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Problem Setup: Detection of BBH GWs interpreted as a classification problem in the 
deep learning framework.

Generate BBH GW 
signals given parameters 

randomised from the 
standard distributions

Get real detector noise 
for H1 and L1 from the 

third observing run

Signal Class

Noise Class

Classifier

Training Dataset

Supervised Learning

Training Phase

Sample length set 
based on lowest 

possible chirp mass
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Motivation: Previous works were affected by ML biases. Finding the source of these biases 
and mitigating them might allow ML to move closer to the detection performance of matched-
filtering pipelines.

M. B. Schäfer et al., Phys. Rev. D 107, 023021 (2023) Reported bias against long duration signals and
inability to reject non-Gaussian noise artefacts

Koloniari, Alexandra E. et al. (2024) -- AresGW Reported bias in the tails of the chirp mass 
distribution

Marx, Ethan et al. (2024) -- AFrame Reported bias against lower chirp mass 
and high mass ratio signals



❖ Imagine your definition of a “perfect” search/classification analysis

❖ This is likely to be either a Bayesian of Frequentist or other?

❖ Remember, an ideal & realistic analysis does not detect everything

❖ We don’t have access to an ideal analysis for comparison

❖ So biases in detection e.g. as a function of chirp mass are measured 
relatively  
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What is Bias in this context?: Identifying and Mitigating Machine 
Learning Biases for the Gravitational 
Wave Detection Problem
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Bias due to limited samples
Imbalance in the sample 
distribution for a certain GW 
parameter might introduce biases.

Biases in ML

𝜏 = 𝑡𝑐 − 5(8𝜋𝑓𝑙)
−8/3ℳ−5/3

𝑐

Vokinger, K.N et al. Commun Med 1, 25 (2021)
Tang, Kaihua et al. ArXiv abs/2009.12991 (2020)
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Bias due to lack of variation
Lack of augmentation along GW 
parameters that the model cannot 
interpolate trivially or lack of 
variation in noise characteristics.

Biases in ML

Shah, Harshay et al. ArXiv abs/2006.07710 (2020)
A. Mikołajczyk et al., IIPhDW, pp. 117-122 (2018)



8

Spectral bias
Lower frequency features are easier 
to learn than higher frequency 
features. Generalisation toward 
higher frequencies are typically 
brittle.

Rahaman et al. Proceedings of the 36th International Conference on Machine 
Learning, PMLR 97:5301-5310, 2019.

Biases in ML

ML model was trained to learn sine waves at different 
frequencies but same signal duration. The colours represent how 
well the network learns samples of a certain frequency during 
training. 1 is perfect and 0 is non-existent learning. 

Rahaman, Nasim et al. ICML (2018).
Cao, Y. et al., arXiv:1912.01198 (2019)
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Other biases discussed in the paper [arxiv: 2501.13846 - accepted for publication in 
PRD]

1. Bias due to class overlap
2. Bias due to class imbalance
3. Bias due to train-test dataset overlap
4. Bias due to train-test mismatch
5. Bias due to disproportionate evaluation
6. Bias due to limited feature representation
7. Bias due to sample difficulty
8. Bias due to insufficient information

and possibly more…

Biases in ML



❖ The primary features of SAGE

❖ Bias is very sensitive to the 
mass training distribution

❖ Thoughtful network design 
addresses inductive bias

❖  Out-of-distribution PSDs aid 
classification

❖ Training on real data is key
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Proper inductive bias used for two 
stage feature extractor and 

classifier

Ability to vary the 
sample distribution 

smoothly during 
training

Increased variance provided 
for noise class

Increased 
variance provided 

for signal class 
via on-the-fly 

generation

No filters and no 
PSD estimation

Proper normalisation 
to avoid gradient 
update problems

Complex enough 
waveform approximant 
and sufficient sample 

length

Finetuned training to 
handle large amount 

of complex data

Reduce need for larger 
receptive field

Sage Methodology



11

Our aim was to use the MLGWSC-1 [Schäfer et al., 2023] dataset for apples-to-apples comparison

1. Injection study with 1 month of O3a detector noise (H1, L1)
2. Injected signals generated using IMRPhenomXPHM
3. Mass priors are solar masses with 
4. Spins  are distributed isotropically with magnitudes between 
5. Other GW parameters were randomised from the standard distributions

𝑈[7, 50]  𝑚1 > 𝑚2
𝜒 [0.0,  0.99]

~114
Time span in days

30 5 46

Testing Data
[MLGWSC-1]

Validation Data

Training Data

O3a O3b

Injection Study
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Comparing the histogram of found 
injections between Sage and PyCBC 
for the injection study at a False 
Alarm Rate (FAR) of 1 per month. 

