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In general relativity, gravitational waves are produced
by accelerating masses [14]. Since the waveform clearly
shows at least eight oscillations, we know that mass or
masses are oscillating. The increase in gravitational wave
frequency and amplitude also indicate that during this
time the oscillation frequency of the source system is in-
creasing. This initial phase cannot be due to a perturbed
system returning back to stable equilibrium, since oscilla-
tions around equilibrium are generically characterized by
roughly constant frequencies and decaying amplitudes.
For example, in the case of a fluid ball, the oscillations
would be damped by viscous forces. Here, the data demon-
strate very different behavior.

During the period when the gravitational wave fre-
quency and amplitude are increasing, orbital motion of
two bodies is the only plausible explanation: there, the
only “damping forces” are provided by gravitational wave
emission, which brings the orbiting bodies closer (an “in-
spiral"), increasing the orbital frequency and amplifying
the gravitational wave energy output from the system4.
Gravitational radiation is at leading order quadrupolar,
and the quadrupole moment is invariant under reflection
about the center of mass (even for unequal masses). This
symmetry implies that the gravitational wave must be ra-
diated at a frequency that is twice the orbital frequency
[15]. The eight gravitational wave cycles of increasing
frequency therefore require at least four orbital revolu-
tions, at separations large enough (compared to the size
of the bodies) that the bodies do not collide. The rising fre-
quency signal eventually terminates, suggesting the end
of inspiraling orbital motion. As the amplitude decreases
and the frequency stabilizes the system returns to a stable
equilibrium configuration. We shall show that the only
reasonable explanation for the observed frequency evolu-
tion is that the system consisted of two black holes that
had orbited each other and subsequently merged.

Determining the frequency at maximum strain am-
plitude fGW

ØØ
max: The single most important quantity for

the reasoning in this paper is the gravitational wave fre-
quency at which the waveform has maximum amplitude.
Using the zero-crossings around the peak of Fig. 1 and/or
the brightest point of Fig. 2, we take the conservative (low)
value

fGW
ØØ
max ª 150 Hz, (2)

4 The possibility of a different inspiraling system, whose evolu-
tion is not governed by gravitational waves, is explored in App.
A.1 and found to be inconsistent with this data.

where here and elsewhere the notation indicates that the
quantity before the vertical line is evaluated at the time
indicated after the line. We thus interpret the observa-
tional data as indicating that the bodies were orbiting
each other (roughly Keplerian dynamics) up to at least an
orbital angular frequency

!Kep
ØØ
max =

2º fGW
ØØ
max

2
= 2º£75 Hz. (3)

Determining the mass scale: Einstein found [16] that
the gravitational wave strain h at a (luminosity) distance
dL from a system whose traceless mass quadrupole mo-
ment is Qi j (defined in App. A) is

hi j =
2G

c4 dL

d2Qi j

dt 2 , (4)

and that the rate at which energy is carried away by these
gravitational waves is given by the quadrupole formula
[16]

dEGW

dt
= c3

16ºG

œØØḣ
ØØ2dS = 1

5
G
c5

3X

i , j=1

d3Qi j

dt 3

d3Qi j

dt 3 , (5)

where
ØØḣ

ØØ2 =
3X

i , j=1

dhi j

dt

dhi j

dt
,

the integral is over a sphere at radius dL (contributing
a factor 4ºd 2

L), and the quantity on the right-hand side
must be averaged over (say) one orbit (see App. A).

In our case, Eq. 5 gives the rate of loss of orbital energy
to gravitational waves, when the velocities of the orbit-
ing objects are not too close to the speed of light, and
the strain is not too large [14] (we will apply it until the
frequency fGW

ØØ
max, see Sec. 4.4).

For the binary system we denote the two masses by
m1 and m2 and the total mass by M = m1+m2. We define
the mass ratio q = m1/m2 and without loss of generality
assume that m1 ∏ m2 so that q ∏ 1. To describe the gravita-
tional wave emission from a binary system, a useful mass
quantity is the chirp mass, M , related to the component
masses by

M = (m1m2)3/5

(m1 +m2)1/5
. (6)

Using Newton’s laws of motion, Newton’s universal
law of gravitation, and Einstein’s quadrupole formula for
the gravitational wave luminosity of a system, a simple
formula is derived in App. A (following [17, 18]) relating
the frequency and frequency derivative of emitted gravi-
tational waves to the chirp mass,

M = c3

G

µµ
5

96

∂3

º°8 °
fGW

¢°11 °
ḟGW

¢3
∂1/5

, (7)

Copyright line will be provided by the publisher 3

August 5, 2016

hole suggests M ª 1
6 c2rISCO/G and !r ª 0.5c. Taken to-

gether with the correct exponents, L acquires a factor
0.4£ 6°2 £ 0.56 ª 0.2£ 10°3. While the numerical value
may change by a factor of a few with the mass specific
ratio or spins, we can treat its order of magnitude as uni-
versal.

Using Eq. 5 we relate the luminosity of gravitational
waves to their strain h at luminosity distance dL ,

L ª
c3 d 2

L

4G

ØØḣ
ØØ2 ª c5

4G

√
!GWdLh

ØØ
max

c

!2

. (19)

Thus we have 0.2£10°3 ª 1
4

°
!GWdLh

ØØ
max/c

¢2, and we can
estimate the distance from the change of the measured
strain in time over the cycle at peak amplitude, as

dL ª 45 Gpc

√
Hz

fGW
ØØ
max

!√
10°21

h
ØØ
max

!

, (20)

which for GW150914 gives dL ª 300 Mpc. This distance
corresponds to a redshift of z ∑ 0.1, and so does not sub-
stantially affect any of the conclusions. For a different
distance-luminosity calculation based only on the strain
data (reaching a similar estimate), see [34].

Using the orbital energy Eorb (as defined in App. A)
we may also estimate the total energy radiated as gravi-
tational waves during the system’s evolution from a very
large initial separation (where E i

orb ! 0) down to a sep-
aration r . For GW150914, using m1 ª m2 ª 35MØ and
r ª R = 350km (Eq. 9),

EGW = E i
orb °E f

orb = 0°
µ
°GMµ

2R

∂
ª 3MØ c2. (21)

This quantity should be considered an estimate for a lower
bound on the total emitted energy (as some energy is
emitted in the merger and ringdown); compare with the
exact calculations in [1–3].

We note that the amount of energy emitted in this
event is remarkable. During it’s ten-billion-year lifetime,
our sun is expected to convert less than 1% of its mass
into light and radiation. During the peak of its emission,
GW150914 emitted about 23 orders of magnitude more
power than this, in the form of gravitational waves.

6 Conclusions

A lot of insight can be obtained by applying these ba-
sic physics arguments to the observed strain data of
GW150914. These show the system that produced the
gravitational wave was a pair of inspiraling black holes
that approached very closely before merging. The system

is seen to settle down, most likely to a single black hole.
Simple arguments can also give us information about the
system’s distance and basic properties (for a related phe-
nomenological approach see [35]).

These arguments will not work for every signal, for in-
stance if the masses are too low to safely rule out a neutron
star constituent as done in Sec. 4.5, but should be useful
for systems similar to GW150914. There has already been
another gravitational wave detection, GW151226 [6, 36],
whose amplitude is smaller and therefore cannot be seen
in the strain data without application of more advanced
techniques.

Such techniques, combining analytic and numerical
methods, can give us even more information, and we en-
courage the reader to explore how such analyses and mod-
els have been used for estimating the parameters of the
system [2, 3], for testing and constraining the validity of
general relativity in the highly relativistic, dynamic regime
[4] and for the study of astrophysics based on this event
[5].

We hope that this paper will serve as an invitation to
the field, at the beginning of the era of gravitational wave
observations.

A Calculation of gravitational radiation
from a binary system

Here we outline the calculation of the energy a binary sys-
tem emits in gravitational waves and the emitted energy’s
effect on the system.

First we calculate the quadrupole moment Qi j of the
system’s mass distribution. We use a Cartesian coordinate
system x = (x1, x2, x3) = (x, y, z) whose origin is the center-
of-mass, with r the radial distance from the origin. ±i j =
diag(1,1,1) is the Kronecker-delta and Ω(x) denotes the
mass density. Then

Qi j =
Z

d3xΩ(x)
°
xi x j °

1
3

r 2±i j
¢

(22)

=
X

A2{1,2}
mA

0

B@

2
3 x2

A ° 1
3 y2

A xA y A 0

xA y A
2
3 y2

A ° 1
3 x2

A 0

0 0 ° 1
3 r 2

A

1

CA , (23)

where the second equality holds for a system of two bodies
A 2 {1,2} in the x y-plane. In the simple case of a circular
orbit at separation r = r1+r2 and frequency f = !

2º , a little
trigonometry gives for each object (see Fig. 6)

Q A
i j (t ) =

mAr 2
A

2
Ii j , (24)
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Figure 6 A two-body system, m1 and m2 orbiting in the x y-
plane around their center of mass.

where Ixx = cos(2!t)+ 1
3 , Iy y = 1

3 °cos(2!t), Ix y = Iy x =
sin(2!t) and Izz = ° 2

3 . Combining we find Qi j (t) =
1
2µr 2Ii j , where we have used the standard reduced mass
µ= m1m2/M , and the gravitational wave luminosity from
Eq. 5 is

d
dt

EGW = 32
5

G
c5µ

2r 4!6. (25)

This energy loss drains the orbital energy Eorb = °GMµ
2r ,

thus d
dt Eorb = GMµ

2r 2 ṙ =° d
dt EGW.

Using Kepler’s third law r 3 =GM/!2 and its derivative
ṙ =° 2

3 r !̇/! we can substitute for all the r ’s and obtain

!̇3 =
µ

96
5

∂3 !11

c15 G5µ3M 2 =
µ

96
5

∂3 !11

c15 (GM )5 , (26)

having defined the chirp mass M =
°
µ3M 2¢1/5.

We can see that Eq. 26 describes the evolution of
the system as an inspiral: the orbital frequency goes up
(“chirps”), while by Kepler’s Law the orbital separation
shrinks.

A.1 Gravitational radiation from a different rotating
system

A rising gravitational wave amplitude can accompany a
rise in frequency in other rotating systems, evolving under
different mechanisms. An increase in frequency means
the system rotates faster and faster, so unless it gains
angular momentum, the system’s characteristic length

r (t ) should be decreasing. For a system not driven by the
loss of energy and angular momentum to gravitational
waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
L =ÆMr 2!, and so !/ L/r 2.

The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
M r 2 w2 / L!.

Thus we see that for a system not driven by emission
of gravitational waves, as the characteristic system size r
shrinks, both its gravitational wave frequency and ampli-
tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.

B Possibilities for massive, compact
objects

We are considering astrophysical objects with mass scale
m ª 35MØ , which are constrained to fit into a radius R
such that the compactness ratio obeys R = c2 R

G m . 3.4.
This produces a scale for their Newtonian density,

Ω ∏ m
(4º/3)R3 = 3£1015

µ
3.4
R

∂3 µ
35MØ

m

∂2 kg
m3 , (27)

where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.
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Figure 6 A two-body system, m1 and m2 orbiting in the x y-
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data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.
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3 , Iy y = 1

3 °cos(2!t), Ix y = Iy x =
sin(2!t) and Izz = ° 2

3 . Combining we find Qi j (t) =
1
2µr 2Ii j , where we have used the standard reduced mass
µ= m1m2/M , and the gravitational wave luminosity from
Eq. 5 is

d
dt
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2r 4!6. (25)

This energy loss drains the orbital energy Eorb = °GMµ
2r ,

thus d
dt Eorb = GMµ

2r 2 ṙ =° d
dt EGW.

Using Kepler’s third law r 3 =GM/!2 and its derivative
ṙ =° 2

3 r !̇/! we can substitute for all the r ’s and obtain
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having defined the chirp mass M =
°
µ3M 2¢1/5.

We can see that Eq. 26 describes the evolution of
the system as an inspiral: the orbital frequency goes up
(“chirps”), while by Kepler’s Law the orbital separation
shrinks.

A.1 Gravitational radiation from a different rotating
system

A rising gravitational wave amplitude can accompany a
rise in frequency in other rotating systems, evolving under
different mechanisms. An increase in frequency means
the system rotates faster and faster, so unless it gains
angular momentum, the system’s characteristic length

r (t ) should be decreasing. For a system not driven by the
loss of energy and angular momentum to gravitational
waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
L =ÆMr 2!, and so !/ L/r 2.

The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
M r 2 w2 / L!.

Thus we see that for a system not driven by emission
of gravitational waves, as the characteristic system size r
shrinks, both its gravitational wave frequency and ampli-
tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.

B Possibilities for massive, compact
objects

We are considering astrophysical objects with mass scale
m ª 35MØ , which are constrained to fit into a radius R
such that the compactness ratio obeys R = c2 R

G m . 3.4.
This produces a scale for their Newtonian density,

Ω ∏ m
(4º/3)R3 = 3£1015

µ
3.4
R

∂3 µ
35MØ

m

∂2 kg
m3 , (27)

where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.
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waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
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The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
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tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.
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where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.
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In general relativity, gravitational waves are produced
by accelerating masses [14]. Since the waveform clearly
shows at least eight oscillations, we know that mass or
masses are oscillating. The increase in gravitational wave
frequency and amplitude also indicate that during this
time the oscillation frequency of the source system is in-
creasing. This initial phase cannot be due to a perturbed
system returning back to stable equilibrium, since oscilla-
tions around equilibrium are generically characterized by
roughly constant frequencies and decaying amplitudes.
For example, in the case of a fluid ball, the oscillations
would be damped by viscous forces. Here, the data demon-
strate very different behavior.

During the period when the gravitational wave fre-
quency and amplitude are increasing, orbital motion of
two bodies is the only plausible explanation: there, the
only “damping forces” are provided by gravitational wave
emission, which brings the orbiting bodies closer (an “in-
spiral"), increasing the orbital frequency and amplifying
the gravitational wave energy output from the system4.
Gravitational radiation is at leading order quadrupolar,
and the quadrupole moment is invariant under reflection
about the center of mass (even for unequal masses). This
symmetry implies that the gravitational wave must be ra-
diated at a frequency that is twice the orbital frequency
[15]. The eight gravitational wave cycles of increasing
frequency therefore require at least four orbital revolu-
tions, at separations large enough (compared to the size
of the bodies) that the bodies do not collide. The rising fre-
quency signal eventually terminates, suggesting the end
of inspiraling orbital motion. As the amplitude decreases
and the frequency stabilizes the system returns to a stable
equilibrium configuration. We shall show that the only
reasonable explanation for the observed frequency evolu-
tion is that the system consisted of two black holes that
had orbited each other and subsequently merged.

Determining the frequency at maximum strain am-
plitude fGW

ØØ
max: The single most important quantity for

the reasoning in this paper is the gravitational wave fre-
quency at which the waveform has maximum amplitude.
Using the zero-crossings around the peak of Fig. 1 and/or
the brightest point of Fig. 2, we take the conservative (low)
value

fGW
ØØ
max ª 150 Hz, (2)

4 The possibility of a different inspiraling system, whose evolu-
tion is not governed by gravitational waves, is explored in App.
A.1 and found to be inconsistent with this data.

where here and elsewhere the notation indicates that the
quantity before the vertical line is evaluated at the time
indicated after the line. We thus interpret the observa-
tional data as indicating that the bodies were orbiting
each other (roughly Keplerian dynamics) up to at least an
orbital angular frequency

!Kep
ØØ
max =

2º fGW
ØØ
max

2
= 2º£75 Hz. (3)

Determining the mass scale: Einstein found [16] that
the gravitational wave strain h at a (luminosity) distance
dL from a system whose traceless mass quadrupole mo-
ment is Qi j (defined in App. A) is

hi j =
2G

c4 dL

d2Qi j

dt 2 , (4)

and that the rate at which energy is carried away by these
gravitational waves is given by the quadrupole formula
[16]

dEGW

dt
= c3

16ºG

œØØḣ
ØØ2dS = 1

5
G
c5

3X

i , j=1

d3Qi j

dt 3

d3Qi j

dt 3 , (5)

where
ØØḣ

ØØ2 =
3X

i , j=1

dhi j

dt

dhi j

dt
,

the integral is over a sphere at radius dL (contributing
a factor 4ºd 2

L), and the quantity on the right-hand side
must be averaged over (say) one orbit (see App. A).

In our case, Eq. 5 gives the rate of loss of orbital energy
to gravitational waves, when the velocities of the orbit-
ing objects are not too close to the speed of light, and
the strain is not too large [14] (we will apply it until the
frequency fGW

ØØ
max, see Sec. 4.4).

For the binary system we denote the two masses by
m1 and m2 and the total mass by M = m1+m2. We define
the mass ratio q = m1/m2 and without loss of generality
assume that m1 ∏ m2 so that q ∏ 1. To describe the gravita-
tional wave emission from a binary system, a useful mass
quantity is the chirp mass, M , related to the component
masses by

M = (m1m2)3/5

(m1 +m2)1/5
. (6)

Using Newton’s laws of motion, Newton’s universal
law of gravitation, and Einstein’s quadrupole formula for
the gravitational wave luminosity of a system, a simple
formula is derived in App. A (following [17, 18]) relating
the frequency and frequency derivative of emitted gravi-
tational waves to the chirp mass,

M = c3

G

µµ
5

96

∂3

º°8 °
fGW

¢°11 °
ḟGW

¢3
∂1/5

, (7)
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where Ixx = cos(2!t)+ 1
3 , Iy y = 1

3 °cos(2!t), Ix y = Iy x =
sin(2!t) and Izz = ° 2

3 . Combining we find Qi j (t) =
1
2µr 2Ii j , where we have used the standard reduced mass
µ= m1m2/M , and the gravitational wave luminosity from
Eq. 5 is

d
dt

EGW = 32
5

G
c5µ

2r 4!6. (25)

This energy loss drains the orbital energy Eorb = °GMµ
2r ,

thus d
dt Eorb = GMµ

2r 2 ṙ =° d
dt EGW.

Using Kepler’s third law r 3 =GM/!2 and its derivative
ṙ =° 2

3 r !̇/! we can substitute for all the r ’s and obtain

!̇3 =
µ

96
5

∂3 !11

c15 G5µ3M 2 =
µ

96
5

∂3 !11

c15 (GM )5 , (26)

having defined the chirp mass M =
°
µ3M 2¢1/5.

We can see that Eq. 26 describes the evolution of
the system as an inspiral: the orbital frequency goes up
(“chirps”), while by Kepler’s Law the orbital separation
shrinks.

A.1 Gravitational radiation from a different rotating
system

A rising gravitational wave amplitude can accompany a
rise in frequency in other rotating systems, evolving under
different mechanisms. An increase in frequency means
the system rotates faster and faster, so unless it gains
angular momentum, the system’s characteristic length

r (t ) should be decreasing. For a system not driven by the
loss of energy and angular momentum to gravitational
waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
L =ÆMr 2!, and so !/ L/r 2.

The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
M r 2 w2 / L!.

Thus we see that for a system not driven by emission
of gravitational waves, as the characteristic system size r
shrinks, both its gravitational wave frequency and ampli-
tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.

B Possibilities for massive, compact
objects

We are considering astrophysical objects with mass scale
m ª 35MØ , which are constrained to fit into a radius R
such that the compactness ratio obeys R = c2 R

G m . 3.4.
This produces a scale for their Newtonian density,

Ω ∏ m
(4º/3)R3 = 3£1015

µ
3.4
R

∂3 µ
35MØ

m

∂2 kg
m3 , (27)

where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.
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We can see that Eq. 26 describes the evolution of
the system as an inspiral: the orbital frequency goes up
(“chirps”), while by Kepler’s Law the orbital separation
shrinks.

A.1 Gravitational radiation from a different rotating
system

A rising gravitational wave amplitude can accompany a
rise in frequency in other rotating systems, evolving under
different mechanisms. An increase in frequency means
the system rotates faster and faster, so unless it gains
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r (t ) should be decreasing. For a system not driven by the
loss of energy and angular momentum to gravitational
waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
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The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
M r 2 w2 / L!.

Thus we see that for a system not driven by emission
of gravitational waves, as the characteristic system size r
shrinks, both its gravitational wave frequency and ampli-
tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.

B Possibilities for massive, compact
objects

We are considering astrophysical objects with mass scale
m ª 35MØ , which are constrained to fit into a radius R
such that the compactness ratio obeys R = c2 R
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This produces a scale for their Newtonian density,

Ω ∏ m
(4º/3)R3 = 3£1015

µ
3.4
R

∂3 µ
35MØ

m

∂2 kg
m3 , (27)

where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.

10 Copyright line will be provided by the publisher

LIGO Scientific & VIRGO Collaborations: The basic physics of the binary black hole merger GW150914

�t

r1

r2

m1

m2

r1 cos �t
r2 cos �t

r 1
si

n
�
t

r 2
si

n
�
t

y

x

Figure 6 A two-body system, m1 and m2 orbiting in the x y-
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2µr 2Ii j , where we have used the standard reduced mass
µ= m1m2/M , and the gravitational wave luminosity from
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We can see that Eq. 26 describes the evolution of
the system as an inspiral: the orbital frequency goes up
(“chirps”), while by Kepler’s Law the orbital separation
shrinks.
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system

A rising gravitational wave amplitude can accompany a
rise in frequency in other rotating systems, evolving under
different mechanisms. An increase in frequency means
the system rotates faster and faster, so unless it gains
angular momentum, the system’s characteristic length

r (t ) should be decreasing. For a system not driven by the
loss of energy and angular momentum to gravitational
waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
L =ÆMr 2!, and so !/ L/r 2.

The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
M r 2 w2 / L!.

Thus we see that for a system not driven by emission
of gravitational waves, as the characteristic system size r
shrinks, both its gravitational wave frequency and ampli-
tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.
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We are considering astrophysical objects with mass scale
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where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
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We can see that Eq. 26 describes the evolution of
the system as an inspiral: the orbital frequency goes up
(“chirps”), while by Kepler’s Law the orbital separation
shrinks.

A.1 Gravitational radiation from a different rotating
system

A rising gravitational wave amplitude can accompany a
rise in frequency in other rotating systems, evolving under
different mechanisms. An increase in frequency means
the system rotates faster and faster, so unless it gains
angular momentum, the system’s characteristic length

r (t ) should be decreasing. For a system not driven by the
loss of energy and angular momentum to gravitational
waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
L =ÆMr 2!, and so !/ L/r 2.

The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
M r 2 w2 / L!.

Thus we see that for a system not driven by emission
of gravitational waves, as the characteristic system size r
shrinks, both its gravitational wave frequency and ampli-
tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.

B Possibilities for massive, compact
objects

We are considering astrophysical objects with mass scale
m ª 35MØ , which are constrained to fit into a radius R
such that the compactness ratio obeys R = c2 R

G m . 3.4.
This produces a scale for their Newtonian density,

Ω ∏ m
(4º/3)R3 = 3£1015

µ
3.4
R

∂3 µ
35MØ

m

∂2 kg
m3 , (27)

where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.
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• The first direct* detection 
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where ḟGW = d fGW/dt is the rate-of-change of the fre-
quency (see Eq. 26 and Eq. 3 of [19]). This equation is
expected to hold as long as the Newtonian approximation
is valid (see Sec. 4.4).

Thus, a value for the chirp mass can be determined
directly from the observational data, by plotting the fre-
quency and frequency derivative of the gravitational
waves as a function of time. This value of the chirp mass
M can be estimated from a time-frequency plot of the
observed gravitational wave strain data, using either Fig. 2
or the zero-crossings. The time interval during which the
inspiral signal is in the sensitive band of the detector (and
hence is visible) corresponds to gravitational wave fre-
quencies in the range 30 < fGW < 150 Hz. Over this time,
the frequency (period) varies by a factor of 5 ( 1

5 ), and the
frequency derivative varies by more than two orders-of-
magnitude. The implied chirp mass value, however, re-
mains constant to within 25%. The exact value of M is
not critical to the arguments that we present here, so for
simplicity we take M = 30MØ.

Note that the characteristic mass scale of the radiat-
ing system is obtained by direct inspection of the time-
frequency behavior of the observational data.

The fact that the chirp mass remains approximately
constant for fGW<150 Hz is strong support for the orbital
interpretation. The fact that the amplitude of the gravita-
tional wave strain increases with frequency also supports
this interpretation, and suggests that the assumptions
that go into the calculation which leads to these formulas
are applicable: the velocities in the binary system are not
too close to the speed of light, and the orbital motion has
an adiabatically changing radius and period described in-
stantaneously by Kepler’s laws. The data also indicate that
these assumptions certainly break down at a gravitational
wave frequency above fGW

ØØ
max, as the amplitude stops

growing.

