstruction of Muons and Neutrinos) to simulate and reconstruct $\nu_{_{\!\!\!\!H}}$ CCQE events.
- Accuracy of reconstructed momenta used as a figure of merit.

Results

- Reconstructed energy and momenta found to be accurate in the TASD but impeded by a detector geometry error in MIND.
- Momentum pull plot and χ^2 distribution imply accurate results given corrected geometry.

