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Problem Setup: Detection of BBH GWs interpreted as a classification problem in the
deep learning framework.
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Motivation: Previous works were affected by ML biases. Finding the source of these biases
and mitigating them might allow ML to move closer to the detection performance of matched-

filtering pipelines.

Reported bias against long duration signals and
inability to reject non-Gaussian noise artefacts

M. B. Schafer et al., Phys. Rev. D 107, 023021 (2023)] —»

Reported bias in the tails of the chirp mass
distribution

Koloniari, Alexandra E. et al. (2024) -- AresGW —>

Reported bias against lower chirp mass

Marx, Ethan et al. (2024) -- AFrame —> , T
and high mass ratio signals




Identifying and Mitigating Machine
Learning Biases for the Gravitational
Wave Detection Problem

What is Bias in this context?:

* Imagine your definition of a “perfect” search/classification analysis
“ This is likely to be either a Bayesian of Frequentist or other?

* Remember, an ideal & realistic analysis does not detect everything

* We don’t have access to an ideal analysis for comparison

“ 5o biases in detection e.g. as a function of chirp mass are measured
relatively



Biases in ML
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Bias due to limited samples
Imbalance in the sample
distribution for a certain GW
parameter might introduce biases.

Vokinger, K.N et al. Commun Med 1, 25 (2021)
Tang, Kaihua et al. ArXiv abs/2009.12991 (2020)
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Clock with time set to 5:40 The time is 10:10 on that image. | asked for 5:40. Correct this.

Is It true that chatGPT cannot create images of a clock with times
other than 10:107?

No, that's not true — ChatGPT can create images of clocks showing any time, including times other than

10:10. However, some Al image generation systems (including DALL-E, which powers image generation
here) sometimes default to 10:10 due to training data biases, as that's a common time shown in product

photos of clocks. It's not a hard limit, and | can correct it on request — as | did when generating the 5:40

clock in the last image.




Biases in ML

Bias due to lack of variation

Lack of augmentation along GW
parameters that the model cannot
interpolate trivially or lack of
variation in noise characteristics.

Shah, Harshay et al. ArXiv abs/2006.07710 (2020)
A. Mikotajczyk et al., IPhDW, pp. 117-122 (2018)
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Biases in ML

1.0

Spectral bias
Lower frequency features are easier
to learn than higher frequency

Training lteration

0O 10000 20000 30000 40000

features. Generalisation toward
higher frequencies are typically

brittle.
Rahaman, Nasim et al. ICML (2018).
Cao, V. et al., arXiv:1912.01198 (2019) 20 40 60 80 100120 140 160 180 200

Frequency [Hz]

ML model was trained to learn sine waves at different
frequencies but same signal duration. The colours represent how
well the network learns samples of a certain frequency during

training. 1 is perfect and 0 is non-existent learning.

Rahaman et al. Proceedings of the 36th International Conference on Machine
Learning, PMLR 97:5301-5310, 2019.



Biases in ML

Other biases discussed in the paper [arxiv: 2501.13846 - accepted for publication in
PRD]

Bias due to class overlap

Bias due to class imbalance

Bias due to train-test dataset overlap

Bias due to train-test mismatch

Bias due to disproportionate evaluation
Bias due to limited feature representation
Bias due to sample difficulty

Bias due to insufficient information
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and possibly more...
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Sage Methodology

The primary features of SAGE

* Bias is very sensitive to the
mass training distribution

* Thoughtful network design
addresses inductive bias

+  Qut-of-distribution PSDs aid
classification

* Training on real data is key
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Injection Study

Our aim was to use the MLGWSC-1 [Schifer et al., 2023] dataset for apples-to-apples comparison

1. Injection study with 1 month of O3a detector noise (H1, L1)
2. Injected signals generated using IMRPhenomXPHM
3. Mass priors are U[7, 50] solar masses with m1 > m2

4. Spins y are distributed isotropically with magnitudes between (0.0, 0.99|
5. Other GW parameters were randomised from the standard distributions

Validation Data

Time span in days

SV 46
Testi . Dat v
esting LJata .
[IMLGWSC-1] Training Data

O3a O3b
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Injection Study

Sage
=== PyCBC

Found by both = 3344
Found only by Sage = 946

Found only by PyCBC = 513 Comparing the histogram of found

injections between Sage and PyCBC

for the injection study at a False
Alarm Rate (FAR) of 1 per month.