Alternatively, Eq. 7 can be integrated to obtain

f °8/3
GW (t ) = (8º)8/3

5

µ
G M

c3

∂5/3

(tc ° t ), (8)

which does not involve ḟGW explicitly, and can therefore
be used to calculate M directly from the time periods
between zero-crossings in the strain data. We have per-
formed such an analysis, presented in Fig. 3, to find simi-
lar results. We henceforth adopt a conservative lower esti-
mate of 30MØ . We remark that this mass is derived from
quantities measured in the detector frame, thus it and
the quantities we derive from it are given in the detec-
tor frame. Discussion of redshift from the source frame
appears in Sec. 4.6.

Figure 3 A linear fit (green) of f °8/3
GW (t ), where fGW has been

interpolated as fGW = 1/(2¢t) from the time differences ¢t
between successive zeros of the strain data. While this in-
terpolation used the combined strain data from H1 and L1
(in fact, the sum of L1 with time shifted and sign-flipped H1,
as explained), A similar fit can be done using either H1 or L1
strain independently. The fit shown has residual sum of squares
R2

L1°H1 ª 0.9; we have also found R2
H1 ª 0.9 and R2

L1 ª 0.8.
The slope of this fitted line gives an estimate of the chirp mass
using Eq. 8. The blue and red lines indicate M of 30MØand
40MØ , respectively. The error-bars have been estimated by
repeating the procedure for waves of the same amplitudes
and frequencies added to the LIGO strain data just before
GW150914. A similar error estimate has been found using the
differences between H1 and L1 zero-crossings.

3 Proving compactness in the simplest
case

For simplicity, suppose that the two bodies have equal
masses, m1 = m2. The value of the chirp mass then im-
plies that m1 = m2 = 21/5M = 35MØ , so that the total
mass would be M = m1 +m2 = 70MØ . We also assume
for now that the objects are not spinning, and that their
orbits remain Keplerian and essentially circular until the
point of peak amplitude.

Around the time of peak amplitude the bodies there-
fore had an orbital separation R given by

R =
√

GM

!2
Kep

ØØ
max

!1/3

= 350 km. (9)

Compared to normal length scales for stars, this is
a tiny value. This constrains the objects to be exceed-
ingly small, or else they would have collided and merged
long before reaching such close proximity. Main-sequence
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In general relativity, gravitational waves are produced
by accelerating masses [14]. Since the waveform clearly
shows at least eight oscillations, we know that mass or
masses are oscillating. The increase in gravitational wave
frequency and amplitude also indicate that during this
time the oscillation frequency of the source system is in-
creasing. This initial phase cannot be due to a perturbed
system returning back to stable equilibrium, since oscilla-
tions around equilibrium are generically characterized by
roughly constant frequencies and decaying amplitudes.
For example, in the case of a fluid ball, the oscillations
would be damped by viscous forces. Here, the data demon-
strate very different behavior.

During the period when the gravitational wave fre-
quency and amplitude are increasing, orbital motion of
two bodies is the only plausible explanation: there, the
only “damping forces” are provided by gravitational wave
emission, which brings the orbiting bodies closer (an “in-
spiral"), increasing the orbital frequency and amplifying
the gravitational wave energy output from the system4.
Gravitational radiation is at leading order quadrupolar,
and the quadrupole moment is invariant under reflection
about the center of mass (even for unequal masses). This
symmetry implies that the gravitational wave must be ra-
diated at a frequency that is twice the orbital frequency
[15]. The eight gravitational wave cycles of increasing
frequency therefore require at least four orbital revolu-
tions, at separations large enough (compared to the size
of the bodies) that the bodies do not collide. The rising fre-
quency signal eventually terminates, suggesting the end
of inspiraling orbital motion. As the amplitude decreases
and the frequency stabilizes the system returns to a stable
equilibrium configuration. We shall show that the only
reasonable explanation for the observed frequency evolu-
tion is that the system consisted of two black holes that
had orbited each other and subsequently merged.

Determining the frequency at maximum strain am-
plitude fGW

ØØ
max: The single most important quantity for

the reasoning in this paper is the gravitational wave fre-
quency at which the waveform has maximum amplitude.
Using the zero-crossings around the peak of Fig. 1 and/or
the brightest point of Fig. 2, we take the conservative (low)
value

fGW
ØØ
max ª 150 Hz, (2)

4 The possibility of a different inspiraling system, whose evolu-
tion is not governed by gravitational waves, is explored in App.
A.1 and found to be inconsistent with this data.

where here and elsewhere the notation indicates that the
quantity before the vertical line is evaluated at the time
indicated after the line. We thus interpret the observa-
tional data as indicating that the bodies were orbiting
each other (roughly Keplerian dynamics) up to at least an
orbital angular frequency

!Kep
ØØ
max =

2º fGW
ØØ
max

2
= 2º£75 Hz. (3)

Determining the mass scale: Einstein found [16] that
the gravitational wave strain h at a (luminosity) distance
dL from a system whose traceless mass quadrupole mo-
ment is Qi j (defined in App. A) is

hi j =
2G

c4 dL

d2Qi j

dt 2 , (4)

and that the rate at which energy is carried away by these
gravitational waves is given by the quadrupole formula
[16]

dEGW

dt
= c3

16ºG

œØØḣ
ØØ2dS = 1

5
G
c5

3X

i , j=1

d3Qi j

dt 3

d3Qi j

dt 3 , (5)

where
ØØḣ

ØØ2 =
3X

i , j=1

dhi j

dt

dhi j

dt
,

the integral is over a sphere at radius dL (contributing
a factor 4ºd 2

L), and the quantity on the right-hand side
must be averaged over (say) one orbit (see App. A).

In our case, Eq. 5 gives the rate of loss of orbital energy
to gravitational waves, when the velocities of the orbit-
ing objects are not too close to the speed of light, and
the strain is not too large [14] (we will apply it until the
frequency fGW

ØØ
max, see Sec. 4.4).

For the binary system we denote the two masses by
m1 and m2 and the total mass by M = m1+m2. We define
the mass ratio q = m1/m2 and without loss of generality
assume that m1 ∏ m2 so that q ∏ 1. To describe the gravita-
tional wave emission from a binary system, a useful mass
quantity is the chirp mass, M , related to the component
masses by

M = (m1m2)3/5

(m1 +m2)1/5
. (6)

Using Newton’s laws of motion, Newton’s universal
law of gravitation, and Einstein’s quadrupole formula for
the gravitational wave luminosity of a system, a simple
formula is derived in App. A (following [17, 18]) relating
the frequency and frequency derivative of emitted gravi-
tational waves to the chirp mass,

M = c3

G

µµ
5

96

∂3

º°8 °
fGW

¢°11 °
ḟGW

¢3
∂1/5

, (7)
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strain data visible at the instrument output, (2) dimen-
sional and scaling arguments, (3) primarily Newtonian
orbital dynamics and (4) the Einstein quadrupole formula
for the luminosity of a gravitational wave source1. These
calculations are simple enough that they can be readily
verified with pencil and paper in a short time. Our presen-
tation is by design approximate, emphasizing simple argu-
ments. Specifically, while the orbital motion of two bodies
is approximated by Newtonian dynamics and Kepler’s
laws to high precision at sufficiently large separations and
sufficiently low velocities, we will invoke Newtonian dy-
namics to describe the motion even toward the end point
of orbital motion (We revisit this assumption in Sec. 4.4).

The theory of general relativity is a fully nonlinear the-
ory, so the merger of two black holes could have included
highly nonlinear effects, making any Newtonian analysis
wholly unreliable for the late evolution. However, solu-
tions of Einstein’s equations using numerical relativity
(NR) [10–12] have shown that this does not occur. The
approach presented here, using basic physics, is intended
as a pedagogical introduction to the physics of gravita-
tional wave signals, and as a tool to build intuition using
rough, but straightforward, checks. Our presentation here
is by design elementary, but gives results consistent with
more advanced treatments. The fully rigorous arguments,
as well as precise numbers describing the system, have
already been published elsewhere [2–6].

The paper is organized as follows: our presentation
begins with the data output by the detectors2 . Sec. 2
describes the properties of the signal read off the strain
data, and how they determine the quantities relevant for
analyzing the system as a binary inspiral. We then discuss
in Sec. 3, using the simplest assumptions, how the binary
constituents must be heavy and small, consistent only
with being black holes. In Sec. 4 we examine and justify
the assumptions made, and constrain both masses to be
well above the heaviest known neutron stars. Sec. 5 uses
the peak gravitational wave luminosity to estimate the
distance to the source, and calculates the total luminosity
of the system. The appendices provide a calculation of
gravitational radiation strain and radiated power (App. A),
and discuss astrophysical compact objects of high mass

1 In the terminology of GR corrections to Newtonian dynamics,
(3) & (4) constitute the “0th post-Newtonian" approximation
(0PN) (see Sec. 4.4). A similar approximation was used for the
first analysis of binary pulsar PSR 1913+16 [8,9].

2 The advanced LIGO detectors use laser interferometry to
measure the strain caused by passing gravitational waves. For
details of how the detectors work, see [1] and its references.

(App. B) and what one might learn from the waveform
after the peak (App. C).

Figure 2 A representation of the strain-data as a time-
frequency plot (taken from [1]), where the increase in signal
frequency (“chirp") can be traced over time.

2 Analyzing the observed data

Our starting point is shown in Fig. 1: the instrumentally
observed strain data h(t ), after applying a band-pass filter
to the LIGO sensitive frequency band (35–350 Hz), and a
band-reject filter around known instrumental noise fre-
quencies [13]. The time-frequency behavior of the signal
is depicted in Fig. 2. An approximate version of the time-
frequency evolution can also be obtained directly from
the strain data in Fig. 1 by measuring the time difference
between successive zero-crossings 3, without assuming
a waveform model. We plot the °8/3 power of these esti-
mated frequencies in Fig. 3, and explain its physical rele-
vance below.

The signal is dominated by several cycles of a wave
pattern whose amplitude is initially increasing, starting
from around the time mark 0.30 s. In this region the gravi-
tational wave period is decreasing, thus the frequency is
increasing. After a time around 0.42s, the amplitude drops
rapidly, and the frequency appears to stabilize. The last
clearly visible cycles (in both detectors, after accounting
for a 6.9 ms time-of-flight-delay [1]) indicate that the fi-
nal instantaneous frequency is above 200 Hz. The entire
visible part of the signal lasts for around 0.15 s.

3 When the signal amplitude is lower and the noise makes the
signal’s sign transitions difficult to pinpoint, we averaged the
positions of the (odd number of) adjacent zero-crossings

2 Copyright line will be provided by the publisher
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where ḟGW = d fGW/dt is the rate-of-change of the fre-
quency (see Eq. 26 and Eq. 3 of [19]). This equation is
expected to hold as long as the Newtonian approximation
is valid (see Sec. 4.4).

Thus, a value for the chirp mass can be determined
directly from the observational data, by plotting the fre-
quency and frequency derivative of the gravitational
waves as a function of time. This value of the chirp mass
M can be estimated from a time-frequency plot of the
observed gravitational wave strain data, using either Fig. 2
or the zero-crossings. The time interval during which the
inspiral signal is in the sensitive band of the detector (and
hence is visible) corresponds to gravitational wave fre-
quencies in the range 30 < fGW < 150 Hz. Over this time,
the frequency (period) varies by a factor of 5 ( 1

5 ), and the
frequency derivative varies by more than two orders-of-
magnitude. The implied chirp mass value, however, re-
mains constant to within 25%. The exact value of M is
not critical to the arguments that we present here, so for
simplicity we take M = 30MØ.

Note that the characteristic mass scale of the radiat-
ing system is obtained by direct inspection of the time-
frequency behavior of the observational data.

The fact that the chirp mass remains approximately
constant for fGW<150 Hz is strong support for the orbital
interpretation. The fact that the amplitude of the gravita-
tional wave strain increases with frequency also supports
this interpretation, and suggests that the assumptions
that go into the calculation which leads to these formulas
are applicable: the velocities in the binary system are not
too close to the speed of light, and the orbital motion has
an adiabatically changing radius and period described in-
stantaneously by Kepler’s laws. The data also indicate that
these assumptions certainly break down at a gravitational
wave frequency above fGW

ØØ
max, as the amplitude stops

growing.

Alternatively, Eq. 7 can be integrated to obtain

f °8/3
GW (t ) = (8º)8/3

5

µ
G M

c3

∂5/3

(tc ° t ), (8)

which does not involve ḟGW explicitly, and can therefore
be used to calculate M directly from the time periods
between zero-crossings in the strain data. We have per-
formed such an analysis, presented in Fig. 3, to find simi-
lar results. We henceforth adopt a conservative lower esti-
mate of 30MØ . We remark that this mass is derived from
quantities measured in the detector frame, thus it and
the quantities we derive from it are given in the detec-
tor frame. Discussion of redshift from the source frame
appears in Sec. 4.6.

Figure 3 A linear fit (green) of f °8/3
GW (t ), where fGW has been

interpolated as fGW = 1/(2¢t) from the time differences ¢t
between successive zeros of the strain data. While this in-
terpolation used the combined strain data from H1 and L1
(in fact, the sum of L1 with time shifted and sign-flipped H1,
as explained), A similar fit can be done using either H1 or L1
strain independently. The fit shown has residual sum of squares
R2

L1°H1 ª 0.9; we have also found R2
H1 ª 0.9 and R2

L1 ª 0.8.
The slope of this fitted line gives an estimate of the chirp mass
using Eq. 8. The blue and red lines indicate M of 30MØand
40MØ , respectively. The error-bars have been estimated by
repeating the procedure for waves of the same amplitudes
and frequencies added to the LIGO strain data just before
GW150914. A similar error estimate has been found using the
differences between H1 and L1 zero-crossings.

3 Proving compactness in the simplest
case

For simplicity, suppose that the two bodies have equal
masses, m1 = m2. The value of the chirp mass then im-
plies that m1 = m2 = 21/5M = 35MØ , so that the total
mass would be M = m1 +m2 = 70MØ . We also assume
for now that the objects are not spinning, and that their
orbits remain Keplerian and essentially circular until the
point of peak amplitude.

Around the time of peak amplitude the bodies there-
fore had an orbital separation R given by

R =
√

GM

!2
Kep

ØØ
max

!1/3

= 350 km. (9)

Compared to normal length scales for stars, this is
a tiny value. This constrains the objects to be exceed-
ingly small, or else they would have collided and merged
long before reaching such close proximity. Main-sequence
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• For an equal mass system the chirp mass implies 
that  

• For non-spinning objects with Keplerian orbit at the 
time of peak GW amplitude the orbital separation is 

• Compared to normal stars this is tiny and although 
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have this mass. 
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possible radii. 

• The Schwarzchild radii of these objects is 103km 
allowing us to define the compactness ratio
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Figure 4 A demonstration of the scale of the orbit at minimal
separation (black, 350 km) vs. the scale of the compact radii:
Schwarzschild (red, diameter 200 km) and extremal Kerr (blue,
diameter 100 km). Note the masses here are equal; as ex-
plained in Sec. 4.2, the system becomes even more compact
for unequal masses. While identification of a rigid reference
frame for measuring distances between points is not unique in
relativity, this complication only really arises with strong gravita-
tional fields, while in the Keplerian regime (of low compactness
and low gravitational potentials) the system’s center-of-mass
rest-frame can be used. Therefore if the system is claimed
to be non-compact, the Keplerian argument should hold, and
constrain the distances to be compact. The possibility of non-
compactness is thus refuted; see also Sec. 4.4.

stars have radii measured in millions of kilometers, and
white dwarf (WD) stars have radii which are typically ten
thousand kilometers. Scaling Eq. 9 shows that such stars’
inspiral evolution would have terminated with a collision
at an orbital frequency of a few mHz (far below 1 Hz).

The most compact stars known are neutron stars,
which have radii of about ten kilometers. Two neutron
stars could have orbited at this separation without collid-
ing or merging together – but the maximum mass that a
neutron star can have before collapsing into a black hole
is about 3 MØ (see App. B).

In our case, the bodies of mass m1 = m2 = 35MØ each
have a Schwarzschild radius of 103 km. This is illustrated
in Fig. 4. The orbital separation of these objects, 350 km,
is only about twice the sum of their Schwarzschild radii.

In order to quantify the closeness of the two objects rel-
ative to their natural gravitational radius, we introduce the
compactness ratio R. This is defined as the Newtonian
orbital separation between the centers of the objects di-
vided by the sum of their smallest possible respective radii

(as compact objects). For the non-spinning, circular orbit,
equal-mass case just discussed R = 350km/206km ª 1.7.
The fact that the Newtonian/Kepler evolution of the orbit
breaks down when the separation is about the order of
the black hole radii (compactness ratio R of order 1) is
further evidence that the objects are highly compact.

4 Revisiting the assumptions

In Sec. 3 we used the data to show that the coalescing ob-
jects are black holes under the assumptions of a circular
orbit, equal masses, and no spin. It is not possible, work-
ing at the level of approximation that we are using here,
to directly constrain these parameters of the system (al-
though more advanced techniques are able to constrain
them, see [2]). However, it is possible to examine how
these assumptions affect our conclusions and in this sec-
tion we show that relaxing them does not significantly
change the outcome. We also use the Keplerian approxi-
mation to discuss these three modifications (Sec. 4.1-4.3),
then revisit the Keplerian assumption itself, and discuss
the consequences of foregoing it (Sec. 4.4-4.5). In Sec. 4.6
we discuss the distance and its effect.

4.1 Orbital eccentricity

First, for general non-circular (eccentric) orbits, the R of
Kepler’s third law (Eq. 9) no longer refers to the orbital
separation but rather to the semi-major axis. The instan-
taneous orbital separation rsep is bounded from above by
R, and from below by the point of closest approach (peri-
apsis), rsep ∏ (1°e)R. We thus see that the compactness
bound imposed by eccentric orbits is even tighter (the
compactness ratio R is smaller). There is also a correction
to the luminosity which depends on the eccentricity. How-
ever, this correction is significant only for highly eccen-
tric orbits5. As the angular momentum that gravitational
waves carry away causes the orbits to circularize faster
than they shrink [17, 18], this correction can be neglected.

5 Eccentricity increases the luminosity [17, 18] by a factor
`(e) =

°
1°e2¢°7/2 °

1+ 73
24 e2 + 37

96 e4¢ ∏ 1, thus reducing the
chirp mass (inferred using Eq. 7) to M (e) = `°3/5(e)·M (e=0).
Taking into account the ratio between the separation at
periapsis and the semi-major axis, one obtains R(e) =
(1°e)`2/5(e) ·R(e = 0). Hence for the compactness ratio
to increase the eccentricity must be e & 0.6, and for a factor of
2, e & 0.9.
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where ḟGW = d fGW/dt is the rate-of-change of the fre-
quency (see Eq. 26 and Eq. 3 of [19]). This equation is
expected to hold as long as the Newtonian approximation
is valid (see Sec. 4.4).

Thus, a value for the chirp mass can be determined
directly from the observational data, by plotting the fre-
quency and frequency derivative of the gravitational
waves as a function of time. This value of the chirp mass
M can be estimated from a time-frequency plot of the
observed gravitational wave strain data, using either Fig. 2
or the zero-crossings. The time interval during which the
inspiral signal is in the sensitive band of the detector (and
hence is visible) corresponds to gravitational wave fre-
quencies in the range 30 < fGW < 150 Hz. Over this time,
the frequency (period) varies by a factor of 5 ( 1

5 ), and the
frequency derivative varies by more than two orders-of-
magnitude. The implied chirp mass value, however, re-
mains constant to within 25%. The exact value of M is
not critical to the arguments that we present here, so for
simplicity we take M = 30MØ.

Note that the characteristic mass scale of the radiat-
ing system is obtained by direct inspection of the time-
frequency behavior of the observational data.

The fact that the chirp mass remains approximately
constant for fGW<150 Hz is strong support for the orbital
interpretation. The fact that the amplitude of the gravita-
tional wave strain increases with frequency also supports
this interpretation, and suggests that the assumptions
that go into the calculation which leads to these formulas
are applicable: the velocities in the binary system are not
too close to the speed of light, and the orbital motion has
an adiabatically changing radius and period described in-
stantaneously by Kepler’s laws. The data also indicate that
these assumptions certainly break down at a gravitational
wave frequency above fGW

ØØ
max, as the amplitude stops

growing.

Alternatively, Eq. 7 can be integrated to obtain

f °8/3
GW (t ) = (8º)8/3

5

µ
G M

c3

∂5/3

(tc ° t ), (8)

which does not involve ḟGW explicitly, and can therefore
be used to calculate M directly from the time periods
between zero-crossings in the strain data. We have per-
formed such an analysis, presented in Fig. 3, to find simi-
lar results. We henceforth adopt a conservative lower esti-
mate of 30MØ . We remark that this mass is derived from
quantities measured in the detector frame, thus it and
the quantities we derive from it are given in the detec-
tor frame. Discussion of redshift from the source frame
appears in Sec. 4.6.

Figure 3 A linear fit (green) of f °8/3
GW (t ), where fGW has been

interpolated as fGW = 1/(2¢t) from the time differences ¢t
between successive zeros of the strain data. While this in-
terpolation used the combined strain data from H1 and L1
(in fact, the sum of L1 with time shifted and sign-flipped H1,
as explained), A similar fit can be done using either H1 or L1
strain independently. The fit shown has residual sum of squares
R2

L1°H1 ª 0.9; we have also found R2
H1 ª 0.9 and R2

L1 ª 0.8.
The slope of this fitted line gives an estimate of the chirp mass
using Eq. 8. The blue and red lines indicate M of 30MØand
40MØ , respectively. The error-bars have been estimated by
repeating the procedure for waves of the same amplitudes
and frequencies added to the LIGO strain data just before
GW150914. A similar error estimate has been found using the
differences between H1 and L1 zero-crossings.

3 Proving compactness in the simplest
case

For simplicity, suppose that the two bodies have equal
masses, m1 = m2. The value of the chirp mass then im-
plies that m1 = m2 = 21/5M = 35MØ , so that the total
mass would be M = m1 +m2 = 70MØ . We also assume
for now that the objects are not spinning, and that their
orbits remain Keplerian and essentially circular until the
point of peak amplitude.

Around the time of peak amplitude the bodies there-
fore had an orbital separation R given by

R =
√

GM

!2
Kep

ØØ
max

!1/3

= 350 km. (9)

Compared to normal length scales for stars, this is
a tiny value. This constrains the objects to be exceed-
ingly small, or else they would have collided and merged
long before reaching such close proximity. Main-sequence
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where ḟGW = d fGW/dt is the rate-of-change of the fre-
quency (see Eq. 26 and Eq. 3 of [19]). This equation is
expected to hold as long as the Newtonian approximation
is valid (see Sec. 4.4).

Thus, a value for the chirp mass can be determined
directly from the observational data, by plotting the fre-
quency and frequency derivative of the gravitational
waves as a function of time. This value of the chirp mass
M can be estimated from a time-frequency plot of the
observed gravitational wave strain data, using either Fig. 2
or the zero-crossings. The time interval during which the
inspiral signal is in the sensitive band of the detector (and
hence is visible) corresponds to gravitational wave fre-
quencies in the range 30 < fGW < 150 Hz. Over this time,
the frequency (period) varies by a factor of 5 ( 1

5 ), and the
frequency derivative varies by more than two orders-of-
magnitude. The implied chirp mass value, however, re-
mains constant to within 25%. The exact value of M is
not critical to the arguments that we present here, so for
simplicity we take M = 30MØ.

Note that the characteristic mass scale of the radiat-
ing system is obtained by direct inspection of the time-
frequency behavior of the observational data.

The fact that the chirp mass remains approximately
constant for fGW<150 Hz is strong support for the orbital
interpretation. The fact that the amplitude of the gravita-
tional wave strain increases with frequency also supports
this interpretation, and suggests that the assumptions
that go into the calculation which leads to these formulas
are applicable: the velocities in the binary system are not
too close to the speed of light, and the orbital motion has
an adiabatically changing radius and period described in-
stantaneously by Kepler’s laws. The data also indicate that
these assumptions certainly break down at a gravitational
wave frequency above fGW

ØØ
max, as the amplitude stops

growing.

Alternatively, Eq. 7 can be integrated to obtain

f °8/3
GW (t ) = (8º)8/3

5

µ
G M

c3

∂5/3

(tc ° t ), (8)

which does not involve ḟGW explicitly, and can therefore
be used to calculate M directly from the time periods
between zero-crossings in the strain data. We have per-
formed such an analysis, presented in Fig. 3, to find simi-
lar results. We henceforth adopt a conservative lower esti-
mate of 30MØ . We remark that this mass is derived from
quantities measured in the detector frame, thus it and
the quantities we derive from it are given in the detec-
tor frame. Discussion of redshift from the source frame
appears in Sec. 4.6.