We find 443 signals more than 
matched-filtering and is equivalent 
to an increase of ~11.2% in the 
number of signals detected.

PyCBC results obtained from - M. B. Schäfer et 
al., Phys. Rev. D 107, 023021 (2023)

Injection Study
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Comparing the histogram of found 
injections between Sage and 
AresGW for the injection study at a 
False Alarm Rate (FAR) of 1 per 
month. 

We find 1397 signals more than 
AresGW on this dataset and is 
equivalent to an increase of ~48.29% 
in the number of signals detected.

AresGW results obtained from - P. Nousi et al., 
Phys. Rev. D 108, 024022 (2023)

Injection Study
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Parameter-dependent sensitive distance, , 
as a function of false alarm rate per month. 

∝ 𝑉(ℱ)
1
3

Injection Study
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SAGE

- PSD estimation is not required for ML-based detection

- OOD PSDs are good for classification

- Mitigating biases might aid in glitch rejection

- Data/parameter efficiency via GW domain knowledge

(Empirical Contributions)
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SAGE

Identified sources of biases in ML for GW detection problem

We detect ~11.2% more signals than the benchmark PyCBC 
result via the MLGWSC-1 injection study at an FAR of 1/
month in O3a noise.

Provided training strategies and mitigation tactics to address 
biases concurrently.

arxiv: 2501.13846 - accepted for publication in PRD

Analysis of O3 is underway :)
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“Sage – D3 Metric” uses 
 to set mass priors for 

training. Uses simulated 
coloured Gaussian noise for 
training and testing.

U(τ0, τ3)
“Sage – D4 Metric” uses the 
template bank density, , 
to set the mass priors during 
training. “Sage – Annealed Train” 
transitions from  to 

 during training. 

U(τ0, τ3)

U(m1, m2)
U(τ0, τ3)

“Sage – Broad” has a broader 
distribution of noise PSDs than 
“Sage – Limited”.

Histograms of chirp mass of the found signals for the injection study at an FAR of 1/month 
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All aspects of the methodology were kept the same except following changes

Ablation Study
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Obtained all triggers by Sage related to glitch events in the O3a testing dataset noise (event 
times and durations obtained from GravitySpy). Scatter plot shows the ranking statistic and 
FAR for those triggers as a function of its corresponding glitch SNR for the H1 and L1 
detectors. We conclude that Sage can reject glitches effectively in real detector noise. 
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Reduce need 
for larger 

receptive field

2
Compression using multirate sampling

Changing the Nyquist limit from 
solid red line to dashed red line 

as a form of time-series 
compression



23

Reduce need 
for larger 

receptive field

2
Compression using multirate sampling

Example of compression applied 
to a BBH gravitational-wave
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Increased variance 
provided for noise 

class via 
augmentation
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Noise Sample

Training Noise Dataset

Noise sample has a 
random start time within 
160 days of training noise 

data

Estimate noise sample PSD Whiten noise sample
Recolour noise sample 

using different PSD

Augmentation Method 2

Augmentation Method 1



25

Finetuned 
training strategies 
to handle biases 
due to limited 

samples
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Transitioning from  to 
 during training

U(m1, m2)
U(τ0, τ3)
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2D Histogram of  plotted 
in the mass1 vs mass2 space

U(τ0, τ3)
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Proper inductive 
bias used for two 

stage network 
architecture

6

Backend classifier 
powered by spatial and 
channel-wise attention

Frontend multiscale 
feature extractor
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*Aframe is not optimised for the D4 
mass distribution in MLGWSC-1. 
They operate on a broader mass 
prior [5, 100] Msun.

Injection Study
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Generated a noise class of 250,000 noise realisations from the O3a noise PSDs. Generated a 
signal class dataset by injecting the same signal into these noise realisations.

Comparing the normalised histogram of network outputs for “Sage – Broad” and “Sage – 
Limited” suggests that training a model with a larger variance in noise PSDs allows it to be 
more confident about a given signal compared to a model that is not. 
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Actual value of GW parameters: 
chirp mass and time of coalescence, 
plotted against the network 
predicted value for a validation 
epoch in different Sage runs. The 
top row corresponds to the Sage - 
Annealed Train run and the bottom 
row to the Sage - Broad run.
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Error bar obtained using 
3 runs of Sage with 
different training seeds.
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PyC
BC

 - dotted blue, Sage – solid red lines