We find 443 signals more than
matched-filtering and is equivalent

to an increase of ~11.2% in the
number of signals detected.

PyCBC results obtained from - M. B. Schéafer et
al., Phys. Rev. D 107, 023021 (2023)
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Injection Study

Sage
- = AresGW

Found by both = 2814
Found only by Sage = 1476
Found only by AresGW = 79

N
(@)
aresgw

Comparing the histogram of found
injections between Sage and
AresGW for the injection study at a

False Alarm Rate (FAR) of 1 per
month.

We find 1397 signals more than
AresGW on this dataset and is
equivalent to an increase of ~48.29%
in the number of signals detected.

AresGW results obtained from - P. Nousi et al.,
Phys. Rev. D 108, 024022 (2023)
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Injection Study
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5 AG E (Empirical Contributions)

- PSD estimation is not required for ML-based detection
- Mitigating biases might aid in glitch rejection
- OOD PSDs are good for classification

- Data/parameter efficiency via GW domain knowledge

15



SAG - arxiv: 2501.13846 - accepted for publication in PRD

Identified sources of biases in ML for GW detection problem

Provided training strategies and mitigation tactics to address
biases concurrently.

We detect ~11.2% more signals than the benchmark PyCBC

result via the MLGWSC-1 injection study at an FAR of 1/
month in O3a noise.

Analysis of O3 is underway :)
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Histograms of chirp mass of the found signals for the injection study at an FAR of 1/month
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“Sage — Broad” has a broader
distribution of noise PSDs than
“Sage — Limited”.

10 20 30 40
Chirp Mass (M)

“Sage — D4 Metric” uses the
template bank density, U(t,,13),
to set the mass priors during
training. “Sage — Annealed Train”
transitions from U(m1, m2) to
U(7ty, 73) during training.

10 20 30 40
Chirp Mass (M)

“Sage — D3 Metric” uses
U (g, T3) to set mass priors for
training. Uses simulated

coloured Gaussian noise for
training and testing.
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Ablation Study

All aspects of the methodology were kept the same except following changes

[ 1 Sage ~__3 PyCBC
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Obtained all triggers by Sage related to glitch events in the O3a testing dataset noise (event
times and durations obtained from GravitySpy). Scatter plot shows the ranking statistic and
FAR for those triggers as a function of its corresponding glitch SNR for the H1 and L1
detectors. We conclude that Sage can reject glitches effectively in real detector noise.
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Reduce need
for larger
receptive field

Compression using multirate sampling
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Changing the Nyquist limit from
solid red line to dashed red line
as a form of time-series
compression
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Strain (x10~19)

Reduce need
for larger
receptive field
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Increased variance
provided for noise
class via
augmentation

Augmentation Method 2

Estimate noise sample PSD

Augmentation Method 1

Noise sample has a
) random start time within
Noise Sample .. .
160 days of training noise
data

AA A A A A A A A

Training Noise Dataset

Recolour noise sample
Whiten noise sample using different PSD
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Finetuned
training strategies
to handle biases
due to limited
samples
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2 (

2D Histogram of U(z,, T5) plotted
in the mass1 vs mass2 space



Proper inductive
bias used for two
stage network
architecture
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Injection Study
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Noise Class Signhal Class
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Generated a noise class of 250,000 noise realisations from the O3a noise PSDs. Generated a
signal class dataset by injecting the same signal into these noise realisations.

Comparing the normalised histogram of network outputs for “Sage — Broad” and “Sage -
Limited” suggests that training a model with a larger variance in noise PSDs allows it to be

more confident about a given signal compared to a model that is not.
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Sensitive Distance [MPc]
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