Figure 3 A linear fit (green) of f °8/3
GW (t ), where fGW has been

interpolated as fGW = 1/(2¢t) from the time differences ¢t
between successive zeros of the strain data. While this in-
terpolation used the combined strain data from H1 and L1
(in fact, the sum of L1 with time shifted and sign-flipped H1,
as explained), A similar fit can be done using either H1 or L1
strain independently. The fit shown has residual sum of squares
R2

L1°H1 ª 0.9; we have also found R2
H1 ª 0.9 and R2

L1 ª 0.8.
The slope of this fitted line gives an estimate of the chirp mass
using Eq. 8. The blue and red lines indicate M of 30MØand
40MØ , respectively. The error-bars have been estimated by
repeating the procedure for waves of the same amplitudes
and frequencies added to the LIGO strain data just before
GW150914. A similar error estimate has been found using the
differences between H1 and L1 zero-crossings.
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plies that m1 = m2 = 21/5M = 35MØ , so that the total
mass would be M = m1 +m2 = 70MØ . We also assume
for now that the objects are not spinning, and that their
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Around the time of peak amplitude the bodies there-
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where ḟGW = d fGW/dt is the rate-of-change of the fre-
quency (see Eq. 26 and Eq. 3 of [19]). This equation is
expected to hold as long as the Newtonian approximation
is valid (see Sec. 4.4).

Thus, a value for the chirp mass can be determined
directly from the observational data, by plotting the fre-
quency and frequency derivative of the gravitational
waves as a function of time. This value of the chirp mass
M can be estimated from a time-frequency plot of the
observed gravitational wave strain data, using either Fig. 2
or the zero-crossings. The time interval during which the
inspiral signal is in the sensitive band of the detector (and
hence is visible) corresponds to gravitational wave fre-
quencies in the range 30 < fGW < 150 Hz. Over this time,
the frequency (period) varies by a factor of 5 ( 1

5 ), and the
frequency derivative varies by more than two orders-of-
magnitude. The implied chirp mass value, however, re-
mains constant to within 25%. The exact value of M is
not critical to the arguments that we present here, so for
simplicity we take M = 30MØ.

Note that the characteristic mass scale of the radiat-
ing system is obtained by direct inspection of the time-
frequency behavior of the observational data.

The fact that the chirp mass remains approximately
constant for fGW<150 Hz is strong support for the orbital
interpretation. The fact that the amplitude of the gravita-
tional wave strain increases with frequency also supports
this interpretation, and suggests that the assumptions
that go into the calculation which leads to these formulas
are applicable: the velocities in the binary system are not
too close to the speed of light, and the orbital motion has
an adiabatically changing radius and period described in-
stantaneously by Kepler’s laws. The data also indicate that
these assumptions certainly break down at a gravitational
wave frequency above fGW
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which does not involve ḟGW explicitly, and can therefore
be used to calculate M directly from the time periods
between zero-crossings in the strain data. We have per-
formed such an analysis, presented in Fig. 3, to find simi-
lar results. We henceforth adopt a conservative lower esti-
mate of 30MØ . We remark that this mass is derived from
quantities measured in the detector frame, thus it and
the quantities we derive from it are given in the detec-
tor frame. Discussion of redshift from the source frame
appears in Sec. 4.6.

Figure 3 A linear fit (green) of f °8/3
GW (t ), where fGW has been

interpolated as fGW = 1/(2¢t) from the time differences ¢t
between successive zeros of the strain data. While this in-
terpolation used the combined strain data from H1 and L1
(in fact, the sum of L1 with time shifted and sign-flipped H1,
as explained), A similar fit can be done using either H1 or L1
strain independently. The fit shown has residual sum of squares
R2

L1°H1 ª 0.9; we have also found R2
H1 ª 0.9 and R2

L1 ª 0.8.
The slope of this fitted line gives an estimate of the chirp mass
using Eq. 8. The blue and red lines indicate M of 30MØand
40MØ , respectively. The error-bars have been estimated by
repeating the procedure for waves of the same amplitudes
and frequencies added to the LIGO strain data just before
GW150914. A similar error estimate has been found using the
differences between H1 and L1 zero-crossings.

3 Proving compactness in the simplest
case

For simplicity, suppose that the two bodies have equal
masses, m1 = m2. The value of the chirp mass then im-
plies that m1 = m2 = 21/5M = 35MØ , so that the total
mass would be M = m1 +m2 = 70MØ . We also assume
for now that the objects are not spinning, and that their
orbits remain Keplerian and essentially circular until the
point of peak amplitude.

Around the time of peak amplitude the bodies there-
fore had an orbital separation R given by

R =
√

GM
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= 350 km. (9)

Compared to normal length scales for stars, this is
a tiny value. This constrains the objects to be exceed-
ingly small, or else they would have collided and merged
long before reaching such close proximity. Main-sequence
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Figure 4 A demonstration of the scale of the orbit at minimal
separation (black, 350 km) vs. the scale of the compact radii:
Schwarzschild (red, diameter 200 km) and extremal Kerr (blue,
diameter 100 km). Note the masses here are equal; as ex-
plained in Sec. 4.2, the system becomes even more compact
for unequal masses. While identification of a rigid reference
frame for measuring distances between points is not unique in
relativity, this complication only really arises with strong gravita-
tional fields, while in the Keplerian regime (of low compactness
and low gravitational potentials) the system’s center-of-mass
rest-frame can be used. Therefore if the system is claimed
to be non-compact, the Keplerian argument should hold, and
constrain the distances to be compact. The possibility of non-
compactness is thus refuted; see also Sec. 4.4.

stars have radii measured in millions of kilometers, and
white dwarf (WD) stars have radii which are typically ten
thousand kilometers. Scaling Eq. 9 shows that such stars’
inspiral evolution would have terminated with a collision
at an orbital frequency of a few mHz (far below 1 Hz).

The most compact stars known are neutron stars,
which have radii of about ten kilometers. Two neutron
stars could have orbited at this separation without collid-
ing or merging together – but the maximum mass that a
neutron star can have before collapsing into a black hole
is about 3 MØ (see App. B).

In our case, the bodies of mass m1 = m2 = 35MØ each
have a Schwarzschild radius of 103 km. This is illustrated
in Fig. 4. The orbital separation of these objects, 350 km,
is only about twice the sum of their Schwarzschild radii.

In order to quantify the closeness of the two objects rel-
ative to their natural gravitational radius, we introduce the
compactness ratio R. This is defined as the Newtonian
orbital separation between the centers of the objects di-
vided by the sum of their smallest possible respective radii

(as compact objects). For the non-spinning, circular orbit,
equal-mass case just discussed R = 350km/206km ª 1.7.
The fact that the Newtonian/Kepler evolution of the orbit
breaks down when the separation is about the order of
the black hole radii (compactness ratio R of order 1) is
further evidence that the objects are highly compact.

4 Revisiting the assumptions

In Sec. 3 we used the data to show that the coalescing ob-
jects are black holes under the assumptions of a circular
orbit, equal masses, and no spin. It is not possible, work-
ing at the level of approximation that we are using here,
to directly constrain these parameters of the system (al-
though more advanced techniques are able to constrain
them, see [2]). However, it is possible to examine how
these assumptions affect our conclusions and in this sec-
tion we show that relaxing them does not significantly
change the outcome. We also use the Keplerian approxi-
mation to discuss these three modifications (Sec. 4.1-4.3),
then revisit the Keplerian assumption itself, and discuss
the consequences of foregoing it (Sec. 4.4-4.5). In Sec. 4.6
we discuss the distance and its effect.

4.1 Orbital eccentricity

First, for general non-circular (eccentric) orbits, the R of
Kepler’s third law (Eq. 9) no longer refers to the orbital
separation but rather to the semi-major axis. The instan-
taneous orbital separation rsep is bounded from above by
R, and from below by the point of closest approach (peri-
apsis), rsep ∏ (1°e)R. We thus see that the compactness
bound imposed by eccentric orbits is even tighter (the
compactness ratio R is smaller). There is also a correction
to the luminosity which depends on the eccentricity. How-
ever, this correction is significant only for highly eccen-
tric orbits5. As the angular momentum that gravitational
waves carry away causes the orbits to circularize faster
than they shrink [17, 18], this correction can be neglected.

5 Eccentricity increases the luminosity [17, 18] by a factor
`(e) =

°
1°e2¢°7/2 °

1+ 73
24 e2 + 37

96 e4¢ ∏ 1, thus reducing the
chirp mass (inferred using Eq. 7) to M (e) = `°3/5(e)·M (e=0).
Taking into account the ratio between the separation at
periapsis and the semi-major axis, one obtains R(e) =
(1°e)`2/5(e) ·R(e = 0). Hence for the compactness ratio
to increase the eccentricity must be e & 0.6, and for a factor of
2, e & 0.9.
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4.2 The case of unequal masses

It is easy to see that the compactness ratio R also gets
smaller with increasing mass-ratio, as that implies a
higher total mass for the observed value of the Newtonian
order chirp mass. To see this explicitly, we express the
component masses and total mass in terms of the chirp
mass M and the mass ratio q , as m1 = M (1+ q)1/5q2/5,
m2 =M (1+q)1/5q°3/5, and

M = m1 +m2 =M (1+q)6/5q°3/5. (10)

The compactness ratio R is the ratio of the orbital sep-
aration R to the sum of the Schwarzschild radii of the
two component masses, rSchwarz(M) = rSchwarz(m1) +
rSchwarz(m2), giving

R = R
rSchwarz(M)

= c2

2(!Kep
ØØ
maxGM)2/3

= c2

2(º fGW
ØØ
maxGM )2/3

q2/5

(1+q)4/5
º 3.0 q2/5

(1+q)4/5
. (11)

This quantity is plotted in Fig. 5, which clearly shows that
for mass ratios q > 1 the compactness ratio decreases: the
separation between the objects becomes smaller when
measured in units of the sum of their Schwarzschild radii.
Thus, for a given chirp mass and orbital frequency, a sys-
tem composed of unequal masses is more compact than
one composed of equal masses.

One can also place an upper limit on the mass ratio q ,
thus a lower bound on the smaller mass m2, based purely
on the data. This bound arises from minimal compact-
ness: we see from the compactness ratio plot in Fig. 5 that
beyond the mass ratio of q ª 13 the system becomes so
compact that it will be within the Schwarzschild radii of
the combined mass of the two bodies. This gives us a limit
for the mass of the smaller object m2 ∏ 11MØ . As this is
3–4 times more massive than the neutron star limit, both
bodies are expected to be black holes .

4.3 The effect of objects’ spins

The third assumption we relax concerns the spins of the
objects. For a mass m with spin angular momentum S we
define the dimensionless spin parameter

¬= c
G

S
m2 . (12)

The spins of m1 and m2 modify their gravitational radii as
described in this subsection, as well as the orbital dynam-
ics, as described in the next subsection.

Figure 5 The compactness ratio of the separation between
the two objects to their Schwarzschild radii sum as a function
of mass ratio and a range of eccentricities (0 ∑ e ∑ 0.8). The
dashed line describes both zero eccentricity and e = 0.57,
the bottom boundary describes the minimum compactness (at
e = 0.27), and the upper boundary is at the very high (arbitrary)
value of e = 0.8. As shown in Eq. 11, the compactness ratio
decreases as the mass ratio increases, so the argument given
in Sec. 3 also applies for unequal masses. We note that (for
e = 0) beyond mass ratio of q ª 13 the system becomes more
compact than the sum of the component Schwarzschild radii.

The smallest radius a non-spinning object (¬ = 0)
could have without being a black hole is its Schwarzschild
radius. Allowing the objects to have angular momentum
(spin) pushes the limit down by a factor of two, to the
radius of an extremal Kerr black hole (for which ¬ = 1),
rEK(m) = 1

2 rSchwarz(m) = Gm/c2. As this is linear in the
mass, and summing radii linearly, we obtain a lower limit
on the Newtonian separation of two adjacent non-black
hole bodies of total mass M is

rEK(m1)+rEK(m2) = 1
2

rSchwarz(M) = G M
c2 º 1.5

µ
M

MØ

∂
km.

(13)

The compactness ratio can also be defined in relation to
rEK rather than rSchwarz, which is at most a factor of two
larger than for non-spinning objects.

We may thus constrain the orbital compactness ratio
(now accounting for eccentricity, unequal masses, and
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In general relativity, gravitational waves are produced
by accelerating masses [14]. Since the waveform clearly
shows at least eight oscillations, we know that mass or
masses are oscillating. The increase in gravitational wave
frequency and amplitude also indicate that during this
time the oscillation frequency of the source system is in-
creasing. This initial phase cannot be due to a perturbed
system returning back to stable equilibrium, since oscilla-
tions around equilibrium are generically characterized by
roughly constant frequencies and decaying amplitudes.
For example, in the case of a fluid ball, the oscillations
would be damped by viscous forces. Here, the data demon-
strate very different behavior.

During the period when the gravitational wave fre-
quency and amplitude are increasing, orbital motion of
two bodies is the only plausible explanation: there, the
only “damping forces” are provided by gravitational wave
emission, which brings the orbiting bodies closer (an “in-
spiral"), increasing the orbital frequency and amplifying
the gravitational wave energy output from the system4.
Gravitational radiation is at leading order quadrupolar,
and the quadrupole moment is invariant under reflection
about the center of mass (even for unequal masses). This
symmetry implies that the gravitational wave must be ra-
diated at a frequency that is twice the orbital frequency
[15]. The eight gravitational wave cycles of increasing
frequency therefore require at least four orbital revolu-
tions, at separations large enough (compared to the size
of the bodies) that the bodies do not collide. The rising fre-
quency signal eventually terminates, suggesting the end
of inspiraling orbital motion. As the amplitude decreases
and the frequency stabilizes the system returns to a stable
equilibrium configuration. We shall show that the only
reasonable explanation for the observed frequency evolu-
tion is that the system consisted of two black holes that
had orbited each other and subsequently merged.

Determining the frequency at maximum strain am-
plitude fGW

ØØ
max: The single most important quantity for

the reasoning in this paper is the gravitational wave fre-
quency at which the waveform has maximum amplitude.
Using the zero-crossings around the peak of Fig. 1 and/or
the brightest point of Fig. 2, we take the conservative (low)
value

fGW
ØØ
max ª 150 Hz, (2)

4 The possibility of a different inspiraling system, whose evolu-
tion is not governed by gravitational waves, is explored in App.
A.1 and found to be inconsistent with this data.

where here and elsewhere the notation indicates that the
quantity before the vertical line is evaluated at the time
indicated after the line. We thus interpret the observa-
tional data as indicating that the bodies were orbiting
each other (roughly Keplerian dynamics) up to at least an
orbital angular frequency

!Kep
ØØ
max =

2º fGW
ØØ
max

2
= 2º£75 Hz. (3)

Determining the mass scale: Einstein found [16] that
the gravitational wave strain h at a (luminosity) distance
dL from a system whose traceless mass quadrupole mo-
ment is Qi j (defined in App. A) is

hi j =
2G

c4 dL

d2Qi j

dt 2 , (4)

and that the rate at which energy is carried away by these
gravitational waves is given by the quadrupole formula
[16]

dEGW

dt
= c3

16ºG

œØØḣ
ØØ2dS = 1

5
G
c5

3X

i , j=1

d3Qi j

dt 3

d3Qi j

dt 3 , (5)

where
ØØḣ

ØØ2 =
3X

i , j=1

dhi j

dt

dhi j

dt
,

the integral is over a sphere at radius dL (contributing
a factor 4ºd 2

L), and the quantity on the right-hand side
must be averaged over (say) one orbit (see App. A).

In our case, Eq. 5 gives the rate of loss of orbital energy
to gravitational waves, when the velocities of the orbit-
ing objects are not too close to the speed of light, and
the strain is not too large [14] (we will apply it until the
frequency fGW

ØØ
max, see Sec. 4.4).

For the binary system we denote the two masses by
m1 and m2 and the total mass by M = m1+m2. We define
the mass ratio q = m1/m2 and without loss of generality
assume that m1 ∏ m2 so that q ∏ 1. To describe the gravita-
tional wave emission from a binary system, a useful mass
quantity is the chirp mass, M , related to the component
masses by

M = (m1m2)3/5

(m1 +m2)1/5
. (6)

Using Newton’s laws of motion, Newton’s universal
law of gravitation, and Einstein’s quadrupole formula for
the gravitational wave luminosity of a system, a simple
formula is derived in App. A (following [17, 18]) relating
the frequency and frequency derivative of emitted gravi-
tational waves to the chirp mass,

M = c3

G

µµ
5

96

∂3

º°8 °
fGW

¢°11 °
ḟGW

¢3
∂1/5

, (7)
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Timeline of GW150914
• 1.3 billion years ago: 2 black holes merge and release 3 M⊙ of gravitational wave energy into the 

universe. 

• 100,000 years ago: these waves arrive at the edge of the milky way galaxy. 

• November 25, 1915: Albert Einstein presents his General Theory of Relativity to the Prussian 
Academy of Sciences. GW150914 is 99 years, 9 months, and 20 days away 

• April 15, 1972: at MIT Rai Weiss’ Publication of Quarterly Progress Report No. 105 outlines the 
concept behind LIGO 

• 1992: The epoch of LIGO construction begins, leading to the realisation of the two observatories 
LIGO Livingston (LLO) and LIGO Hanford (LHO).  

• mid-late 90s: Some of this audience are born. 

• 2002: The two initial LIGO detectors and the GEO 600 detector start their first period of scientific 
data taking, ‘Science Run 1’.  

• …

LIGO-Virgo Collaboration, arXiv:1602.03844 (2016) 



The rest of the 1st observing run (O1)

GW151012 (formerly LVT151012), and GW151226



The O1 run (Sep 2015 - Jan 2016)

LIGO-Virgo Collaboration, Living Rev. Relativity 19, (2016) 
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BNS ranges for the various stages of aLIGO and AdV expected evolution are also provided in
Figure 1.
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Figure 1: aLIGO (left) and AdV (right) target strain sensitivity as a function of frequency. The binary
neutron-star (BNS) range, the average distance to which these signals could be detected, is given in
megaparsec. Current notions of the progression of sensitivity are given for early, mid and late commissioning
phases, as well as the final design sensitivity target and the BNS-optimized sensitivity. While both dates
and sensitivity curves are subject to change, the overall progression represents our best current estimates.

The commissioning of aLIGO is well under way. The original plan called for three identical
4-km interferometers, two at Hanford (H1 and H2) and one at Livingston (L1). In 2011, the LIGO
Lab and IndIGO consortium in India proposed installing one of the aLIGO Hanford detectors (H2)
at a new observatory in India (LIGO-India) [64]. As of early 2015, LIGO Laboratory has placed
the H2 interferometer in long-term storage for possible use in India. Funding for the Indian portion
of LIGO-India is in the final stages of consideration by the Indian government.

Advanced LIGO detectors began taking sensitive data in August 2015 in preparation for the
first observing run. O1 formally began 18 September 2015 and ended 12 January 2016. It involved
the H1 and L1 detectors; the detectors were not at full design sensitivity. We aimed for a BNS
range of 40 – 80 Mpc for both instruments (see Figure 1), and both instruments were running with a
60 – 80 Mpc range. Subsequent observing runs will have increasing duration and sensitivity. We aim
for a BNS range of 80 – 170 Mpc over 2016 – 2018, with observing runs of several months. Assuming
that no unexpected obstacles are encountered, the aLIGO detectors are expected to achieve a
200 Mpc BNS range circa 2019. After the first observing runs, circa 2020, it might be desirable to
optimize the detector sensitivity for a specific class of astrophysical signals, such as BNSs. The BNS
range may then become 215 Mpc. The sensitivity for each of these stages is shown in Figure 1.

As a consequence of the planning for the installation of one of the LIGO detectors in India, the
installation of the H2 detector has been deferred. This detector will be reconfigured to be identical
to H1 and L1 and will be installed in India once the LIGO-India Observatory is complete. The final
schedule will be adopted once final funding approvals are granted. If project approval comes soon,
site development could start in 2016, with installation of the detector beginning in 2020. Following
this scenario, the first observing runs could come circa 2022, and design sensitivity at the same
level as the H1 and L1 detectors is anticipated for no earlier than 2024.

The time-line for the AdV interferometer (V1) [23] is still being defined, but it is anticipated
that in 2016 AdV will join the aLIGO detectors in their second observing run (O2). Following an
early step with sensitivity corresponding to a BNS range of 20 – 60 Mpc, commissioning is expected
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• Initial LIGO and Virgo 
successfully completed their 
operations with the S6/VSR2,3 
runs in 2011. 

• Advanced LIGO began 
operation in September 2015 
with the first “Observing” run O1 
spanning 12th Sep - 19th Jan. 

• This accumulated 51.5 days of 
coincident data.



GW151226 (Boxing Day event)

from 35 Hz to a peak amplitude at 450 Hz. The signal-to-
noise ratio (SNR) accumulates equally in the early inspiral
(∼45 cycles from 35 to 100 Hz) and late inspiral to merger
(∼10 cycles from 100 to 450 Hz). This is different from the
more massive GW150914 binary for which only the last 10
cycles, comprising inspiral and merger, dominated the
SNR. As a consequence, the parameters characterizing
GW151226 have different precision than those of
GW150914. The chirp mass [26,45], which controls the
binary’s evolution during the early inspiral, is determined
very precisely. The individual masses, which rely on
information from the late inspiral and merger, are measured
far less precisely.
Figure 1 illustrates that the amplitude of the signal is less

than the level of the detector noise,where themaximum strain
of the signal is 3.4þ0.7

−0.9 × 10−22 and 3.4þ0.8
−0.9 × 10−22 in LIGO

Hanford and Livingston, respectively. The time-frequency
representation of the detector data shows that the signal is not
easily visible. The signal is more apparent in LIGO Hanford
where the SNR is larger. The SNR difference is predomi-
nantly due to the different sensitivities of the detectors at the
time. Only with the accumulated SNR frommatched filtering
does the signal become apparent in both detectors.

III. DETECTORS

The LIGO detectors measure gravitational-wave strain
using two modified Michelson interferometers located in
Hanford, WA and Livingston, LA [2,3,46]. The two
orthogonal arms of each interferometer are 4 km in length,
each with an optical cavity formed by two mirrors acting as
test masses. A passing gravitational wave alters the

FIG. 1. GW151226 observed by the LIGO Hanford (left column) and Livingston (right column) detectors, where times are relative to
December 26, 2015 at 03:38:53.648 UTC. First row: Strain data from the two detectors, where the data are filtered with a 30–600-Hz
bandpass filter to suppress large fluctuations outside this range and band-reject filters to remove strong instrumental spectral lines [46].
Also shown (black) is the best-match template from a nonprecessing spin waveform model reconstructed using a Bayesian analysis [21]
with the same filtering applied. As a result, modulations in the waveform are present due to this conditioning and not due to precession
effects. The thickness of the line indicates the 90% credible region. See Fig. 5 for a reconstruction of the best-match template with no
filtering applied. Second row: The accumulated peak signal-to-noise ratio (SNRp) as a function of time when integrating from the start of
the best-match template, corresponding to a gravitational-wave frequency of 30 Hz, up to its merger time. The total accumulated SNRp

corresponds to the peak in the next row. Third row: Signal-to-noise ratio (SNR) time series produced by time shifting the best-match
template waveform and computing the integrated SNR at each point in time. The peak of the SNR time series gives the merger time of
the best-match template for which the highest overlap with the data is achieved. The single-detector SNRs in LIGO Hanford and
Livingston are 10.5 and 7.9, respectively, primarily because of the detectors’ differing sensitivities. Fourth row: Time-frequency
representation [47] of the strain data around the time of GW151226. In contrast to GW150914 [4], the signal is not easily visible.
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O1 Waveform comparison
3

FIG. 1. Left: Amplitude spectral density of the total strain noise of the H1 and L1 detectors,
p

S( f ), in units of strain per
p

Hz, and the
recovered signals of GW150914, GW151226 and LVT151012 plotted so that the relative amplitudes can be related to the SNR of the signal
(as described in the text). Right: Time evolution of the waveforms from when they enter the detectors’ sensitive band at 30 Hz. All bands
show the 90% credible regions of the LIGO Hanford signal reconstructions from a coherent Bayesian analysis using a non-precessing spin
waveform model [45].

The gravitational-wave signal from a BBH merger takes the
form of a chirp, increasing in frequency and amplitude as the
black holes spiral inwards. The amplitude of the signal is
maximum at the merger, after which it decays rapidly as the fi-
nal black hole rings down to equilibrium. In the frequency do-
main, the amplitude decreases with frequency during inspiral,
as the signal spends a greater number of cycles at lower fre-
quencies. This is followed by a slower falloff during merger
and then a steep decrease during the ringdown. The amplitude
of GW150914 is significantly larger than the other two events
and at the time of the merger the gravitational-wave signal
lies well above the noise. GW151226 has lower amplitude but
sweeps across the whole detector’s sensitive band up to nearly
800 Hz. The corresponding time series of the three wave-
forms are plotted in the right panel of Figure 1 to better vi-
sualize the difference in duration within the Advanced LIGO
band: GW150914 lasts only a few cycles while LVT151012
and GW151226 have lower amplitude but last longer.

The analysis presented in this paper includes the total set of
O1 data from September 12, 2015 to January 19, 2016, which
contains a total coincident analysis time of 51.5 days accu-
mulated when both detectors were operating in their normal
state. As described in [13] with regard to the first 16 days
of O1 data, the output data of both detectors typically con-
tain non-stationary and non-Gaussian features, in the form of
transient noise artifacts of varying durations. Longer duration
artifacts, such as non-stationary behavior in the interferom-
eter noise, are not very detrimental to CBC searches as they
occur on a time-scale that is much longer than any CBC wave-

form. However, shorter duration artifacts can pollute the noise
background distribution of CBC searches. Many of these arti-
facts have distinct signatures [48] visible in the auxiliary data
channels from the large number of sensors used to monitor in-
strumental or environmental disturbances at each observatory
site [49]. When a significant noise source is identified, con-
taminated data are removed from the analysis data set. After
applying this data quality process, detailed in [50], the remain-
ing coincident analysis time in O1 is 48.6 days. The analyses
search only stretches of data longer than a minimum duration,
to ensure that the detectors are operating stably. The choice is
different in the two analyses and reduces the available data to
46.1 days for the PyCBC analysis and 48.3 days for the Gst-
LAL analysis.

III. SEARCH RESULTS

Two different, largely independent, analyses have been im-
plemented to search for stellar-mass BBH signals in the data
of O1: PyCBC [2–4] and GstLAL [5–7]. Both these analyses
employ matched filtering [51–59] with waveforms given by
models based on general relativity [8, 9] to search for gravi-
tational waves from binary neutron stars, BBHs, and neutron
star–black hole binaries. In this paper, we focus on the results
of the matched filter search for BBHs. Results of the searches
for binary neutron stars and neutron star–black hole binaries
will be reported elsewhere. These matched-filter searches are
complemented by generic transient searches which are sensi-
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FIG. 6. Posterior density distributions and 90% credible intervals for relative deviations d p̂i in the PN parameters pi, as well as intermediate
parameters bi and merger-ringdown parameters ai. The top panel is for GW150914 by itself and the middle one for GW151226 by itself,
while the bottom panel shows combined posteriors from GW150914 and GW151226. While the posteriors for deviations in PN coefficients
from GW150914 show large offsets, the ones from GW151226 are well-centered on zero as well as being more tight, causing the combined
posteriors to similarly improve over those of GW150914 alone. For deviations in the bi, the combined posteriors improve over those of either
event individually. For the ai, the joint posteriors are mostly set by the posteriors from GW150914, whose merger-ringdown occurred at
frequencies where the detectors are the most sensitive.

up to 3.5PN. Since the source of GW151226 merged at
⇠ 450 Hz, the signal provides the opportunity to probe the
PN inspiral with many more waveform cycles, albeit at rel-
atively low SNR. Especially in this regime, it allows us to
tighten further our bounds on violations of general relativity.

As in [41], to analyze GW151226 we start from the IMR-
Phenom waveform model of [35–37] which is capable of de-
scribing inspiral, merger, and ringdown, and partly accounts
for spin precession. The phase of this waveform is charac-
terized by phenomenological coefficients {pi}, which include
PN coefficients as well as coefficients describing merger and
ringdown. The latter were obtained by calibrating against nu-

merical waveforms and tend to multiply specific powers of
f , and they characterize the gravitational-wave amplitude and
phase in different stages of the coalescence process. We then
allow for possible departures from general relativity, param-
eterized by a set of testing coefficients d p̂i, which take the
form of fractional deviations in the pi [135, 136]. Thus, we
replace pi ! (1+d p̂i) pi and let one or more of the d p̂i vary
freely in addition to the source parameters that also appear
in pure general relativity waveforms, using the general rel-
ativity expressions in terms of masses and spins for the pi
themselves. Our testing coefficients are those in Table I of
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FIG. 4. We show the posterior 90% confidence regions from
Bayesian parameter estimation for a damped-sinusoid model, assum-
ing di↵erent start-times t0 = tM + 1, 3, 5, 7 ms, labeled by o↵set from
the merger time tM of the most-probable waveform from GW150914.
The black solid line shows contours of 90% confidence region for the
frequency f0 and decay time ⌧ of the ` = 2, m = 2 and n = 0 (i.e.,
the least damped) QNM obtained from the inspiral-merger-ringdown
waveform for the entire detector’s bandwidth.

ringdown signal. It confirms the expected behavior: the in-
tersection of the inspiral and post-inspiral 90% confidence re-
gions (defined by the isoprobability contours that enclose 90%
of the posterior) contain the inspiral-merger-ringdown 90%
confidence region. We have verified that these conclusions
are not a↵ected by the specific formula [38, 57, 60] used to
predict Mf and a f , nor by the choice of f end insp

GW within a few
cycles of the waveform’s peak.

To assess the significance of our findings more quantita-
tively, we define parameters �Mf /Mf and �a f /a f that de-
scribe the fractional di↵erence in the two estimates of the final
mass and spin [58]. In the bottom panel of Fig. 3 we show
their joint posterior distribution; the solid line marks the iso-
probability contour that contains 90% of the posterior. The
plus symbol indicates the null (0, 0) result expected in GR,
which lies on the isoprobability contour that encloses 28% of
the posterior. We have checked that when performing anal-
yses of NR signals added to LIGO instrumental noise, the
null (0, 0) result expected in GR lies within isoprobability con-
tours that encloses 68% of the posterior, roughly 68% of the
time, as expected from random-noise fluctuations. By con-
trast, our test can rule out the null hypothesis (with high statis-
tical significance) when analyzing a simulated signal that re-
flects a significant GR violation in the frequency dependence
of the energy and angular-momentum loss [58], even when we
choose violations which would be too small to be noticeable
in double-pulsar observations [12]. Thus, our inspiral-merger-
ringdown test shows no evidence of discrepancies with the
predictions of GR.

The mass and dimensionless spin of the final black hole im-
plied by formulae obtained from NR simulations together with
the component mass and spin posteriors [3] are 67+4

�4 M� (in

the source frame 62+4
�4 M�) and 0.67+0.05

�0.07 at 90% confidence.
From the posterior distributions of the mass and spin of the
final black hole, we can predict the frequency and decay time
of the least-damped QNM (i.e., the ` = 2,m = 2, n = 0 over-
tone) [61]. We find f QNM

220 = 251+8
�8 Hz and ⌧QNM

220 = 4.0+0.3
�0.3 ms

at 90% confidence.
Testing for the least-damped QNM in the data. We per-

form a test to check the consistency of the data with the pre-
dicted least-damped QNM of the remnant black hole. For
this purpose we compute the Bayes factor between a damped-
sinusoid waveform model and Gaussian noise, and estimate
the corresponding parameter posteriors. The signal model
used is h(t � t0) = A e�(t�t0)/⌧ cos

⇥
2⇡ f0 (t � t0) + �0

⇤
, h(t <

t0) = 0, with fixed starting time t0, and uniform priors over
the unknown frequency f0 2 [200, 300] Hz and damping time
⌧ 2 [0.5, 20] ms. The prior on amplitude A and phase �0 is
chosen as a two-dimensional Gaussian isotropic prior in {As ⌘
�A sin �0, Ac ⌘ A cos �0} with a characteristic scale H, which
is in turn marginalized over the range H 2 [2, 10]⇥10�22 with
a prior / 1/H. This is a practical choice that encodes relative
ignorance about the detectable damped-sinusoid amplitude in
this range.

We compute the Bayes factor and posterior estimates of
{ f0, ⌧} as a function of the unknown QNM start-time t0, which
we parameterize as an o↵set from a fiducial GPS merger time3

tM = 1126259462.423 (referring to the GPS arrival time at the
LIGO Hanford site). Figure 4 shows various di↵erent poste-
rior 90% credible contours in { f0, ⌧} as a function of the start-
time o↵set t0�tM from merger, in addition to the least-damped
QNM prediction from GR derived in the previous section.

The 90% posterior contour starts to overlap the GR predic-
tion from the IMR waveform at t0 = tM + 3 ms, or ⇠ 10 M
after merger. The corresponding Bayes factor at this point is
log10 B ⇠ 17 with an SNR in the MAP waveform { f0, ⌧} of
SNR ⇠ 9. At t0 = tM + 5 ms the MAP waveform actually falls
within the (much smaller) IMR prediction uncertainty, and the
Bayes factor is log10 B ⇠ 9 and SNR ⇠ 7. At t0 = tM + 7 ms,
or about 20 M after merger, the posterior uncertainty becomes
quite large, and the Bayes factor drops to log10 B ⇠ 2.6 with
SNR ⇠ 4.4. The signal becomes undetectable shortly there-
after, t0 � tM + 8 ms or so, where B ⇠ 1.

Measuring only the frequency and decay time of one
damped sinusoid in the data does not allow us to conclude
that we have observed the least-damped QNM of the final
black hole. The measured quality factor can be obtained from
several QNMs that have di↵erent black-hole’s spin, harmon-
ics and overtones (see, e.g., Ref. [61] and references therein).
However, the overlap between the 90% posterior contour of
the damped-sinusoid waveform model and the 90% confi-
dence region estimated from the IMR waveform indicates that

3 The merger time is obtained by taking the EOBNR MAP waveform and
lining this waveform up with the data such that the largest SNR is obtained.
The merger time is then defined as the point at which the quadrature sum
of the h+ and h⇥ polarizations is maximum.

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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O1 Spins

A. Masses

The binary component masses of all three systems lie
within the range expected for stellar-mass black holes. The
least massive black hole is the secondary of GW151226,
which has a 90% credible lower bound that msource

2 ≥
5.6M⊙. This is above the expected maximum neutron star
mass of about 3M⊙ [80,81] and beyond the mass
gap where there is currently a dearth of black holes
observed in x-ray binaries [82–84]. The range of our
inferred component masses overlaps with those for stellar-
mass black holes measured through x-ray observations but
extends beyond the nearly 16M⊙ maximum of that
population [85–87].
GW150914 corresponds to the heaviest BBH system

(Msource ¼ 65.3þ4.1
−3.4M⊙) we observed, and GW151226

corresponds to the least massive (Msource ¼ 21.8þ5.9
−1.7M⊙).

Higher mass systems merge at a lower gravitational-wave
frequency. For lower-mass systems, the gravitational-wave

signal is dominated by the inspiral of the binary compo-
nents, whereas for higher-mass systems, the merger and
ringdown parts of the signal are increasingly important.
The transition from being inspiral dominated to being
merger and ringdown dominated depends upon the sensi-
tivity of the detector network as a function of frequency;
GW150914 had SNR approximately equally split between
the inspiral and post-inspiral phases [41]. Information
about the masses is encoded in different ways in the
different parts of the waveform: The inspiral predominantly
constrains the chirp mass [70,88,89], and the ringdown is
more sensitive to the total mass [90]; hence, the best-
measured parameters depend upon the mass [91–93]. This
is illustrated in the posterior probability distributions for the
three events in Fig. 4. For the lower-mass GW151226 and
LVT151012, the posterior distribution follows curves of
constant chirp mass, but for GW150914, the posterior is
shaped more by constraints on the total mass [94].

FIG. 5. Posterior probability distributions for the dimensionless component spins cS1=ðGm2
1Þ and cS2=ðGm2

2Þ relative to the normal to
the orbital plane L, marginalized over the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt
angles, and therefore have equal prior probability. The left plot shows the distribution for GW150914, the middle plot is for LVT151012,
and the right plot is for GW151226.

FIG. 6. Posterior probability distributions for the sky locations of GW150914, LVT151012, and GW151226 shown in a Mollweide
projection. The left plot shows the probable position of the source in equatorial coordinates (right ascension is measured in hours and
declination is measured in degrees). The right plot shows the localization with respect to the Earth at the time of detection. Hþ and Lþ
mark the Hanford and Livingston sites, and H− and L− indicate antipodal points; H-L and L-H mark the poles of the line connecting the
two detectors (the points of maximal time delay). The sky localization forms part of an annulus, set by the difference in arrival times
between the detectors.
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The 2nd observing run (O2)

[ONLINE] GW170104, GW170608, GW170814, (the BNS GW170817), 


and… 


[OFFLINE] GW170729, GW170819, GW170818, and GW170823



The O2 run (Nov 2016 - Sep 2017)

LIGO-Virgo Collaboration, PRL 119, 141101 (2017) 

• The Advanced LIGO O2 run 
began in November 2016 and 
ended in September 2017. 

• Sensitivity was marginally 
improved but most importantly, 
Virgo joined in September 2017. 

• From this data we have 
published 3 BBH detections and 
1 BNS detection (GW170817).

mirrors are currently suspended with metallic wires. Follow-
ing one year of commissioning, Advanced Virgo joined
LIGO in August 2017 for the last month of the second
observation run.
For Virgo, the noises that are currently limiting the

sensitivity at low frequencies are thermal noise of the test
mass suspension wires, control noise, the 50 Hz mains line
and harmonics, and scattered light driven by seismic noise.
At high frequencies, the largest contribution comes from
shot noise of the main interferometer beam, with smaller
contributions coming from scattered light, and shot noise of
a secondary beam used to control the laser frequency. The
noise sources that limit LIGO’s sensitivity are described in
[24] and [25]. For bothLIGOandVirgo, commissioningwill
continue to reach their ultimate designed sensitivities [26].
Several noise sources that are linearly coupled to the GW

data channel can be subtracted in postprocessing, using
auxiliary sensors (e.g., photodiodes monitoring beam
motion) and coupling transfer functions calculated via
optimal Wiener filters. This technique was used in the
initial detector era [27–29]. For LIGO, we remove cali-
bration lines, power mains and harmonics, the effect of
some length and angular controls, and the effect of laser
beam motion. This noise removal can improve the sensi-
tivity of the LIGO detectors by approximately 20% [30].
For Virgo, we remove the effect of some length controls,
and the laser frequency stabilization control. The search
pipelines described in Sec. III use the calibrated strain data
which were produced in low latency and which have not
undergone postprocessing noise subtraction. They also use
data quality flags which were produced offline. The source
properties, however, described in Sec. V, are inferred using
the postprocessing noise-subtracted data. Figure 2 shows
the sensitivity of the Advanced LIGO–Advanced Virgo
network around the time of GW170814, after the post-
processing removal of several noise sources.
Detection validation procedures at LIGO [2,31], and

checks performed at Virgo found no evidence that instru-
mental or environmental disturbances could account for
GW170814. Tests quantifying the detectors’ susceptibility
to external environmental disturbances, such as electromag-
netic fields [32], indicated that any disturbance strong
enough to account for the signal would be clearly detected
by the array of environmental sensors. None of the envi-
ronmental sensors recorded anydisturbances consistentwith
a signal that evolved in time and frequency like GW170814.
A noise transient with a central frequency around 50 Hz
occurs in the Virgo detector 50 ms after GW170814. This
falls outside thewindow expected due to the light travel time
between the detectors, and has, therefore, no effect on the
interpretation of the GW signal.
LIGO is calibrated by inducing test-mass motion using

photon pressure from modulated auxiliary lasers [33,34],
and Virgo is calibrated using electromagnetic actuators
[35,36]. Frequency-dependent calibration uncertainties
are determined for both LIGO detectors for GW170814

using the method in [37], and used for estimation of the
properties of this event; themaximum 1-σ uncertainty for the
strain data in the frequency range 20–1024 Hz is 7% in
amplitude and 4° in phase. The maximum 1-σ uncertainties
for Virgo are 8% in amplitude and 3° in phase over the same
frequency range. The estimation of properties ofGW170814
use thesemaximumvalues for theVirgo uncertainty over the
whole frequency range. Uncertainties in the time stamping
of the data are 10 μs for LIGO and 20 μs for Virgo, which
does not limit the sky localization.

III. SEARCHES

GW170814 was first identified with high confidence
∼30 s after its arrival by two independent low-latency
matched-filter pipelines [38–44] that filter the data against a
collection of approximate gravitational-wave templates
[45–53], triggering an alert that was shared with partners
for electromagnetic follow-up [54].
The significance estimates for this event were found by

the two matched-filter pipelines, and a fully coherent
unmodeled search pipeline [55], analyzing 5.9 days of
coincident strain data from the Advanced LIGO detectors
spanning August 13, 2017 to August 21, 2017. The
matched-filter pipelines do not currently use data from
Virgo for significance estimates. Coherent searches, how-
ever, use the Virgo data to improve significance estimates.
The analysis was performed over the same source param-

eter space as the GW170104 matched-filter analysis [4] and
with additional data quality information unavailable in low
latency [5,31], although thenoise-subtracteddata described in
Sec. II were not used. Both pipelines identified GW170814
with a Hanford-Livingston network SNR of 15, with ranking
statistic values from the two pipelines corresponding to a

FIG. 2. Amplitude spectral density of strain sensitivity of the
Advanced LIGO–AdvancedVirgo network, estimated using 4096 s
of data around the time ofGW170814.Here, several known linearly
coupled noise sources have been removed from the data.
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GW170104

• This event had component masses 
of 31+8.4-6.0 and 19+5.3-5.9 M⊙.


• This event was at redshift 0.2 and 
had SNR 13.


• Combining this event with previous 
detections allows us to constrain the 
graviton mass and wavelength


• Using a modified dispersion relation 
the group velocity of the GWs 
becomes

LIGO-Virgo Collaboration, PRL 118, 221101 (2017) 

After the first observing run, both LIGO detectors under-
went commissioning to reduce instrumental noise, and to
improve duty factor and data quality (see Sec. I in the
Supplemental Material [11]). For the Hanford detector, a
high-power laser stage was introduced, and as the first step
the laser power was increased from 22 to 30 W to reduce
shot noise [10] at high frequencies. For the Livingston
detector, the laser power was unchanged, but there was a
significant improvement in low-frequency performance
mainly due to the mitigation of scattered light noise.
Calibration of the interferometers is performed by

inducing test-mass motion using photon pressure from
modulated calibration lasers [12,13]. The one-sigma

calibration uncertainties for strain data in both detectors
for the times used in this analysis are better than 5% in
amplitude and 3° in phase over the frequency range 20–
1024 Hz.
At the time of GW170104, both LIGO detectors were

operating with sensitivity typical of the observing run to
date and were in an observation-ready state. Investigations
similar to the detection validation procedures for previous
events [2,14] found no evidence that instrumental or
environmental disturbances contributed to GW170104.

III. SEARCHES

GW170104 was first identified by inspection of low-
latency triggers from Livingston data [15–17]. An auto-
mated notification was not generated as the Hanford
detector’s calibration state was temporarily set incorrectly
in the low-latency system. After it was manually deter-
mined that the calibration of both detectors was in a
nominal state, an alert with an initial source localization
[18,19] was distributed to collaborating astronomers [20]
for the purpose of searching for a transient counterpart.
About 30 groups of observers covered the parts of the sky
localization using ground- and space-based instruments,
spanning from γ ray to radio frequencies as well as high-
energy neutrinos [21].
Offline analyses are used to determine the significance of

candidate events. They benefit from improved calibration
and refined data quality information that is unavailable to
low-latency analyses [5,14]. The second observing run is
divided into periods of two-detector cumulative coincident
observing time with ≳5 days of data to measure the false
alarm rate of the search at the level where detections can be
confidently claimed. Two independently designed matched
filter analyses [16,22] used 5.5 days of coincident data
collected from January 4, 2017 to January 22, 2017.
These analyses search for binary coalescences over a range

of possible masses and by using discrete banks [23–28] of
waveform templates modeling binaries with component
spins aligned or antialigned with the orbital angular momen-
tum [29]. The searches can target binary black hole mergers
with detector-frame totalmasses2M⊙≤Mdet≲100–500M⊙,
and spin magnitudes up to∼0.99. The upper mass boundary
of the bank is determined by imposing a lower limit on the
duration of the template in the detectors’ sensitive frequency
band [30]. Candidate events must be found in both detectors
by the same templatewithin 15ms [4]. This 15-mswindow is
determined by the 10-ms intersite propagation time plus an
allowance for the uncertainty in identified signal arrival times
of weak signals. Candidate events are assigned a detection
statistic value ranking their relative likelihood of being a
gravitational-wave signal: the search uses an improved
detection statistic compared to the first observing run [31].
The significance of a candidate event is calculated by
comparing its detection statistic value to an estimate of
the background noise [4,16,17,22]. GW170104was detected

FIG. 1. Time–frequency representation [9] of strain data from
Hanford and Livingston detectors (top two panels) at the time of
GW170104. The data begin at 1167559936.5 GPS time. The
third panel from the top shows the time-series data from each
detector with a 30–350 Hz bandpass filter, and band-reject filters
to suppress strong instrumental spectral lines. The Livingston
data have been shifted back by 3 ms to account for the source’s
sky location, and the sign of its amplitude has been inverted to
account for the detectors’ different orientations. The maximum-
likelihood binary black hole waveform given by the full-pre-
cession model (see Sec. IV) is shown in black. The bottom panel
shows the residuals between each data stream and the maximum-
likelihood waveform.
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evolution provided that the positive orbit-aligned spin is
small (whether due to low spins or misalignment) [129,150–
152]. Current gravitational-wave measurements cluster
around χeff ∼ 0 (jχeff j < 0.35 at the 90% credible level for
all events; see Fig. 5 of the Supplemental Material [11]) [5].
Assuming that binary black hole spins are not typically small
(≲0.2), our observations hint towards the astrophysical
population favoring a distribution of misaligned spins rather
than near orbit-aligned spins [153]; further detections will
test if this is the case, and enable us to distinguish different
spin magnitude and orientation distributions [154–159].

VIII. TESTS OF GENERAL RELATIVITY

To check the consistency of the observed signals with the
predictions of GR for binary black holes in quasicircular
orbit, we employ a phenomenological approach that probes
how gravitational-wave generation or propagation could be
modified in an alternative theory of gravity. Testing for these
characteristicmodifications in thewaveform can quantify the
degree to which departures from GR can be tolerated given
the data. First, we consider the possibility of a modified
gravitational-wave dispersion relation, and place bounds on
the magnitude of potential deviations from GR. Second, we
perform null tests to quantify generic deviations from GR:
without assuming a specific alternative theory of gravity, we
verify if the detected signal is compatible with GR. For these
tests we use the three confident detections (GW150914,
GW151226, and GW170104); we do not use the marginal
event LVT151012, as its low SNR means that it contributes
insignificantly to all the tests [5].

A. Modified dispersion

InGR, gravitationalwaves are nondispersive.We consider
a modified dispersion relation of the form E2 ¼
p2c2 þ Apαcα, α ≥ 0, that leads to dephasing of the waves
relative to the phase evolution in GR. Here E and p are the
energy andmomentumof gravitational radiation, andA is the
amplitude of the dispersion [160,161]. Modifications to the
dispersion relation can arise in theories that include viola-
tions of local Lorentz invariance [162]. Lorentz invariance is
a cornerstone of modern physics but its violation is expected
in certain quantum gravity frameworks [162,163]. Several
modified theories of gravity predict specific values of α,
including massive-graviton theories (α ¼ 0, A > 0) [163],
multifractal spacetime [164] (α ¼ 2.5), doubly special rel-
ativity [165] (α ¼ 3), and Hořava-Lifshitz [166] and extra-
dimensional [167] theories (α ¼ 4). For our analysis, we
assume that the only effect of these alternative theories is to
modify the dispersion relation.
To leading order in AEα−2, the group velocity of gravi-

tational waves is modified as vg=c ¼ 1þ ðα − 1ÞAEα−2=2
[161]; both superluminal and subluminal propagation veloc-
ities are possible, depending on the sign ofA and the value of
α. A change in the dispersion relation leads to an extra term

δΨðA; αÞ in the evolution of the gravitational-wave phase
[160]. We introduce such a term in the effective-precession
waveform model [38] to constrain dispersion for various
values of α. To this end, we assume flat priors on A. In Fig. 5
we show 90% credible upper bounds on jAj derived from the
three confident detections. We do not show results for α ¼ 2
since in this case the modification of the gravitational-wave
phase is degenerate with the arrival time of the signal.
There exist constraints on Lorentz invariance violating

dispersion relations from other observational sectors (e.g.,
photon or neutrino observations) for certain values of α, and
our results are weaker by several orders of magnitude.
However, there are frameworks in which Lorentz invari-
ance is only broken in one sector [168,169], implying that
each sector provides complementary information on poten-
tial modifications to GR. Our results are the first bounds
derived from gravitational-wave observations, and the first
tests of superluminal propagation in the gravitational sector.
The result for A > 0 and α ¼ 0 can be reparametrized to

derive a lower bound on the graviton Compton wavelength
λg, assuming that gravitons disperse in vacuum in the same
way as massive particles [5,7,170]. In this case, no violation
of Lorentz invariance is assumed. Using a flat prior for the
gravitonmass, we obtain λg>1.5×1013km, which improves
on the bound of 1.0 × 1013 km from previous gravitational-
wave observations [5,7]. The combined bound using the
three confident detections is λg > 1.6 × 1013 km, or for the
graviton mass mg ≤ 7.7 × 10−23 eV=c2.

B. Null tests

In the post-Newtonian approximation, the gravitational-
wave phase in the Fourier domain is a series expansion in

FIG. 5. 90% credible upper bounds on jAj, the magnitude
of dispersion, obtained combining the posteriors of GW170104
with those of GW150914 and GW151226. We use picoelectron-
volts as a convenient unit because the corresponding frequency
scale is around where GW170104 has greatest amplitude
(1 peV≃ h × 250 Hz, where h is the Planck constant). General
relativity corresponds to A ¼ 0. Markers filled at the top (bottom)
correspond to values of jAj and α for which gravitational waves
travel with superluminal (subluminal) speed.
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evolution provided that the positive orbit-aligned spin is
small (whether due to low spins or misalignment) [129,150–
152]. Current gravitational-wave measurements cluster
around χeff ∼ 0 (jχeff j < 0.35 at the 90% credible level for
all events; see Fig. 5 of the Supplemental Material [11]) [5].
Assuming that binary black hole spins are not typically small
(≲0.2), our observations hint towards the astrophysical
population favoring a distribution of misaligned spins rather
than near orbit-aligned spins [153]; further detections will
test if this is the case, and enable us to distinguish different
spin magnitude and orientation distributions [154–159].
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gravitational-wave dispersion relation, and place bounds on
the magnitude of potential deviations from GR. Second, we
perform null tests to quantify generic deviations from GR:
without assuming a specific alternative theory of gravity, we
verify if the detected signal is compatible with GR. For these
tests we use the three confident detections (GW150914,
GW151226, and GW170104); we do not use the marginal
event LVT151012, as its low SNR means that it contributes
insignificantly to all the tests [5].
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p2c2 þ Apαcα, α ≥ 0, that leads to dephasing of the waves
relative to the phase evolution in GR. Here E and p are the
energy andmomentumof gravitational radiation, andA is the
amplitude of the dispersion [160,161]. Modifications to the
dispersion relation can arise in theories that include viola-
tions of local Lorentz invariance [162]. Lorentz invariance is
a cornerstone of modern physics but its violation is expected
in certain quantum gravity frameworks [162,163]. Several
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including massive-graviton theories (α ¼ 0, A > 0) [163],
multifractal spacetime [164] (α ¼ 2.5), doubly special rel-
ativity [165] (α ¼ 3), and Hořava-Lifshitz [166] and extra-
dimensional [167] theories (α ¼ 4). For our analysis, we
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modify the dispersion relation.
To leading order in AEα−2, the group velocity of gravi-
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[161]; both superluminal and subluminal propagation veloc-
ities are possible, depending on the sign ofA and the value of
α. A change in the dispersion relation leads to an extra term

δΨðA; αÞ in the evolution of the gravitational-wave phase
[160]. We introduce such a term in the effective-precession
waveform model [38] to constrain dispersion for various
values of α. To this end, we assume flat priors on A. In Fig. 5
we show 90% credible upper bounds on jAj derived from the
three confident detections. We do not show results for α ¼ 2
since in this case the modification of the gravitational-wave
phase is degenerate with the arrival time of the signal.
There exist constraints on Lorentz invariance violating

dispersion relations from other observational sectors (e.g.,
photon or neutrino observations) for certain values of α, and
our results are weaker by several orders of magnitude.
However, there are frameworks in which Lorentz invari-
ance is only broken in one sector [168,169], implying that
each sector provides complementary information on poten-
tial modifications to GR. Our results are the first bounds
derived from gravitational-wave observations, and the first
tests of superluminal propagation in the gravitational sector.
The result for A > 0 and α ¼ 0 can be reparametrized to

derive a lower bound on the graviton Compton wavelength
λg, assuming that gravitons disperse in vacuum in the same
way as massive particles [5,7,170]. In this case, no violation
of Lorentz invariance is assumed. Using a flat prior for the
gravitonmass, we obtain λg>1.5×1013km, which improves
on the bound of 1.0 × 1013 km from previous gravitational-
wave observations [5,7]. The combined bound using the
three confident detections is λg > 1.6 × 1013 km, or for the
graviton mass mg ≤ 7.7 × 10−23 eV=c2.

B. Null tests

In the post-Newtonian approximation, the gravitational-
wave phase in the Fourier domain is a series expansion in
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scale is around where GW170104 has greatest amplitude
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relativity corresponds to A ¼ 0. Markers filled at the top (bottom)
correspond to values of jAj and α for which gravitational waves
travel with superluminal (subluminal) speed.

PRL 118, 221101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

221101-7

Far 
away

evolution provided that the positive orbit-aligned spin is
small (whether due to low spins or misalignment) [129,150–
152]. Current gravitational-wave measurements cluster
around χeff ∼ 0 (jχeff j < 0.35 at the 90% credible level for
all events; see Fig. 5 of the Supplemental Material [11]) [5].
Assuming that binary black hole spins are not typically small
(≲0.2), our observations hint towards the astrophysical
population favoring a distribution of misaligned spins rather
than near orbit-aligned spins [153]; further detections will
test if this is the case, and enable us to distinguish different
spin magnitude and orientation distributions [154–159].
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how gravitational-wave generation or propagation could be
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gravitational-wave dispersion relation, and place bounds on
the magnitude of potential deviations from GR. Second, we
perform null tests to quantify generic deviations from GR:
without assuming a specific alternative theory of gravity, we
verify if the detected signal is compatible with GR. For these
tests we use the three confident detections (GW150914,
GW151226, and GW170104); we do not use the marginal
event LVT151012, as its low SNR means that it contributes
insignificantly to all the tests [5].
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relative to the phase evolution in GR. Here E and p are the
energy andmomentumof gravitational radiation, andA is the
amplitude of the dispersion [160,161]. Modifications to the
dispersion relation can arise in theories that include viola-
tions of local Lorentz invariance [162]. Lorentz invariance is
a cornerstone of modern physics but its violation is expected
in certain quantum gravity frameworks [162,163]. Several
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multifractal spacetime [164] (α ¼ 2.5), doubly special rel-
ativity [165] (α ¼ 3), and Hořava-Lifshitz [166] and extra-
dimensional [167] theories (α ¼ 4). For our analysis, we
assume that the only effect of these alternative theories is to
modify the dispersion relation.
To leading order in AEα−2, the group velocity of gravi-
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[161]; both superluminal and subluminal propagation veloc-
ities are possible, depending on the sign ofA and the value of
α. A change in the dispersion relation leads to an extra term
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[160]. We introduce such a term in the effective-precession
waveform model [38] to constrain dispersion for various
values of α. To this end, we assume flat priors on A. In Fig. 5
we show 90% credible upper bounds on jAj derived from the
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photon or neutrino observations) for certain values of α, and
our results are weaker by several orders of magnitude.
However, there are frameworks in which Lorentz invari-
ance is only broken in one sector [168,169], implying that
each sector provides complementary information on poten-
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derived from gravitational-wave observations, and the first
tests of superluminal propagation in the gravitational sector.
The result for A > 0 and α ¼ 0 can be reparametrized to

derive a lower bound on the graviton Compton wavelength
λg, assuming that gravitons disperse in vacuum in the same
way as massive particles [5,7,170]. In this case, no violation
of Lorentz invariance is assumed. Using a flat prior for the
gravitonmass, we obtain λg>1.5×1013km, which improves
on the bound of 1.0 × 1013 km from previous gravitational-
wave observations [5,7]. The combined bound using the
three confident detections is λg > 1.6 × 1013 km, or for the
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GW170608

• This event had component 
masses of 12+7-2 and 7+2-2 M⊙.


• This event was at redshift 0.07 
and had SNR 13.

LIGO-Virgo Collaboration, ApJ Lett., 851, L35, (2017) 

commissioning phase with still limited sensitivity; therefore,
Virgo data are not included in the analyses presented here.

3. Search for Binary Merger Signals

3.1. Low-latency Identification of a Candidate Event

GW170608 was first identified as a loud (S/N∼9) event
in LLO data, via visual inspection of single-detector events
from a low-latency compact binary matched-filter (“template”)
analysis(Usman et al. 2016; Nitz et al. 2017a, 2017b). Such
events are displayed automatically to diagnose changes in detector
operation and in populations of non-Gaussian transient noise
artifacts (glitches; Abbott et al. 2016f ). Low-latency templated
searches (Cannon et al. 2015; Adams et al. 2016; Messick et al.
2017; Nitz et al. 2017b) did not detect the event with high
significance because LHO data were not analyzed automatically.
An initial investigation of the LLO event did not indicate that it
was likely to be caused by an instrumental or environmental
artifact (Abbott et al. 2016f; Zevin et al. 2017b). The morphology
of the LLO event is consistent with a compact binary merger
signal, as shown in Figure 1 (lower panel), but a noise origin
could not be ruled out using LLO data alone.

Consequently, LHO data were investigated and were deter-
mined to be stable at frequencies above 30Hz (see the Appendix).
A segment of LHO data around the event time was then searched
with a filter starting frequency of 30Hz, using templates
approximating the waveforms from compact binary systems with
component spins aligned with the orbital angular momentum
(Pürrer 2016; Bohé et al. 2017). The fraction of S/N expected to
be lost due to imposing the 30Hz cutoff, as compared to the lower
starting frequencies typically used in O2 data(Dal Canton &
Harry 2017), is ∼1% or less. An event was found having
consistent template binary masses and spins, times of arrival, and
S/Ns in LHO and LLO. Based on this two-detector coincident
event an alert was issued to electromagnetic observing partners
13.5 hr after the event time, with a sky localization(Singer &
Price 2016) covering 860 deg2 (90% credible region). GRB
Coordinates Network Circulars related to this event are archived
athttps://gcn.gsfc.nasa.gov/other/G288732.gcn3.

3.2. Offline Search

To establish the significance of this coincident event, a period
between 2017 June 7 and 9 was identified for analysis during
which both LIGO interferometers were operating in the same
configuration as at the event time. Times at which commissioning
activities at LHO produced severe or broadband disturbances in
the strain data were excluded from the analysis. Standard offline
data quality vetoes for known environmental or instrumental
artifacts were also applied, resulting overall in 1.2 days of
coincident LHO–LLO data searched.

Two matched-filter pipelines identified GW170608, with a
network S/N of13. A candidate event is assigned a ranking
statistic value, in each pipeline, that represents its relative likelihood
of originating from a GW signal versusfrom noise. One pipeline
estimates the noise background using time-shifted data(Usman
et al. 2016) and limits the rate of occurrence of noise events ranked
higher than GW170608 to less than 1 in 3000 years. This limit
arises from the maximum background analysis time available from
time shifts separated by 0.1 s and is expected to be conservative as
indicated by previous studies (Was et al. 2010; Abbott et al. 2016g;
Capano et al. 2017). The other pipeline uses different methods
for ranking candidate events and for estimating the background

(Cannon et al. 2015; Messick et al. 2017) and assigns the event a
false-alarm rate of 1 in 160,000 years.
A search for transient GW signals coherent between LHO and

LLO with frequency increasing over time, without using wave-
form templates(Klimenko et al. 2016), also identified GW170608
with a false-alarm rate of 1 in_30 years; the lower significance is
expected as this analysis is typically less sensitive to lower-mass
compact binary signals than matched-filter searches.

4. Source Properties

4.1. Binary Parameters

The parameters of the GW source are inferred from a coherent
Bayesian analysis(Veitch et al. 2015; Abbott et al. 2016e) using
noise-subtracted data from the two LIGO observatories. Several
continuously present sources of noise in the detectors’ GW strain
channel are independently measured, and are then subtracted via
Wiener filtering (Abbott et al. 2017b and references therein). This
step increases the expected S/N of compact binary signals in
LHO data typically by 25% (Driggers et al. 2017). The likelihood
integration is performed starting at 30 Hz in LHO and 20Hz in
LLO, includes marginalization over strain calibration uncertainties
(Farr et al. 2015), and uses the noise power spectral densities
(Littenberg & Cornish 2015) at the time of the event.
Two different GW signal models calibrated to numerical

relativity simulations of general relativistic binary black hole
mergers(Mroué et al. 2013; Chu et al. 2016; Husa et al. 2016),
building on the breakthrough reported in Pretorius (2005), Baker
et al. (2006), and Campanelli et al. (2006), are used. One
waveform family models the inspiral-merger-ringdown signal of
precessing binary black holes(Hannam et al. 2014), which
includes spin-induced orbital precession through a transformation
of the aligned-spin waveform model of Husa et al. (2016) and
Khan et al. (2016); we refer to this model as the effective
precession model. The other waveform model describes binaries

Figure 1. Power maps of LIGO strain data at the time of GW170608 in a constant
Q sine-Gaussian basis (Chatterji et al. 2004). The characteristic upward-chirping
morphology of a binary inspiral driven by GW emission is visible in both
detectors, with a higher signal amplitude in LHO. This figure, and all others in this
Letter, were produced from noise-subtracted data (Section 4).
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with spin angular momenta aligned with the orbital angular
momentum(Pürrer 2016; Bohé et al. 2017), henceforth referred to
as non-precessing. For their common parameters, both waveform
models yield consistent parameter ranges.

A selection of inferred source parameters for GW170608 is
given in Table 1; unless otherwise noted, we report median values
and symmetric 90% credible intervals. The quoted parameter
uncertainties include statistical and systematic errors from
averaging posterior probability samples over the two waveform
models. As in Abbott et al. (2017a), our estimates of the mass and
spin of the final black hole, the total energy radiated in GWs, as
well as the peak luminosity are computed from fits to numerical
relativity simulations(Hofmann et al. 2016; Healy & Lousto 2017;
Jiménez-Forteza et al. 2017; Keitel et al. 2017).

The posterior probability distributions for the source-frame
mass parameters of GW170608 are shown in Figure 2, together
with those for GW151226(Abbott et al. 2016c). The initial
binary of GW170608 had source-frame component masses

� �
�

:m M121 2
7 and � �

�
:m M72 2

2 . As with previously reported
binary merger GW signals, GW170608ʼs data are consistent
with an equal-mass binary; the mass ratio is loosely constrained
to �m m 0.332 1 . Since neutron stars are expected to have
masses below _ :M3 (Lattimer & Prakash 2016), both objects
are most likely black holes.

Notably, we find this binary black hole system to be the least
massive yet observed through GWs. The next lightest,
GW151226(Abbott et al. 2016c), has a chirp mass
% � �

�8.9 0.3
0.3 and a total mass � �

�M 21.8 1.7
5.9, compared to

values of% � �
�

:M7.9 0.2
0.2 and � �

�
:M M19 1

5 for GW170608.
The probability that GW170608ʼs total mass is smaller than
GW151226ʼs is 0.89.

While the chirp mass is tightly constrained, spins have a more
subtle effect on the GW signal. The effective inspiral spin Deff , a
mass-weighted combination of the spin components (anti-)aligned
with the orbital angular momentum(Racine 2008; Ajith
et al. 2011), predominantly affects the inspiral rate of the binary
but also influences the merger. We infer that D � �

�0.07eff 0.09
0.23,

disfavoring large, anti-aligned spins on both black holes.
An independent parameter estimation method comparing

LIGO strain data to hybridized numerical relativity simulations

of binary black hole systems with non-precessing spins(Abbott
et al. 2016h) yields estimates of component masses and Deff
consistent with our model-waveform analysis.
Spin components orthogonal to the orbital angular momentum

are the source of precession (Apostolatos et al. 1994; Kidder 1995)
and may be parameterized by a single effective precession spin Dp
(Schmidt et al. 2015). For precessing binaries, component spin
orientations evolve over time; we report results evolved to a
reference GW frequency of 20Hz. The spin prior assumed in this
analysis is uniform in dimensionless spin magnitudes
D w ∣ ∣ ( )Sc Gmi i i

2 with i=1, 2 between 0 and 0.89 and isotropic
in their orientation; this prior on component spins maps to priors
for the effective parameters Deff and Dp. The top panel of Figure 3
shows the prior and posterior probability distributions of Deff and
Dp obtained for the effective precession waveform model. While
we gain some information about Deff , the Dp posterior is
dominated by its prior, thus we cannot draw any strong conclusion
on the size of spin components in the orbital plane. Previous GW
events also yielded little information on in-plane spins (Abbott
et al. 2016b, 2016c, 2017a); possible effects of prior choice
on this inference were investigated in Vitale et al. (2017a). The
inferred component spin magnitudes and orientations are shown
in the bottom panel of Figure 3. We find the dimensionless
spin magnitude of the primary black hole, D1, to be less than 0.75

Table 1
Source Properties for GW170608

Chirp mass% �
�

:M7.9 0.2
0.2

Total mass M �
�

:M19 1
5

Primary black hole mass m1 �
�

:M12 2
7

Secondary black hole mass m2 �
�

:M7 2
2

Lower bound on mass ratio m m2 1 0.33
Effective inspiral spin parameter Deff �

�0.07 0.09
0.23

Final black hole mass Mf �
�

:M18.0 0.9
4.8

Final black hole spin af �
�0.69 0.05

0.04

Radiated energy Erad �
�

:M c0.85 0.17
0.07 2

Peak luminosity ℓpeak q�
� �3.4 10 erg s1.6

0.5 56 1

Luminosity distance DL �
�340 Mpc140

140

Source redshift z �
�0.07 0.03

0.03

Note. We quote median values with 90% credible intervals (90% bound on
mass ratio). Source-frame masses are quoted; to convert to detector frame,
multiply by �( )z1 (Krolak & Schutz 1987). The redshift assumes a flat
cosmology with Hubble parameter � � �H 67.9 km s Mpc0

1 1 and matter
density parameter 8 � 0.3065m (Ade et al. 2016).

Figure 2. Posterior probability densities for binary component masses (m1, m2),
total mass (M), and chirp mass (%) in the source frame. One-dimensional
component mass distributions include posteriors for the effective precession (blue)
and the non-precessing (red) waveform model, as well as their average (black).
The dashed lines demarcate the 90% credible intervals for the average posterior.
The two-dimensional plot shows contours of the 50% and 90% credible regions
overlaid on a color-coded posterior density function. For comparison, we show
both one- and two-dimensional distributions of averaged component mass
posterior samples for GW151226 (orange; Abbott et al. 2016c). In the top panel,
we further compare GW170608 and GW151226ʼs source-frame total mass (left)
and source-frame chirp mass (right). All other known binary black holes lie at
higher chirp masses than GW170608 and GW151226.
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onto the three detectors. As an illustration, we perform a
test comparing the tensor-only mode with scalar-only and
vector-only modes. We find that purely tensor polarization
is strongly favored over purely scalar or vector polar-
izations. With this, and additional tests, we find that
GW170814 is consistent with GR.

II. DETECTORS

LIGOoperates two 4 km long detectors in the U.S., one in
Livingston, LA and one in Hanford, WA [14], while Virgo
consists of a single 3 km long detector near Pisa, Italy [15].
Together with GEO600 located near Hanover, Germany
[16], several science runs of the initial-era gravitational-
wave networkwere conducted through 2011. LIGO stopped
observing in 2010 for the Advanced LIGO upgrade [1]. The
Advanced LIGOdetectors have been operational since 2015
[17]. They underwent a series of upgrades between the first
and second observation runs [4], and began observing again
in November 2016.

Virgo stopped observing in 2011 for the Advanced Virgo
upgrade, during which many parts of the detector were
replaced or improved [6]. Among the main changes are an
increase of the finesse of the arm cavities, the use of heavier
test mass mirrors that have lower absorption and better
surface quality [18]. To reduce the impact of the coating
thermal noise [19], the size of the beam in the central part of
the detectorwas doubled,which requiredmodifications of the
vacuum system and the input-output optics [20,21]. The
recycling cavities are kept marginally stable as in the initial
Virgo configuration. The optical benches supporting themain
readout photodiodes have been suspended and put under
vacuum to reduce the impact of scattered light and acoustic
noise. Cryogenic traps have been installed to improve the
vacuum level. The vibration isolation and suspension system,
already compliant with the Advanced Virgo requirement
[22,23], has been further improved to allow for a more robust
control of the last-stage pendulum and the accommodation of
baffles to mitigate the effect of scattered light. The test mass

FIG. 1. The GWevent GW170814 observed by LIGO Hanford, LIGO Livingston, and Virgo. Times are shown from August 14, 2017,
10∶30:43 UTC. Top row: SNR time series produced in low latency and used by the low-latency localization pipeline on August 14, 2017.
The time series were produced by time shifting the best-match template from the online analysis and computing the integrated SNR at
each point in time. The single-detector SNRs in Hanford, Livingston, and Virgo are 7.3, 13.7, and 4.4, respectively. Second row: Time-
frequency representation of the strain data around the time of GW170814. Bottom row: Time-domain detector data (in color), and
90% confidence intervals for waveforms reconstructed from a morphology-independent wavelet analysis [13] (light gray) and BBH
models described in Sec. V (dark gray), whitened by each instrument’s noise amplitude spectral density between 20 Hz and 1024 Hz.
For this figure the data were also low passed with a 380 Hz cutoff to eliminate out-of-band noise. The whitening emphasizes different
frequency bands for each detector, which is why the reconstructed waveform amplitude evolution looks different in each column. The
left ordinate axes are normalized such that the physical strain of the wave form is accurate at 130 Hz. The right ordinate axes are in units
of whitened strain, divided by the square root of the effective bandwidth (360 Hz), resulting in units of noise standard deviations.
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GW170814

• This event had component masses of 31 and 19 M⊙. 

• This event was at redshift 0.2 and had SNR 13.
LIGO-Virgo Collaboration, PRL 119, 141101 (2017) 

false-alarm rate of 1 in 140 000 years in one search [38,39]
and 1 in 27 000 years in the other search [40–44,56], clearly
identifying GW170814 as a GW signal. The difference in
significance is due to the different techniques used to rank
candidate events and measure the noise background in these
searches; however, both report a highly significant event.
The significance of GW170814 was confirmed on the full

network of three detectors by an independent coherent
analysis that targets generic gravitational-wave transients
with increasing frequency over time [55]. This more generic
search reports a false-alarm rate < 1 in 5900 years. By
comparison, when we limit this analysis to the two LIGO
detectors only, the false-alarm rate is approximately 1 in
300 years; the use of the data from Virgo improves signifi-
cance by more than an order of magnitude. Moreover, this
independent approach recovers waveforms and SNRs at the
three detectors which are compatible with respect to the
coherent analyses used to infer source properties (see Sec. V).

IV. LOCALIZATION

Some compact object mergers are thought to produce not
just GWs but also broadband electromagnetic emission.
LIGO and Virgo have been distributing low-latency alerts
and localizations of GW events to a consortium now
consisting of ground- and space-based facilities who are
searching for gamma-ray, x-ray, optical, near-infrared,
radio, and neutrino counterparts [57–59].
For the purpose of position reconstruction, the LIGO-

Virgo GW detector network can be thought of as a phased
array of antennas. Any single detector provides only
minimal position information, its slowly varying antenna

pattern favoring two broad regions perpendicular to the
plane of the detectors’ arms [60,61]. However, with a
network of detectors, sky position can be inferred by
triangulation employing the time differences [62,63], phase
differences, and amplitude ratios on arrival at the sites [64].
An initial rapid localization was performed by coherent

triangulation of the matched-filter estimates of the times,
amplitudes, and phases on arrival [65]. The localization
was then progressively refined by full coherent Bayesian
parameter estimation [66], using more sophisticated wave-
form models and treatment of calibration systematics, as
described in the next section.
The localization of GW170814 is shown in Fig. 3. For

the rapid localization from Hanford and Livingston, the
90% credible area on the sky is 1160 deg2 and shrinks to
100 deg2 when including Virgo data. The full parameter
estimation further constrains the position to a 90% credible
area of 60 deg2 centered at the maximum a posteriori
position of right ascension RA ¼ 03h11m and declination
dec ¼ −44°57m (J2000). The shift between the rapid
localization and the full parameter estimation is partly
due to the noise removal and final detector calibration,
described in the previous section, that was applied for the
full parameter estimation but not the rapid localization.
Incorporating Virgo data also reduces the luminosity

distance uncertainty from 570þ300
−230 Mpc (rapid localization)

to 540þ130
−210 Mpc (full parameter estimation). As with the

previous paragraph, the three-dimensional credible volume
and number of possible host galaxies also decreases by an
order of magnitude [67–69], from 71 × 106 Mpc3, to
3.4 × 106 Mpc3, to 2.1 × 106 Mpc3.

FIG. 3. Localization of GW170814. The rapid localization using data from the two LIGO sites is shown in yellow, with the inclusion
of data from Virgo shown in green. The full Bayesian localization is shown in purple. The contours represent the 90% credible regions.
The left panel is an orthographic projection and the inset in the center is a gnomonic projection; both are in equatorial coordinates. The
inset on the right shows the posterior probability distribution for the luminosity distance, marginalized over the whole sky.
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What happens next?

• The first observing runs O1 and 
O2 are the first of many as the 
detectors improve in sensitivity.


• O3 will have ~50 times the 
sensitivity of O1.


• There will be many more 
detections.


• We must also not forget binary 
neutron stars, unmodelled 
transients, stochastic 
background, continuous 
signals, …

2016-2017 2018-2019

15

disfavors low-mass clusters [151]. On the other hand, if all
merging BBHs arise from isolated binaries evolving via the
common-envelope phase, the lower limit on the merger rate
disfavors a combination of very low common envelope bind-
ing energy with a high efficiency of common envelope ejec-
tion [175] (high values of a ⇥ l , as defined in [177–179]),
or very high black hole natal kicks of several hundred km/s
[180]. However, since population synthesis studies have typ-
ically varied one parameter at a time, individual parameter
values cannot be ruled out until the full parameter space is
explored [e.g., 181]. Moreover, the parametrisations used in
existing models may not even capture the full physical uncer-
tainties [e.g., 182, 183].

It is likely, however, that multiple formation channels are
in operation simultaneously, and GW150914, LVT151012,
and GW151226 could have been formed through different
channels or in different environments. A lower limit on the
merger rate cannot be used to rule out evolutionary parame-
ters if multiple channels contribute. Future observations will
be required to test whether binaries can be classified into dis-
tinct clusters arising from different formation channels [184],
or to compare the population to specific evolutionary models
[185–188]. Such observations will make it possible to further
probe the underlying mass distribution of merging BBHs and
the dependence of the merger rate on redshift. Meanwhile,
space-borne detectors such as eLISA could observe heavy
BBHs several years before merger; multi-spectrum observa-
tions with ground-based and space-borne observatories would
aid in measuring binary parameters, including location, and
determining the formation channel by measuring the eccen-
tricity at lower frequencies [189–191].

We can use the inferred rates to estimate the number of
BBH mergers expected in future observing runs. We make
use of the future observing plans laid out in [128] to predict
the expected rate of signals in the second and third advanced
LIGO and Virgo observing runs. To do so, we restrict at-
tention to those signals which will be observed with a false
alarm rate smaller than 1/100yr. In the simulations used to
estimate sensitive time-volumes, 61% of the events above the
low threshold used in the PyCBC rates calculation are found
with a search false alarm rate lower than one per century. The
expected number of observed events will then scale linearly
with the sensitive time-volume hV T i of a future search. The
improvement in sensitivity in future runs will vary across the
frequency band of the detectors and will therefore have a dif-
ferent impact for binaries of different mass. For concreteness,
we use a fiducial BBH system with total mass 60M� and
mass ratio q = 1 [146], to estimate a range of sensitive time-
volumes for future observing runs. The second observing run
(O2) is anticipated to begin in late 2016 and last six months,
and the third run (O3) to begin in 2017 and last nine months.
We show the predictions for the probability of obtaining N or
more high-significance events as a function of hV T i (in units
of the time-volume surveyed during O1) in Fig. 12. Current
projections for O2 suggest that the sensitivity will be consis-
tent with the lower end of the band indicated in Figure 12.
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FIG. 12. The probability of observing N > 10, N > 35, and N > 70
highly significant events, as a function of surveyed time-volume. The
vertical line and bands show, from left to right, the expected sensitive
time-volume for the second (O2) and third (O3) advanced detector
observing runs.

VIII. CONCLUSION

During its first observing run Advanced LIGO has observed
gravitational waves from the coalescence of two stellar-mass
BBHs GW150914 and GW151226 with a third candidate
LVT151012 also likely to be a BBH system. Our mod-
eled binary coalescence search detects both GW150914 and
GW151226 with a significance of greater than 5.3s , while
LVT151012 is found with a significance 1.7s . The compo-
nent masses of these systems span a range from the heav-
iest black hole in GW150914 with a mass of 36.2+5.2

�3.8M�,
to 7.5+2.3

�2.3M�, the lightest black hole of GW151226. The
spins of the individual coalescing black holes are weakly con-
strained, but we can rule out two non-spinning components
for GW151226 at 99% credible level. All our observations are
consistent with the predictions of general relativity, and the fi-
nal black holes formed after merger are all predicted to have
high spin values with masses that are larger than any black
hole measured in x-ray binaries. The inferred rate of BBH
mergers based on our observations is 9–240Gpc�3 yr�1which
gives confidence that future observing runs will observe many
more BBHs.
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The big table of O1/O2 BBH properties

and calibration have not changed, a reanalysis is valuable
for the following reasons: (i) Parameter estimation analyses
use an improved method for estimating the power spectral
density of the detector noise [53,54] and frequency-depen-
dent calibration envelopes [98]; (ii) we use two waveform
models that incorporate precession and combine their
posteriors to mitigate model uncertainties.
Key source parameters for the ten BBHs and one BNS are

shown in Table III. We quote the median and symmetric 90%
credible intervals for inferred quantities. For BBH coales-
cences, parameter uncertainties include statistical and sys-
tematic errors from averaging posterior probability
distributions over the two waveform models, as well as
calibration uncertainty. Apart from GW170817, all posterior
distributions of GW events are consistent with originating
from BBHs. Posterior distributions for all GW events are
shown in Figs. 4–8. Mass and tidal deformability poste-
riors for GW170817 are shown in Fig. 9. For BBH
coalescences, we present combined posterior distributions
from an effective precessing spin waveform model
(IMRPhenomPv2) [25,26,49] and a fully precessing
model (SEOBNRv3) [27,28,30]. For the analysis of
GW170817, we present results for three frequency-
domain models IMRPhenomPv2NRT [25,26,32,49,99],
SEOBNRv4NRT [29,32,77,99], and TaylorF2 [35,36,
38,100–112] and two time-domain models SEOBNRv4T
[31] and TEOBResumS [33,113]. Details on Bayesian
parameter estimation methods, prior choices, and wave-
form models used for BBH and BNS systems are provided
in Appendix B, B 1, and B 2, respectively. We discuss an

analysis including higher harmonics in the waveform in
Appendix B 3 and find results broadly consistent with the
analysis presented below. The impact of prior choices on
selected results is discussed in Appendix C.

A. Source parameters
The GW signal emitted from a BBH coalescence

depends on intrinsic parameters that directly characterize
the binary’s dynamics and emitted waveform, and extrinsic
parameters that encode the relation of the source to the
detector network. In general relativity, an isolated BH is
uniquely described by its mass, spin, and electric charge
[114–118]. For astrophysical BHs, we assume the electric
charge to be negligible. A BBH undergoing quasicircular
inspiral can be described by eight intrinsic parameters, the
two masses mi, and the two three-dimensional spin vectors
S⃗i of its component BHs defined at a reference frequency.
Seven additional extrinsic parameters are needed to
describe a BH binary: the sky location (right ascension
α and declination δ), luminosity distance dL, the orbital
inclination ι and polarization angle ψ , the time tc, and phase
ϕc at coalescence.
Since the maximum spin a Kerr BH of mass m can

reach is ðGm2Þ=c, we define dimensionless spin vectors
χ⃗i ¼ cS⃗i=ðGm2

i Þ and spin magnitudes ai ¼ cjS⃗ij=ðGm2
i Þ. If

the spins have a component in the orbital plane, then the
binary’s orbital angular momentum L⃗ and its spin vectors
precess [119,120] around the total angular momentum
J⃗ ¼ L⃗þ S⃗1 þ S⃗2.

TABLE III. Selected source parameters of the 11 confident detections. We report median values with 90% credible intervals that
include statistical errors and systematic errors from averaging the results of two waveform models for BBHs. For GW170817, credible
intervals and statistical errors are shown for IMRPhenomPv2NRTwith a low spin prior, while the sky area is computed from TaylorF2
samples. The redshift for NGC 4993 from Ref. [94] and its associated uncertainties are used to calculate source-frame masses for
GW170817. For BBH events, the redshift is calculated from the luminosity distance and assumed cosmology as discussed in
Appendix B. The columns show source-frame component masses mi and chirp massM, dimensionless effective aligned spin χeff , final
source-frame massMf , final spin af , radiated energy Erad, peak luminosity lpeak, luminosity distance dL, redshift z, and sky localization
ΔΩ. The sky localization is the area of the 90% credible region. For GW170817, we give conservative bounds on parameters of the final
remnant discussed in Sec. V E.

Event m1=M⊙ m2=M⊙ M=M⊙ χeff Mf=M⊙ af Erad=ðM⊙c2Þ lpeak=ðerg s−1Þ dL=Mpc z ΔΩ=deg2

GW150914 35.6þ4.7
−3.1 30.6þ3.0

−4.4 28.6þ1.7
−1.5 −0.01þ0.12

−0.13 63.1þ3.4
−3.0 0.69þ0.05

−0.04 3.1þ0.4
−0.4 3.6þ0.4

−0.4 × 1056 440þ150
−170 0.09þ0.03

−0.03 182

GW151012 23.2þ14.9
−5.5 13.6þ4.1

−4.8 15.2þ2.1
−1.2 0.05þ0.31

−0.20 35.6þ10.8
−3.8 0.67þ0.13

−0.11 1.6þ0.6
−0.5 3.2þ0.8

−1.7 × 1056 1080þ550
−490 0.21þ0.09

−0.09 1523

GW151226 13.7þ8.8
−3.2 7.7þ2.2

−2.5 8.9þ0.3
−0.3 0.18þ0.20

−0.12 20.5þ6.4
−1.5 0.74þ0.07

−0.05 1.0þ0.1
−0.2 3.4þ0.7

−1.7 × 1056 450þ180
−190 0.09þ0.04

−0.04 1033

GW170104 30.8þ7.3
−5.6 20.0þ4.9

−4.6 21.4þ2.2
−1.8 −0.04þ0.17

−0.21 48.9þ5.1
−4.0 0.66þ0.08

−0.11 2.2þ0.5
−0.5 3.3þ0.6

−1.0 × 1056 990þ440
−430 0.20þ0.08

−0.08 921

GW170608 11.0þ5.5
−1.7 7.6þ1.4

−2.2 7.9þ0.2
−0.2 0.03þ0.19

−0.07 17.8þ3.4
−0.7 0.69þ0.04

−0.04 0.9þ0.0
−0.1 3.5þ0.4

−1.3 × 1056 320þ120
−110 0.07þ0.02

−0.02 392

GW170729 50.2þ16.2
−10.2 34.0þ9.1

−10.1 35.4þ6.5
−4.8 0.37þ0.21

−0.25 79.5þ14.7
−10.2 0.81þ0.07

−0.13 4.8þ1.7
−1.7 4.2þ0.9

−1.5 × 1056 2840þ1400
−1360 0.49þ0.19

−0.21 1041

GW170809 35.0þ8.3
−5.9 23.8þ5.1

−5.2 24.9þ2.1
−1.7 0.08þ0.17

−0.17 56.3þ5.2
−3.8 0.70þ0.08

−0.09 2.7þ0.6
−0.6 3.5þ0.6

−0.9 × 1056 1030þ320
−390 0.20þ0.05

−0.07 308

GW170814 30.6þ5.6
−3.0 25.2þ2.8

−4.0 24.1þ1.4
−1.1 0.07þ0.12

−0.12 53.2þ3.2
−2.4 0.72þ0.07

−0.05 2.7þ0.4
−0.3 3.7þ0.4

−0.5 × 1056 600þ150
−220 0.12þ0.03

−0.04 87

GW170817 1.46þ0.12
−0.10 1.27þ0.09

−0.09 1.186þ0.001
−0.001 0.00þ0.02

−0.01 ≤ 2.8 ≤ 0.89 ≥ 0.04 ≥ 0.1 × 1056 40þ7
−15 0.01þ0.00

−0.00 16

GW170818 35.4þ7.5
−4.7 26.7þ4.3

−5.2 26.5þ2.1
−1.7 −0.09þ0.18

−0.21 59.4þ4.9
−3.8 0.67þ0.07

−0.08 2.7þ0.5
−0.5 3.4þ0.5

−0.7 × 1056 1060þ420
−380 0.21þ0.07

−0.07 39

GW170823 39.5þ11.2
−6.7 29.0þ6.7

−7.8 29.2þ4.6
−3.6 0.09þ0.22

−0.26 65.4þ10.1
−7.4 0.72þ0.09

−0.12 3.3þ1.0
−0.9 3.6þ0.7

−1.1 × 1056 1940þ970
−900 0.35þ0.15

−0.15 1666

B. P. ABBOTT et al. PHYS. REV. X 9, 031040 (2019)

031040-12

LIGO-Virgo Collaboration, PRX 9, 031040 (2019) 



Masses and spins

We describe the dominant spin effects by introducing
effective parameters. The effective aligned spin is defined
as a simple mass-weighted linear combination of the spins
[23,24,121] projected onto the Newtonian angular momen-
tum L̂N , which is normal to the orbital plane (L̂ ¼ L̂N for
aligned-spin binaries)

χeff ¼
ðm1χ⃗1 þm2 χ⃗2Þ · L̂N

M
; ð4Þ

whereM ¼ m1 þm2 is the total mass of the binary andm1 is
defined to be the mass of the larger component of the binary,
such thatm1 ≥ m2.Different parameterizations of spin effects
are possible and can bemotivated from their appearance in the
GW phase or dynamics [122–124]. χeff is approximately
conserved throughout the inspiral [121]. To assess whether a
binary is precessing, we use a single effective precession spin
parameter χp [125] (see Appendix C).
During the inspiral, the phase evolution depends at

leading order on the chirp mass [34,126,127]

M ¼ ðm1m2Þ3=5

M1=5 ; ð5Þ

which is also the best measured parameter for low-mass
systems dominated by the inspiral [63,101,122,128]. The
mass ratio

q ¼ m2

m1

≤ 1 ð6Þ

and effective aligned spin χeff appear in the phasing at
higher orders [101,121,123].
For precessing binaries, the orbital angular momentum

vector L⃗ is not a stable direction, and it is preferable to
describe the source inclination by the angle θJN between

the total angular momentum J⃗ (which typically is approx-
imately constant throughout the inspiral) and the line-of-
sight vector N⃗ instead of the orbital inclination angle ι
between L⃗ and N⃗ [119,129]. We quote frequency-
dependent quantities such as spin vectors and derived
quantities as χp at a GW reference frequency fref ¼ 20 Hz.
Binary neutron stars have additional degrees of freedom

(d.o.f.) related to their response to a tidal field. The
dominant quadrupolar (l ¼ 2) tidal deformation is
described by the dimensionless tidal deformability Λ ¼
ð2=3Þk2½ðc2=GÞðR=mÞ&5 of each neutron star (NS), where
k2 is the dimensionless l ¼ 2 Love number and R is the NS
radius. The tidal deformabilities depend on the NS mass
m and the equation of state (EOS). The dominant tidal
contribution to the GW phase evolution is encapsulated in
an effective tidal deformability parameter [130,131]:

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

M5
: ð7Þ

B. Masses

In the left panel in Fig. 4, we show the inferred
component masses of the binaries in the source frame as
contours in them1-m2 plane. Because of the mass prior, we
consider only systems with m1 ≥ m2 and exclude the
shaded region. The component masses of the detected
BH binaries cover a wide range from about 5 M⊙ to about
70 M⊙ and lie within the range expected for stellar-mass
BHs [132–134]. The posterior distribution of the heavier
component in the heaviest BBH, GW170729, grazes the
lower boundary of the possible mass gap expected from
pulsational pair instability and pair instability supernovae at

FIG. 4. Parameter estimation summary plots I. Posterior probability densities of the component masses and final masses and spins of
the GW events. For the two-dimensional distributions, the contours show 90% credible regions. Left: Source-frame component masses
m1 and m2. We use the convention that m1 ≥ m2, which produces the sharp cut in the two-dimensional distribution. Lines of constant
mass ratio q ¼ m2=m1 are shown for 1=q ¼ 2, 4, 8. For low-mass events, the contours follow lines of constant chirp mass. Right: The
massMf and dimensionless spin magnitude af of the final black holes. The colored event labels are ordered by source-frame chirp mass.
The same color code and ordering (where appropriate) apply to Figs. 5–8.
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Masses and spins

approximately 60–120 M⊙ [135–138]. The lowest-mass
BBH systems, GW151226 and GW170608, have 90%
credible lower bounds on m2 of 5.6 M⊙ and 5.9 M⊙,
respectively, and therefore lie above the proposed BH mass
gap region [139–142] of 2–5 M⊙. The component masses
of the BBHs show a strong degeneracy with each other.
Lower-mass systems are dominated by the inspiral of the
binary, and the component mass contours trace out a line of
constant chirp mass Eq. (5) which is the best measured
parameter in the inspiral [34,63,122]. Since higher-mass
systems merge at a lower GW frequency, their GW signal is
dominated by the merger of the binary. For high-mass
binaries, the total mass can be measured with an accuracy
comparable to that of the chirp mass [143–146].
We show posteriors for the ratio of the component

masses Eq. (6) in the top left in Fig. 5. This parameter
is much harder to constrain than the chirp mass. The
width of the posteriors depends mostly on the SNR, and
so the mass ratio is best measured for the loudest
events, GW170817, GW150914, and GW170814. Even

though GW170817 has the highest SNR of all events,
its mass ratio is less well constrained, because the
signal power comes predominantly from the inspiral,
while the merger contributes little compared to the
BBH [147]. GW151226 and GW151012 have posterior
support for more unequal mass ratios than the other
events, with lower bounds of 0.28 and 0.29, respec-
tively, at 90% credible level.
The final mass, radiated energy, final spin, and peak

luminosity of the BH remnant from a BBH coalescence are
computed using averages of fits to numerical relativity
(NR) results [15,148–153]. Posteriors for the mass and spin
of the BH remnant for BBH coalescences are shown in the
right in Fig. 4. Only a fraction ð0.02–0.07Þ of the binary’s
total mass is radiated away in GWs. The amount of radiated
energy scales with its total mass. The heaviest remnant BH
found is GW170729, at 79.5þ14.7

−10.2 M⊙ while the lightest
remnant BH is GW170608, at 17.8þ3.4

−0.7 M⊙.
GW mergers reach extraordinary values of peak lumi-

nosity which is independent of the total mass. While it

FIG. 5. Parameter estimation summary plots II. Posterior probability densities of the mass ratio and spin parameters of the GWevents.
The shaded probability distributions have equal maximum widths, and horizontal lines indicate the medians and 90% credible intervals
of the distributions. For the two-dimensional distributions, the contours show 90% credible regions. Events are ordered by source-frame
chirp mass. The colors correspond to the colors used in summary plots. For GW170817, we show results for the high-spin prior
ai < 0.89. Top left: The mass ratio q ¼ m2=m1. Top right: The effective aligned spin magnitude χeff . Bottom left: Contours of 90%
credible regions for the effective aligned spin and mass ratio of the binary components for low- (high-) mass binaries are shown in the
upper (lower) panel. Bottom right: The effective precession spin posterior (colored) and its effective prior distribution (white) for BBH
(BNS) events. The priors are conditioned on the χeff posterior distributions.
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Spins

FIG. 6. Parameter estimation summary plots III. Posterior probability distributions for the dimensionless component spins cS⃗1=ðGm2
1Þ

and cS⃗2=ðGm2
2Þ relative to the normal to the orbital plane L⃗, marginalized over the azimuthal angles. The bins are constructed linearly in

spin magnitude and the cosine of the tilt angles and are assigned equal prior probability. Events are ordered by source-frame chirp mass.
The colors correspond to the colors used in summary plots. For GW170817, we show results for the high-spin prior ai < 0.89.
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Sky localisationFIG. 7. Parameter estimation summary plots IV. Posterior probability densities of distance dL, inclination angle θJN , and chirp mass
M of the GWevents. For the two-dimensional distributions, the contours show 90% credible regions. For GW170817, we show results
for the high-spin prior ai < 0.89. Left: The inclination angle and luminosity distance of the binaries. Right: The luminosity distance (or
redshift z) and source-frame chirp mass. The colored event labels are ordered by source-frame chirp mass.

FIG. 8. Parameter estimation summary plots V. The contours show 90% and 50% credible regions for the sky locations of all GWevents in a
Mollweide projection. The probable position of the source is shown in equatorial coordinates (right ascension is measured in hours, and
declination is measured in degrees). 50% and 90% credible regions of posterior probability sky areas for the GW events. Top: Confidently
detectedO2GWevents [22] (GW170817, GW170104, GW170823, GW170608, GW170809, andGW170814) for which alerts were sent to
EM observers. Bottom: O1 events (GW150914, GW151226, and GW151012), along with O2 events (GW170729 and GW170818) not
previouslyreleased toEMobservers.Whereapplicable, the initial skymapssharedwithEMpartners in lowlatencyareavailable fromRef. [185].
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Waveforms

FIG. 10. Time-frequency maps and reconstructed signal waveforms for the ten BBH events. Each event is represented with three
panels showing whitened data from the LIGO detector where the higher SNR is recorded. The first panel shows a normalized time-
frequency power map of the GW strain. The remaining pair of panels shows time-domain reconstructions of the whitened signal, in units
of the standard deviation of the noise. The upper panels show the 90% credible intervals from the posterior probability density functions
of the waveform time series, inferred using CBC waveform templates from Bayesian inference (LALINFERENCE) with the PhenomP
model (red band) and by the BAYESWAVE wavelet model (blue band) [53]. The lower panels show the point estimates from the cWB
search (solid lines), along with a 90% confidence interval (green band) derived from cWB analyses of simulated waveforms from the
LALINFERENCE CBC parameter estimation injected into data near each event. Visible differences between the different reconstruction
methods are verified to be consistent with a noise origin (see the text for details).

GWTC-1: A GRAVITATIONAL-WAVE TRANSIENT CATALOG … PHYS. REV. X 9, 031040 (2019)

031040-21

FIG. 10. Time-frequency maps and reconstructed signal waveforms for the ten BBH events. Each event is represented with three
panels showing whitened data from the LIGO detector where the higher SNR is recorded. The first panel shows a normalized time-
frequency power map of the GW strain. The remaining pair of panels shows time-domain reconstructions of the whitened signal, in units
of the standard deviation of the noise. The upper panels show the 90% credible intervals from the posterior probability density functions
of the waveform time series, inferred using CBC waveform templates from Bayesian inference (LALINFERENCE) with the PhenomP
model (red band) and by the BAYESWAVE wavelet model (blue band) [53]. The lower panels show the point estimates from the cWB
search (solid lines), along with a 90% confidence interval (green band) derived from cWB analyses of simulated waveforms from the
LALINFERENCE CBC parameter estimation injected into data near each event. Visible differences between the different reconstruction
methods are verified to be consistent with a noise origin (see the text for details).

GWTC-1: A GRAVITATIONAL-WAVE TRANSIENT CATALOG … PHYS. REV. X 9, 031040 (2019)

031040-21

LIGO-Virgo Collaboration, PRX 9, 031040 (2019) 



Astrophysical Event Rate

LIGO-Virgo Collaboration, PRX 9, 031040 (2019) 

not have a specific event type corresponding to NSBH or
BNS; thus, we treat all cWB search events as BBH
candidates. The astrophysical probabilities from PyCBC
are estimated by applying simple chirp mass cuts to the set
of events with ranking statistic ρ > 8: Events with M<2.1
are considered as candidate BNS, those with M > 4.35 as
candidate BBH, where the lower bound assumes two 5 M⊙
BHs, and all remaining events as potential NSBH. We note
that the value of the boundary between NSBH and BBH is
chosen somewhat arbitrarily, given the uncertainty as to
the exact value in our current understanding due to, for
example, the formation and environment of the source.
The astrophysical probabilities from GstLAL in Table IV
are estimated using the pipeline response to injected
synthetic signals, where neutron stars are assumed to
have masses in the range 1–3 M⊙ and black holes are
assumed to have masses of 3 M⊙ or larger. The details
can be found in Ref. [89]. We note that the different
definitions used by these three pipelines in classifying
events as BNS, NSBH, or BBH reflect current astro-
physical uncertainties in such classifications. Other, yet
different definitions are used in order to compute event
rates in the following subsections.

B. Binary black hole event rates

After the detection of GW170104, the event rate of
BBH mergers had been measured to lie between 12 and
213 Gpc−3 y−1 [15]. This measurement included the four
events identified at that time. The hVTi, and hence the
rates, are derived from a set of assumed BBH populations.
InO1, two distributions of the primary mass—one uniform
in the log and one a power law pðm1Þ ∝ m−α

1 with an index
of α ¼ 2.3—are used as representative extremes. In both
populations shown here, the mass distribution cuts off at a
lower mass of 5 M⊙. The mass distributions cut off at a
maximum mass of 50 M⊙. The detector network is
sensitive to binaries with a larger mass; however, the
new cutoff is motivated by both more sophisticated
modeling of the mass spectrum [55] preferring maximum
BH masses much smaller than the previous limit of
100 M⊙, as well as astrophysical processes which are
expected to truncate the distribution [136]. The BH spin
distribution has magnitude uniform in [0, 1]. The PyCBC
search uses a spin tilt distribution which is isotropic over
the unit sphere, and GstLAL uses a distribution that aligns
BH spins to the orbital angular momentum.
The posteriors on the rate distributions are shown

in Fig. 12. Including all events, the event rate is now
measured to be R ¼ 56þ44

−27 Gpc−3 y−1 (GstLAL) and R ¼
57þ47

−29 Gpc−3 y−1 (PyCBC) for the power-law distribution.
For the uniform in log distribution, we obtain R ¼
18.1þ13.9

−8.7 Gpc−3 y−1 (GstLAL) and R¼19.5þ15.2
−9.7 Gpc−3y−1

(PyCBC). The difference in hVTi and rate distributions
between the two spin populations is smaller than the

uncertainty from calibration. Therefore, we present in
Fig. 12 the rate distribution for both assumed mass distri-
butions, combined over searches as an averaging over the
spin configurations. The union of the intervals combined
over both populations lies in 9.7–101 Gpc−3 y−1.
GW170608 is included in the estimation of Λ for BBH,
but, given difficulties in characterizing the amount of time
in which it could have occurred, its analysis period is not
included in the overall hVTi. We believe this exclusion
introduces a bias that is no larger than the already accounted
for calibration uncertainty.
A more detailed analysis [4] previously showed that both

of the assumed populations used here are consistent with an
inferred fit to the power-law index α as measured from the
population of events known at the time. An update to this
analysis using all current detections and examining a
variety of plausible mass and spin distributions is explored
in Ref. [55]. Allowing for a self-consistent fit to the event
rate while varying a power-law model with a spectral index
and maximum and minimum primary mass, the rate interval
is found to be 53þ56

−28 Gpc−3 y−1. This result is consistent
with the intervals obtained from the fixed parameter
populations used here. Within the same model, we obtain
a 90% interval of the distribution for the power-law index
of α ¼ 1.3þ1.4

−1.7 . Compared with the earlier analysis [4], this
result favors somewhat shallower power-law indices.

C. Binary neutron star event rates

The discovery of GW170817 is the only unambiguous
BNS candidate obtained in O2. Regardless, it provides a
means to independently measure the rate of binary neutron
star mergers. Previous estimates [211–213] from observa-
tions are derived from the properties of neutron star binaries

FIG. 12. This figure shows the posterior distribution—
combined from the results of PyCBC and GstLAL—on the
BBH event rate for the flat in log (blue) and power-law (orange)
mass distributions. The symmetric 90% confidence intervals are
indicated with vertical lines beneath the posterior distribution.
The union of intervals is indicated in black.
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Figure 4. The gravitational-wave measurement of H0 (dark blue) from the detections in the first two observing runs of Advanced LIGO and
Virgo. The GW170817 estimate (orange) comes from the identification of its host galaxy NGC4993 (Abbott et al. 2017b). The additional
contribution comes from binary black holes in association with appropriate galaxy catalogs; for GW170814 and GW170818 we use the DES-
Y1 and GWENS galaxy catalogs respectively, while for GW150914, GW151226, and GW170608, we use the GLADE catalog. We do not
use the other binary black holes for this result. The 68% maximum a-posteriori intervals are indicated with the vertical dashed lines. All
results assume a prior on H0 uniform in the interval [20, 140] km s�1 Mpc�1(dotted blue). We also show the estimates of H0 from CMB (Planck:
Aghanim et al. 2018) and supernova observations (SH0ES: Riess et al. 2016).

nate ways of weighting the galaxies, we repeat our analysis
with no luminosity weighting. These results are shown in
Fig. 6.

With uniform luminosity weights, we obtain a result on
a joint binary black hole estimate which is essentially flat
(thin orange line in Fig. 6). This can be understood as fol-
lows: 1) The out-of-catalog terms in Eq. (6) take into account
the lack of galaxies beyond the apparent magnitude thresh-
old mth of the catalog in a uniform way. 2) The photometric
redshift uncertainties calculation described in Section 3.4.1
performs the marginalization over the redshift uncertainty of
each galaxy by e↵ectively introducing more galaxies to wash
out any artificial structure introduced by the photometric red-
shifts. These two e↵ects make the galaxy catalog appear

quite uniform, and with the lack of luminosity weights any
remaining structure in the catalog is e↵ectively washed out.
With luminosity weights we give more probability to galax-
ies which are more luminous, retaining the structure of the
catalog even after the addition of out-of-catalog terms and
marginalization over photometric redshift uncertainties. This
is also in agreement with our expectations from Fishbach
et al. (2019) and Gray et al. (2019), where weighting by lu-
minosities enhance the features in the posterior distribution
coming from the galaxy catalog.

5.3. Photometric measurement of redshift

Systematic e↵ects due to the photometric measurement of
redshift are smaller than current statistical uncertainties. Us-
ing alternate Schechter function parameters, and choosing lu-
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bits (hence waveforms) around an object scale with the
inverse of its mass, and also involve its dimensionless spin
¬. The orbital frequency !orb as measured at infinity of a
circular, equatorial orbit at radius r (in Boyer-Lindquist
coordinates) is given by [24]
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For example, around a Schwarzschild black hole (¬=
0) the quadrupole gravitational wave frequency at the
innermost stable circular orbit (ISCO, which is at r =
6GM/c2) is hence equal to fGW = 4.4(MØ /M) kHz, while
for an extremal Kerr black hole (¬ = 1) the orbital fre-
quency at innermost stable circular orbit (r = GM/c2)
is !orb = c3/2GM , and the quadrupole gravitational fre-
quency is fGW = c3/2ºGM = 32(MØ /M) kHz. For a gravi-
tational wave from the final plunge, the highest expected
frequency is approximately the frequency from the light
ring (LR), as nothing physical is expected to orbit faster
than light6, and as waves originating within the light ring
encounter an effective potential barrier at the light ring
going out [25–29] . The light ring is at

rLR = 2G M
c2

µ
1+cos

µ
2
3

cos°1(°¬)
∂∂

. (17)

This radius is 3GM/c2 for a Schwarzschild black hole,
while for a spinning Kerr black hole, as the spin¬ increases
the light ring radius decreases. For an extremal Kerr black
hole it coincides with the innermost stable circular orbit
at GM/c2. The maximal gravitational wave frequency for
a plunge into m1 is then 67 Hz.

Because we see gravitational wave emission from or-
bital motion at frequencies much higher than this max-
imal value, with or without spin, such a system is ruled
out. Hence even the lighter of the masses must be at least
4.76 MØ > 3 MØ, beyond the maximum observed mass of
neutron stars.

4.6 Possible redshift of the masses – a constraint
from the luminosity

Gravitational waves are stretched by the expansion of the
Universe as they travel across it. This increases the wave-
length and decreases the frequency of the waves observed

6 NR has also shown that hypothesized frequency up-
conversions, due to nonlinear GR effects, are in fact absent
[10–12]

on Earth compared to their values when emitted. The
same effect accounts for the redshifting of photons from
distant objects. The impact of this on the gravitational
wave phasing corresponds to a scaling of the masses as
measured on Earth; dimensional analysis of Eq. 7 shows
that the source frame masses are smaller by (1+z) relative
to the detector frame, where z is the redshift. Direct in-
spection of the detector data yields mass values from the
red-shifted waves. How do these differ from their values
at the source? In the next section, we estimate the dis-
tance to the source and hence the redshift, by relating the
amplitude and luminosity of the gravitational wave from
the merger to the observed strain and flux at the detector.
The redshift is found to be z ∑ 0.1, so the detector- and
source-frame masses differ by less than of order 10%.

5 Luminosity and distance

Basic physics arguments also provide estimates of the
peak gravitational wave luminosity of the system, its dis-
tance from us, and the total energy radiated in gravita-
tional waves.

As the two objects merge and create gravitational
waves , the strain can be at most h ª 1, at a radius
of the order of the Schwarzschild radius of the system
R ª 100 km. (Here h denotes the typical size of a com-
ponent of hi j .) As shown in Fig. 1, the measured strain
peaks at h

ØØ
max ª 10°21. Since the amplitude decreases as

h ª R/dL (with dL the luminosity distance), the bound

dL ∑ 1021 £100 km ª 3 Gpc . (18)

is obtained.
We can obtain a more accurate distance estimate

based on the luminosity, because the gravitational wave
luminosity from a binary inspiral has an almost univer-
sal peak value. This can be seen from naive dimensional
analysis of the quadrupole formula, which gives a lumi-
nosity L ª G

c5 M 2r 4!6, with ! ª c/r and r ª GM/c2, and
M!ª c3/G for the final tight orbit. Together this gives the
Planck luminosity 7 L ª LPlanck = c5/G . However, a closer
look (Eq. 25) shows the prefactor could be approximated
by that of a similar-mass system ( 32

5

° µ
M

¢2 ª 0.4). Also, anal-
ysis of a small object falling unto a Schwarzschild black

7 The “Planck luminosity” c5/G has been proposed as the upper
limit on the luminosity of any physical system [30–32]. Gib-
bons [33] has suggested that c5/4G be called the “Dyson
luminosity” in honor of the physicist Freeman Dyson and be-
cause it is a classical quantity that does not contain fl.

8 Copyright line will be provided by the publisher
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A rough luminosity

• By Setting  

• By dimensional analysis of the quadrupole formula 

• We get the following universal approximation 

• Hence, to within factors of a few, all CBC events are equally luminous (3 x 1056 
ergs/sec) since the mass sets both the characteristic energy and time scale of the 
event. 

• However, a more slightly refined analysis gives
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bits (hence waveforms) around an object scale with the
inverse of its mass, and also involve its dimensionless spin
¬. The orbital frequency !orb as measured at infinity of a
circular, equatorial orbit at radius r (in Boyer-Lindquist
coordinates) is given by [24]
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For example, around a Schwarzschild black hole (¬=
0) the quadrupole gravitational wave frequency at the
innermost stable circular orbit (ISCO, which is at r =
6GM/c2) is hence equal to fGW = 4.4(MØ /M) kHz, while
for an extremal Kerr black hole (¬ = 1) the orbital fre-
quency at innermost stable circular orbit (r = GM/c2)
is !orb = c3/2GM , and the quadrupole gravitational fre-
quency is fGW = c3/2ºGM = 32(MØ /M) kHz. For a gravi-
tational wave from the final plunge, the highest expected
frequency is approximately the frequency from the light
ring (LR), as nothing physical is expected to orbit faster
than light6, and as waves originating within the light ring
encounter an effective potential barrier at the light ring
going out [25–29] . The light ring is at
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This radius is 3GM/c2 for a Schwarzschild black hole,
while for a spinning Kerr black hole, as the spin¬ increases
the light ring radius decreases. For an extremal Kerr black
hole it coincides with the innermost stable circular orbit
at GM/c2. The maximal gravitational wave frequency for
a plunge into m1 is then 67 Hz.

Because we see gravitational wave emission from or-
bital motion at frequencies much higher than this max-
imal value, with or without spin, such a system is ruled
out. Hence even the lighter of the masses must be at least
4.76 MØ > 3 MØ, beyond the maximum observed mass of
neutron stars.

4.6 Possible redshift of the masses – a constraint
from the luminosity

Gravitational waves are stretched by the expansion of the
Universe as they travel across it. This increases the wave-
length and decreases the frequency of the waves observed

6 NR has also shown that hypothesized frequency up-
conversions, due to nonlinear GR effects, are in fact absent
[10–12]

on Earth compared to their values when emitted. The
same effect accounts for the redshifting of photons from
distant objects. The impact of this on the gravitational
wave phasing corresponds to a scaling of the masses as
measured on Earth; dimensional analysis of Eq. 7 shows
that the source frame masses are smaller by (1+z) relative
to the detector frame, where z is the redshift. Direct in-
spection of the detector data yields mass values from the
red-shifted waves. How do these differ from their values
at the source? In the next section, we estimate the dis-
tance to the source and hence the redshift, by relating the
amplitude and luminosity of the gravitational wave from
the merger to the observed strain and flux at the detector.
The redshift is found to be z ∑ 0.1, so the detector- and
source-frame masses differ by less than of order 10%.

5 Luminosity and distance

Basic physics arguments also provide estimates of the
peak gravitational wave luminosity of the system, its dis-
tance from us, and the total energy radiated in gravita-
tional waves.

As the two objects merge and create gravitational
waves , the strain can be at most h ª 1, at a radius
of the order of the Schwarzschild radius of the system
R ª 100 km. (Here h denotes the typical size of a com-
ponent of hi j .) As shown in Fig. 1, the measured strain
peaks at h
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max ª 10°21. Since the amplitude decreases as

h ª R/dL (with dL the luminosity distance), the bound

dL ∑ 1021 £100 km ª 3 Gpc . (18)

is obtained.
We can obtain a more accurate distance estimate

based on the luminosity, because the gravitational wave
luminosity from a binary inspiral has an almost univer-
sal peak value. This can be seen from naive dimensional
analysis of the quadrupole formula, which gives a lumi-
nosity L ª G

c5 M 2r 4!6, with ! ª c/r and r ª GM/c2, and
M!ª c3/G for the final tight orbit. Together this gives the
Planck luminosity 7 L ª LPlanck = c5/G . However, a closer
look (Eq. 25) shows the prefactor could be approximated
by that of a similar-mass system ( 32
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7 The “Planck luminosity” c5/G has been proposed as the upper
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bons [33] has suggested that c5/4G be called the “Dyson
luminosity” in honor of the physicist Freeman Dyson and be-
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bits (hence waveforms) around an object scale with the
inverse of its mass, and also involve its dimensionless spin
¬. The orbital frequency !orb as measured at infinity of a
circular, equatorial orbit at radius r (in Boyer-Lindquist
coordinates) is given by [24]

!orb =
p

GM

r 3/2 +¬
°p

GM/c
¢3 = c3

GM

√

¬+
µ

c2r
GM

∂3/2!°1

. (16)

For example, around a Schwarzschild black hole (¬=
0) the quadrupole gravitational wave frequency at the
innermost stable circular orbit (ISCO, which is at r =
6GM/c2) is hence equal to fGW = 4.4(MØ /M) kHz, while
for an extremal Kerr black hole (¬ = 1) the orbital fre-
quency at innermost stable circular orbit (r = GM/c2)
is !orb = c3/2GM , and the quadrupole gravitational fre-
quency is fGW = c3/2ºGM = 32(MØ /M) kHz. For a gravi-
tational wave from the final plunge, the highest expected
frequency is approximately the frequency from the light
ring (LR), as nothing physical is expected to orbit faster
than light6, and as waves originating within the light ring
encounter an effective potential barrier at the light ring
going out [25–29] . The light ring is at
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This radius is 3GM/c2 for a Schwarzschild black hole,
while for a spinning Kerr black hole, as the spin¬ increases
the light ring radius decreases. For an extremal Kerr black
hole it coincides with the innermost stable circular orbit
at GM/c2. The maximal gravitational wave frequency for
a plunge into m1 is then 67 Hz.

Because we see gravitational wave emission from or-
bital motion at frequencies much higher than this max-
imal value, with or without spin, such a system is ruled
out. Hence even the lighter of the masses must be at least
4.76 MØ > 3 MØ, beyond the maximum observed mass of
neutron stars.

4.6 Possible redshift of the masses – a constraint
from the luminosity

Gravitational waves are stretched by the expansion of the
Universe as they travel across it. This increases the wave-
length and decreases the frequency of the waves observed

6 NR has also shown that hypothesized frequency up-
conversions, due to nonlinear GR effects, are in fact absent
[10–12]

on Earth compared to their values when emitted. The
same effect accounts for the redshifting of photons from
distant objects. The impact of this on the gravitational
wave phasing corresponds to a scaling of the masses as
measured on Earth; dimensional analysis of Eq. 7 shows
that the source frame masses are smaller by (1+z) relative
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spection of the detector data yields mass values from the
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tance to the source and hence the redshift, by relating the
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The redshift is found to be z ∑ 0.1, so the detector- and
source-frame masses differ by less than of order 10%.
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R ª 100 km. (Here h denotes the typical size of a com-
ponent of hi j .) As shown in Fig. 1, the measured strain
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is obtained.
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hole suggests M ª 1
6 c2rISCO/G and !r ª 0.5c. Taken to-

gether with the correct exponents, L acquires a factor
0.4£ 6°2 £ 0.56 ª 0.2£ 10°3. While the numerical value
may change by a factor of a few with the mass specific
ratio or spins, we can treat its order of magnitude as uni-
versal.

Using Eq. 5 we relate the luminosity of gravitational
waves to their strain h at luminosity distance dL ,

L ª
c3 d 2

L

4G

ØØḣ
ØØ2 ª c5

4G

√
!GWdLh

ØØ
max

c

!2

. (19)

Thus we have 0.2£10°3 ª 1
4

°
!GWdLh

ØØ
max/c

¢2, and we can
estimate the distance from the change of the measured
strain in time over the cycle at peak amplitude, as

dL ª 45 Gpc

√
Hz

fGW
ØØ
max

!√
10°21

h
ØØ
max

!

, (20)

which for GW150914 gives dL ª 300 Mpc. This distance
corresponds to a redshift of z ∑ 0.1, and so does not sub-
stantially affect any of the conclusions. For a different
distance-luminosity calculation based only on the strain
data (reaching a similar estimate), see [34].

Using the orbital energy Eorb (as defined in App. A)
we may also estimate the total energy radiated as gravi-
tational waves during the system’s evolution from a very
large initial separation (where E i

orb ! 0) down to a sep-
aration r . For GW150914, using m1 ª m2 ª 35MØ and
r ª R = 350km (Eq. 9),

EGW = E i
orb °E f

orb = 0°
µ
°GMµ

2R

∂
ª 3MØ c2. (21)

This quantity should be considered an estimate for a lower
bound on the total emitted energy (as some energy is
emitted in the merger and ringdown); compare with the
exact calculations in [1–3].

We note that the amount of energy emitted in this
event is remarkable. During it’s ten-billion-year lifetime,
our sun is expected to convert less than 1% of its mass
into light and radiation. During the peak of its emission,
GW150914 emitted about 23 orders of magnitude more
power than this, in the form of gravitational waves.

6 Conclusions

A lot of insight can be obtained by applying these ba-
sic physics arguments to the observed strain data of
GW150914. These show the system that produced the
gravitational wave was a pair of inspiraling black holes
that approached very closely before merging. The system

is seen to settle down, most likely to a single black hole.
Simple arguments can also give us information about the
system’s distance and basic properties (for a related phe-
nomenological approach see [35]).

These arguments will not work for every signal, for in-
stance if the masses are too low to safely rule out a neutron
star constituent as done in Sec. 4.5, but should be useful
for systems similar to GW150914. There has already been
another gravitational wave detection, GW151226 [6, 36],
whose amplitude is smaller and therefore cannot be seen
in the strain data without application of more advanced
techniques.

Such techniques, combining analytic and numerical
methods, can give us even more information, and we en-
courage the reader to explore how such analyses and mod-
els have been used for estimating the parameters of the
system [2, 3], for testing and constraining the validity of
general relativity in the highly relativistic, dynamic regime
[4] and for the study of astrophysics based on this event
[5].

We hope that this paper will serve as an invitation to
the field, at the beginning of the era of gravitational wave
observations.

A Calculation of gravitational radiation
from a binary system

Here we outline the calculation of the energy a binary sys-
tem emits in gravitational waves and the emitted energy’s
effect on the system.

First we calculate the quadrupole moment Qi j of the
system’s mass distribution. We use a Cartesian coordinate
system x = (x1, x2, x3) = (x, y, z) whose origin is the center-
of-mass, with r the radial distance from the origin. ±i j =
diag(1,1,1) is the Kronecker-delta and Ω(x) denotes the
mass density. Then

Qi j =
Z

d3xΩ(x)
°
xi x j °

1
3

r 2±i j
¢

(22)
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where the second equality holds for a system of two bodies
A 2 {1,2} in the x y-plane. In the simple case of a circular
orbit at separation r = r1+r2 and frequency f = !

2º , a little
trigonometry gives for each object (see Fig. 6)

Q A
i j (t ) =

mAr 2
A

2
Ii j , (24)
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bits (hence waveforms) around an object scale with the
inverse of its mass, and also involve its dimensionless spin
¬. The orbital frequency !orb as measured at infinity of a
circular, equatorial orbit at radius r (in Boyer-Lindquist
coordinates) is given by [24]

!orb =
p

GM

r 3/2 +¬
°p

GM/c
¢3 = c3

GM

√

¬+
µ

c2r
GM

∂3/2!°1

. (16)

For example, around a Schwarzschild black hole (¬=
0) the quadrupole gravitational wave frequency at the
innermost stable circular orbit (ISCO, which is at r =
6GM/c2) is hence equal to fGW = 4.4(MØ /M) kHz, while
for an extremal Kerr black hole (¬ = 1) the orbital fre-
quency at innermost stable circular orbit (r = GM/c2)
is !orb = c3/2GM , and the quadrupole gravitational fre-
quency is fGW = c3/2ºGM = 32(MØ /M) kHz. For a gravi-
tational wave from the final plunge, the highest expected
frequency is approximately the frequency from the light
ring (LR), as nothing physical is expected to orbit faster
than light6, and as waves originating within the light ring
encounter an effective potential barrier at the light ring
going out [25–29] . The light ring is at

rLR = 2G M
c2

µ
1+cos

µ
2
3

cos°1(°¬)
∂∂

. (17)

This radius is 3GM/c2 for a Schwarzschild black hole,
while for a spinning Kerr black hole, as the spin¬ increases
the light ring radius decreases. For an extremal Kerr black
hole it coincides with the innermost stable circular orbit
at GM/c2. The maximal gravitational wave frequency for
a plunge into m1 is then 67 Hz.

Because we see gravitational wave emission from or-
bital motion at frequencies much higher than this max-
imal value, with or without spin, such a system is ruled
out. Hence even the lighter of the masses must be at least
4.76 MØ > 3 MØ, beyond the maximum observed mass of
neutron stars.

4.6 Possible redshift of the masses – a constraint
from the luminosity

Gravitational waves are stretched by the expansion of the
Universe as they travel across it. This increases the wave-
length and decreases the frequency of the waves observed

6 NR has also shown that hypothesized frequency up-
conversions, due to nonlinear GR effects, are in fact absent
[10–12]

on Earth compared to their values when emitted. The
same effect accounts for the redshifting of photons from
distant objects. The impact of this on the gravitational
wave phasing corresponds to a scaling of the masses as
measured on Earth; dimensional analysis of Eq. 7 shows
that the source frame masses are smaller by (1+z) relative
to the detector frame, where z is the redshift. Direct in-
spection of the detector data yields mass values from the
red-shifted waves. How do these differ from their values
at the source? In the next section, we estimate the dis-
tance to the source and hence the redshift, by relating the
amplitude and luminosity of the gravitational wave from
the merger to the observed strain and flux at the detector.
The redshift is found to be z ∑ 0.1, so the detector- and
source-frame masses differ by less than of order 10%.

5 Luminosity and distance

Basic physics arguments also provide estimates of the
peak gravitational wave luminosity of the system, its dis-
tance from us, and the total energy radiated in gravita-
tional waves.

As the two objects merge and create gravitational
waves , the strain can be at most h ª 1, at a radius
of the order of the Schwarzschild radius of the system
R ª 100 km. (Here h denotes the typical size of a com-
ponent of hi j .) As shown in Fig. 1, the measured strain
peaks at h

ØØ
max ª 10°21. Since the amplitude decreases as

h ª R/dL (with dL the luminosity distance), the bound

dL ∑ 1021 £100 km ª 3 Gpc . (18)

is obtained.
We can obtain a more accurate distance estimate

based on the luminosity, because the gravitational wave
luminosity from a binary inspiral has an almost univer-
sal peak value. This can be seen from naive dimensional
analysis of the quadrupole formula, which gives a lumi-
nosity L ª G

c5 M 2r 4!6, with ! ª c/r and r ª GM/c2, and
M!ª c3/G for the final tight orbit. Together this gives the
Planck luminosity 7 L ª LPlanck = c5/G . However, a closer
look (Eq. 25) shows the prefactor could be approximated
by that of a similar-mass system ( 32

5

° µ
M

¢2 ª 0.4). Also, anal-
ysis of a small object falling unto a Schwarzschild black

7 The “Planck luminosity” c5/G has been proposed as the upper
limit on the luminosity of any physical system [30–32]. Gib-
bons [33] has suggested that c5/4G be called the “Dyson
luminosity” in honor of the physicist Freeman Dyson and be-
cause it is a classical quantity that does not contain fl.
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What do the masses tell us?

• The most sensitive feature 
in determining the mass of a 
black hole is the metallicity 
of the star, Z. 

• Low metallicity stars 
typically have less stellar 
wind allowing the progenitor 
star to maintain a higher 
mass. 

• GW150914 comprised the 
heaviest known* black-hole 
(~35Msun) and indicates a 
possible low metallicity.

qualitative framework. Quantitatively, Belczynski et al. (2010a)
and later Mapelli et al. (2013) and Spera et al. (2015) showed that
adopting the latest wind prescriptions(Vink 2008) significantly
increases the stellar mass at core collapse and thus the maximum
BH mass that can form from single stars, although the exact
relation between initial mass and final BH mass depends on the
details of the wind prescription (see Figure 1).

Stellar rotation can lead to angular momentum transport and
extra mixing in the stellar interiors. In extreme cases, the
evolution of the star can be significantly altered, avoiding
expansion of the star into a giant (Maeder 1987). It has been
proposed that rapid rotation, especially at low metallicities,
where winds and associated angular momentum losses are
weaker, or in close binaries, where tides may replenish the
angular momentum, may play a significant role in the
formation of more massive BHs(de Mink et al. 2009; Mandel
& de Mink 2016; Marchant et al. 2016). Nevertheless, there are
no calculations that find BHs more massive than 30 M: unless
the metallicity is lower than Z:.

Stellar properties at core collapse and the ensuing compact-
remnant masses have also been shown to depend, albeit much more
weakly, on the treatment of microphysics in stellar structure and
evolution codes, especially on assumptions regarding convective
overshooting and resultant mixing(Jones et al. 2015). Finally, Fryer
et al. (2012) and Spera et al. (2015) investigate how basic properties
of the SN explosion might affect remnant masses at different
metallicities. They show that remnant masses in excess of ;12M:
at Z: (;30 M:at 1/100 Z:) are formed through complete
collapse of their progenitors. Therefore, the masses of BHs in
“heavy” BBH mergers only carry information about the evolution
leading up to the collapse and not about the SN mechanism.

The measured masses of the merging BHs in GW150914
show that stellar-mass BHs as massive as 32 M: (the lower
limit on the more massive BH at 90% credible level) can form
in nature. Given our current understanding of BH formation
from massive stars, using the latest stellar wind, rotation, and
metallicity models, we conclude that the GW150914 BBH most
likely formed in a low-metallicity environment: below ;1/2 Z:
and possibly below ;1/4 Z:(Belczynski et al. 2010a; Mapelli
et al. 2013; Spera et al. 2015).

It is, in principle, possible that “heavy” BHs are formed
through indirect paths that do not require a low metallicity, but
we consider this very unlikely. For example, the formation of
“heavy” BHs through the dynamical mergers of lower-mass
BHs with massive stars in young clusters has been considered.
However, these models adopt the optimistic assumption that in
such mergers, even for grazing collisions, all of the mass is
retained, leading to significant BH mass growth(Mapelli &
Zampieri 2014; Ziosi et al. 2014). Stellar collisions in dense
stellar environments (see Portegies Zwart et al. 1999) could
potentially produce stars massive enough to form “heavy” BHs,
but these objects are also subject to strong winds and intense
mass loss unless they are stars of low metallicity (e.g.,
Glebbeek et al. 2009). Finally, formation of “heavy” BHs from
the mergers of lower-mass BHs in clusters is unlikely because
most dynamically formed merging BBHs are ejected from the
host cluster before merger (Rodriguez et al. 2015, see their
Figure 2).

3.3. BBH Masses from Isolated Binary Systems

The fact that the majority of massive stars are members of
binary systems with a roughly flat mass-ratio distribution
(Kobulnicky & Fryer 2007; Sana et al. 2012; Kobulnicky et al.
2014) provides the opportunity for BBH formation in isolated
binary systems. In that case, the masses of BHs depend not
only on the initial mass of the star and metallicity, but also on
any binary interactions. The development of binary population
models focused on the formation of double compact objects
goes back to Kornilov & Lipunov (1983) and Dewey & Cordes
(1987), but the first population models to account for BBH
formation appeared a decade later starting with Tutukov &
Yungelson (1993). Several groups have explored different
aspects of BBH formation from isolated binaries at varying
levels of detail(many reviewed by Kalogera et al. 2007;
Vanbeveren 2009; Postnov & Yungelson 2014). Models find
that BBH formation typically progresses through the following
steps: (i) stable mass transfer between two massive stars,
although potentially non-conservative (i.e., with mass and
angular momentum losses from the binary), (ii) the first core
collapse and BH formation event, (iii) a second mass transfer

Figure 1. Left: dependence of maximum BH mass on metallicity Z, with Z 0.02�: for the old (strong) and new (weak) massive-star winds (Figure 3 from Belczynski
et al. 2010a). Right: compact-remnant mass as a function of zero-age main-sequence (ZAMS; i.e., initial) progenitor mass for a set of different (absolute) metallicity
values (Figure 6 from Spera et al. 2015). The masses for GW150914 are indicated by the horizontal bands.
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The effect of spin

• We define the dimensionless spin parameter 

• This modifies the gravitational radii (as well as orbital dynamics) such 
that the radius of an extremal Kerr black hole is  

• Hence we can get a lower limit on the Newtonian separation of 2 
black holes 

• The orbital compactness (with eccentricity, unequal masses, spin) is

LIGO-Virgo Collaboration, arXiv:1608.01940 (2016) 
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4.2 The case of unequal masses

It is easy to see that the compactness ratio R also gets
smaller with increasing mass-ratio, as that implies a
higher total mass for the observed value of the Newtonian
order chirp mass. To see this explicitly, we express the
component masses and total mass in terms of the chirp
mass M and the mass ratio q , as m1 = M (1+ q)1/5q2/5,
m2 =M (1+q)1/5q°3/5, and

M = m1 +m2 =M (1+q)6/5q°3/5. (10)

The compactness ratio R is the ratio of the orbital sep-
aration R to the sum of the Schwarzschild radii of the
two component masses, rSchwarz(M) = rSchwarz(m1) +
rSchwarz(m2), giving

R = R
rSchwarz(M)

= c2

2(!Kep
ØØ
maxGM)2/3

= c2

2(º fGW
ØØ
maxGM )2/3

q2/5

(1+q)4/5
º 3.0 q2/5

(1+q)4/5
. (11)

This quantity is plotted in Fig. 5, which clearly shows that
for mass ratios q > 1 the compactness ratio decreases: the
separation between the objects becomes smaller when
measured in units of the sum of their Schwarzschild radii.
Thus, for a given chirp mass and orbital frequency, a sys-
tem composed of unequal masses is more compact than
one composed of equal masses.

One can also place an upper limit on the mass ratio q ,
thus a lower bound on the smaller mass m2, based purely
on the data. This bound arises from minimal compact-
ness: we see from the compactness ratio plot in Fig. 5 that
beyond the mass ratio of q ª 13 the system becomes so
compact that it will be within the Schwarzschild radii of
the combined mass of the two bodies. This gives us a limit
for the mass of the smaller object m2 ∏ 11MØ . As this is
3–4 times more massive than the neutron star limit, both
bodies are expected to be black holes .

4.3 The effect of objects’ spins

The third assumption we relax concerns the spins of the
objects. For a mass m with spin angular momentum S we
define the dimensionless spin parameter

¬= c
G

S
m2 . (12)

The spins of m1 and m2 modify their gravitational radii as
described in this subsection, as well as the orbital dynam-
ics, as described in the next subsection.

Figure 5 The compactness ratio of the separation between
the two objects to their Schwarzschild radii sum as a function
of mass ratio and a range of eccentricities (0 ∑ e ∑ 0.8). The
dashed line describes both zero eccentricity and e = 0.57,
the bottom boundary describes the minimum compactness (at
e = 0.27), and the upper boundary is at the very high (arbitrary)
value of e = 0.8. As shown in Eq. 11, the compactness ratio
decreases as the mass ratio increases, so the argument given
in Sec. 3 also applies for unequal masses. We note that (for
e = 0) beyond mass ratio of q ª 13 the system becomes more
compact than the sum of the component Schwarzschild radii.

The smallest radius a non-spinning object (¬ = 0)
could have without being a black hole is its Schwarzschild
radius. Allowing the objects to have angular momentum
(spin) pushes the limit down by a factor of two, to the
radius of an extremal Kerr black hole (for which ¬ = 1),
rEK(m) = 1

2 rSchwarz(m) = Gm/c2. As this is linear in the
mass, and summing radii linearly, we obtain a lower limit
on the Newtonian separation of two adjacent non-black
hole bodies of total mass M is

rEK(m1)+rEK(m2) = 1
2

rSchwarz(M) = G M
c2 º 1.5

µ
M

MØ

∂
km.

(13)

The compactness ratio can also be defined in relation to
rEK rather than rSchwarz, which is at most a factor of two
larger than for non-spinning objects.

We may thus constrain the orbital compactness ratio
(now accounting for eccentricity, unequal masses, and
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4.2 The case of unequal masses

It is easy to see that the compactness ratio R also gets
smaller with increasing mass-ratio, as that implies a
higher total mass for the observed value of the Newtonian
order chirp mass. To see this explicitly, we express the
component masses and total mass in terms of the chirp
mass M and the mass ratio q , as m1 = M (1+ q)1/5q2/5,
m2 =M (1+q)1/5q°3/5, and

M = m1 +m2 =M (1+q)6/5q°3/5. (10)

The compactness ratio R is the ratio of the orbital sep-
aration R to the sum of the Schwarzschild radii of the
two component masses, rSchwarz(M) = rSchwarz(m1) +
rSchwarz(m2), giving

R = R
rSchwarz(M)

= c2

2(!Kep
ØØ
maxGM)2/3

= c2

2(º fGW
ØØ
maxGM )2/3

q2/5

(1+q)4/5
º 3.0 q2/5

(1+q)4/5
. (11)

This quantity is plotted in Fig. 5, which clearly shows that
for mass ratios q > 1 the compactness ratio decreases: the
separation between the objects becomes smaller when
measured in units of the sum of their Schwarzschild radii.
Thus, for a given chirp mass and orbital frequency, a sys-
tem composed of unequal masses is more compact than
one composed of equal masses.

One can also place an upper limit on the mass ratio q ,
thus a lower bound on the smaller mass m2, based purely
on the data. This bound arises from minimal compact-
ness: we see from the compactness ratio plot in Fig. 5 that
beyond the mass ratio of q ª 13 the system becomes so
compact that it will be within the Schwarzschild radii of
the combined mass of the two bodies. This gives us a limit
for the mass of the smaller object m2 ∏ 11MØ . As this is
3–4 times more massive than the neutron star limit, both
bodies are expected to be black holes .

4.3 The effect of objects’ spins

The third assumption we relax concerns the spins of the
objects. For a mass m with spin angular momentum S we
define the dimensionless spin parameter

¬= c
G

S
m2 . (12)

The spins of m1 and m2 modify their gravitational radii as
described in this subsection, as well as the orbital dynam-
ics, as described in the next subsection.

Figure 5 The compactness ratio of the separation between
the two objects to their Schwarzschild radii sum as a function
of mass ratio and a range of eccentricities (0 ∑ e ∑ 0.8). The
dashed line describes both zero eccentricity and e = 0.57,
the bottom boundary describes the minimum compactness (at
e = 0.27), and the upper boundary is at the very high (arbitrary)
value of e = 0.8. As shown in Eq. 11, the compactness ratio
decreases as the mass ratio increases, so the argument given
in Sec. 3 also applies for unequal masses. We note that (for
e = 0) beyond mass ratio of q ª 13 the system becomes more
compact than the sum of the component Schwarzschild radii.
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where in the last step we used M = 30MØ and fGW
ØØ
max =

150 Hz. This constrains the constituents to under 3.4 (1.7)
times their extremal Kerr (Schwarzschild) radii, making
them highly compact. The compact arrangement is illus-
trated in Fig. 4.

We can also derive an upper limit on the value of the
mass ratio q , from the constraint that the compactness
ratio must be larger than unity. This is because, for a fixed
value of the chirp mass M and a fixed value of fGW

ØØ
max,

the compactness ratio R decreases as the mass ratio q
increases. Thus, the constraint R ∏ 1, puts a limit on the
maximal possible q and thus on the maximum total mass
Mmax,
µ

Mmax

M

∂
' 3.43/2 £26/5 ' 14.4 , (15)

which for GW150914 implies Mmax ' 432MØ (and q ' 83).
This again forces the smaller mass to be at least 5MØ –
significantly above the neutron star mass limit.

The conclusion is the same as in the equal-mass or
non-spinning case: both objects must be black holes.

4.4 Newtonian dynamics and compactness

At this point we may also examine the applicability of
Newtonian dynamics. The dynamics will diverge from the
Newtonian approximation when the relative velocity v
approaches the speed of light or when the gravitational
energy becomes large compared to the rest mass energy.
For a binary system these two limits coincide and may
be quantified by the post-Newtonian (PN) parameter [20]
x ª (v/c)2 ª G M/

°
c2 rsep

¢
. Strictly speaking, x = 0 corre-

sponds to the 0PN approximation, where dynamics are
Newtonian and gravitational wave emission is described
exactly by the quadrupole formula (Eq. 5). Corrections to
these may be enumerated by their PN order (power of the
PN parameter x).

The expression for the dimensionless PN parameter
includes the Schwarzschild radius, so x can be immedi-
ately recast in terms of the compactness ratio, x ª 2/R.
As Newtonian dynamics holds when x is small, the New-
tonian approximation is valid down to compactness R
of order of a few. Reductio ad absurdum then shows that
the orbit must be compact: if one assumes that the orbit

is non-compact, then the Newtonian approximation is
fully valid and leads to the conclusion that the orbit is
compact.

If either of the bodies is rapidly spinning, their rota-
tional velocity may also approach the speed of light, mod-
ifying the Newtonian dynamics, effectively adding spin-
orbit and spin-spin interactions. However, these are also
suppressed with a power of the PN parameter (1.5PN and
2PN, respectively [20–22]), and thus are significant only
for compact orbits.

The same reasoning may also be applied to the use
of the quadrupole formula [14] and/or to using the co-
ordinate R for the comparison of the Keplerian separa-
tion to the corresponding compact object radii (see Fig. 4
and its caption), as both of these are not entirely general
and might be inaccurate. The separations are also sub-
ject to some arbitrariness due to gauge freedom. However
here too, the errors in using these coordinates are non-
negligible only in the orbits very close to a black hole, so
again this argument does not refute our conclusions.

4.5 Is the chirp mass well measured? – constraints
on the individual masses

As we are analyzing the final cycles before merger, having
accepted that the bodies were compact, one might still
ask whether Eq. 7 correctly describes the chirp mass in
the non-Newtonian regime [23]. In fact for the last orbits,
it does not: while in Newtonian dynamics stable circular
orbits may exist all the way down to merger, in general
relativity close to the merger of compact objects (at least
when one of the objects is much larger than the other)
the trajectory becomes a plunge. The changes in orbital
separation and orbital frequency in the final revolutions
are thus not driven by the gravitational wave emission
given by Eq. 7. This is why we used fGW

ØØ
max at the peak,

rather than fGW
ØØ
fin.

We shall now constrain the individual masses based on
fGW

ØØ
fin, for which we do not need the Newtonian approxi-

mation at the late stage. No neutron stars have been ob-
served above 3MØ; we shall rely on an even more conser-
vative neutron star mass upper bound at 4.76MØ, a value
chosen because given M from the early visible cycles, in
order for the smaller mass m2 to be below this thresh-
old, m1 must be at least 476MØ, which implies q ∏ 100. Is
such a high q possible with the data that we have? Such
a high mass ratio suggests a treatment of the system as
an extremal mass ratio inspiral (EMRI), where the smaller
mass approximately follows a geodesic orbit around the
larger mass (m1 ª M). The frequencies of test-particle or-
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Really? Black-holes?

• We’ve shown that the system must have a compactness ratio <3.4. 

• Therefore the Newtonian density scale is 

• This is less dense than NS densities but… again using the approximation 

• We can derive the following limit 

• From which it follows that the max mass is 432M⊙ with q=83. Leading to a 
lowest component mass of 5M⊙, far greater than the max NS mass.
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Figure 6 A two-body system, m1 and m2 orbiting in the x y-
plane around their center of mass.

where Ixx = cos(2!t)+ 1
3 , Iy y = 1

3 °cos(2!t), Ix y = Iy x =
sin(2!t) and Izz = ° 2

3 . Combining we find Qi j (t) =
1
2µr 2Ii j , where we have used the standard reduced mass
µ= m1m2/M , and the gravitational wave luminosity from
Eq. 5 is

d
dt

EGW = 32
5

G
c5µ

2r 4!6. (25)

This energy loss drains the orbital energy Eorb = °GMµ
2r ,

thus d
dt Eorb = GMµ

2r 2 ṙ =° d
dt EGW.

Using Kepler’s third law r 3 =GM/!2 and its derivative
ṙ =° 2

3 r !̇/! we can substitute for all the r ’s and obtain

!̇3 =
µ

96
5

∂3 !11

c15 G5µ3M 2 =
µ

96
5

∂3 !11

c15 (GM )5 , (26)

having defined the chirp mass M =
°
µ3M 2¢1/5.

We can see that Eq. 26 describes the evolution of
the system as an inspiral: the orbital frequency goes up
(“chirps”), while by Kepler’s Law the orbital separation
shrinks.

A.1 Gravitational radiation from a different rotating
system

A rising gravitational wave amplitude can accompany a
rise in frequency in other rotating systems, evolving under
different mechanisms. An increase in frequency means
the system rotates faster and faster, so unless it gains
angular momentum, the system’s characteristic length

r (t ) should be decreasing. For a system not driven by the
loss of energy and angular momentum to gravitational
waves, rapidly losing angular momentum is also difficult,
thus the system should conserve its angular momentum
L =ÆMr 2!, and so !/ L/r 2.

The quadrupole formula (Eq. 4) then indicates the
gravitational wave strain amplitude should follow the
second time derivative of the quadrupole moment, h /
M r 2 w2 / L!.

Thus we see that for a system not driven by emission
of gravitational waves, as the characteristic system size r
shrinks, both its gravitational wave frequency and ampli-
tude grow, but remain proportional to each other. This is
inconsistent with the data of GW150914 (Figs. 1, 2), which
show the amplitude only grows by a factor of about 2 while
the frequency !(t ) grows by at least a factor of 5.

B Possibilities for massive, compact
objects

We are considering astrophysical objects with mass scale
m ª 35MØ , which are constrained to fit into a radius R
such that the compactness ratio obeys R = c2 R

G m . 3.4.
This produces a scale for their Newtonian density,

Ω ∏ m
(4º/3)R3 = 3£1015

µ
3.4
R

∂3 µ
35MØ

m

∂2 kg
m3 , (27)

where equality is attained for a uniform object. This is a
factor of 106 more dense than white dwarfs, so we can rule
out objects supported by electron degeneracy pressure,
as well as any main-sequence star, which are less dense.
While this density is a factor of ª 102 less dense than neu-
tron stars, these bodies exceed the maximum neutron
star mass by an order of magnitude, as the neutron star
limit is ª 3MØ (3.2 MØ in [37, 38], 2.9 MØ in [39]). A more
careful analysis of the frequency change, including tidal
distortions, would have undoubtedly required the bodies
to be even more compact in order to reach the final orbital
frequency. This would push these massive bodies even
closer to neutron-star density, thus constraining the equa-
tion of state into an even narrower corner. Thus, although
theoretically a compactness ratio as low as R = 4/3 is per-
mitted for uniform objects [40], we can conclude that the
data do show that if any of these objects were material
bodies, they would need to occupy an extreme, narrow
and heretofore unexplored and unobserved niche in the
stellar continuum. The likeliest objects with such mass
and compactness are black holes.
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bits (hence waveforms) around an object scale with the
inverse of its mass, and also involve its dimensionless spin
¬. The orbital frequency !orb as measured at infinity of a
circular, equatorial orbit at radius r (in Boyer-Lindquist
coordinates) is given by [24]
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For example, around a Schwarzschild black hole (¬=
0) the quadrupole gravitational wave frequency at the
innermost stable circular orbit (ISCO, which is at r =
6GM/c2) is hence equal to fGW = 4.4(MØ /M) kHz, while
for an extremal Kerr black hole (¬ = 1) the orbital fre-
quency at innermost stable circular orbit (r = GM/c2)
is !orb = c3/2GM , and the quadrupole gravitational fre-
quency is fGW = c3/2ºGM = 32(MØ /M) kHz. For a gravi-
tational wave from the final plunge, the highest expected
frequency is approximately the frequency from the light
ring (LR), as nothing physical is expected to orbit faster
than light6, and as waves originating within the light ring
encounter an effective potential barrier at the light ring
going out [25–29] . The light ring is at

rLR = 2G M
c2

µ
1+cos

µ
2
3

cos°1(°¬)
∂∂

. (17)

This radius is 3GM/c2 for a Schwarzschild black hole,
while for a spinning Kerr black hole, as the spin¬ increases
the light ring radius decreases. For an extremal Kerr black
hole it coincides with the innermost stable circular orbit
at GM/c2. The maximal gravitational wave frequency for
a plunge into m1 is then 67 Hz.

Because we see gravitational wave emission from or-
bital motion at frequencies much higher than this max-
imal value, with or without spin, such a system is ruled
out. Hence even the lighter of the masses must be at least
4.76 MØ > 3 MØ, beyond the maximum observed mass of
neutron stars.

4.6 Possible redshift of the masses – a constraint
from the luminosity

Gravitational waves are stretched by the expansion of the
Universe as they travel across it. This increases the wave-
length and decreases the frequency of the waves observed

6 NR has also shown that hypothesized frequency up-
conversions, due to nonlinear GR effects, are in fact absent
[10–12]

on Earth compared to their values when emitted. The
same effect accounts for the redshifting of photons from
distant objects. The impact of this on the gravitational
wave phasing corresponds to a scaling of the masses as
measured on Earth; dimensional analysis of Eq. 7 shows
that the source frame masses are smaller by (1+z) relative
to the detector frame, where z is the redshift. Direct in-
spection of the detector data yields mass values from the
red-shifted waves. How do these differ from their values
at the source? In the next section, we estimate the dis-
tance to the source and hence the redshift, by relating the
amplitude and luminosity of the gravitational wave from
the merger to the observed strain and flux at the detector.
The redshift is found to be z ∑ 0.1, so the detector- and
source-frame masses differ by less than of order 10%.

5 Luminosity and distance

Basic physics arguments also provide estimates of the
peak gravitational wave luminosity of the system, its dis-
tance from us, and the total energy radiated in gravita-
tional waves.

As the two objects merge and create gravitational
waves , the strain can be at most h ª 1, at a radius
of the order of the Schwarzschild radius of the system
R ª 100 km. (Here h denotes the typical size of a com-
ponent of hi j .) As shown in Fig. 1, the measured strain
peaks at h

ØØ
max ª 10°21. Since the amplitude decreases as

h ª R/dL (with dL the luminosity distance), the bound

dL ∑ 1021 £100 km ª 3 Gpc . (18)

is obtained.
We can obtain a more accurate distance estimate

based on the luminosity, because the gravitational wave
luminosity from a binary inspiral has an almost univer-
sal peak value. This can be seen from naive dimensional
analysis of the quadrupole formula, which gives a lumi-
nosity L ª G

c5 M 2r 4!6, with ! ª c/r and r ª GM/c2, and
M!ª c3/G for the final tight orbit. Together this gives the
Planck luminosity 7 L ª LPlanck = c5/G . However, a closer
look (Eq. 25) shows the prefactor could be approximated
by that of a similar-mass system ( 32

5

° µ
M

¢2 ª 0.4). Also, anal-
ysis of a small object falling unto a Schwarzschild black

7 The “Planck luminosity” c5/G has been proposed as the upper
limit on the luminosity of any physical system [30–32]. Gib-
bons [33] has suggested that c5/4G be called the “Dyson
luminosity” in honor of the physicist Freeman Dyson and be-
cause it is a classical quantity that does not contain fl.
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Universe as they travel across it. This increases the wave-
length and decreases the frequency of the waves observed

6 NR has also shown that hypothesized frequency up-
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tance from us, and the total energy radiated in gravita-
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of the order of the Schwarzschild radius of the system
R ª 100 km. (Here h denotes the typical size of a com-
ponent of hi j .) As shown in Fig. 1, the measured strain
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is obtained.
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while for a spinning Kerr black hole, as the spin¬ increases
the light ring radius decreases. For an extremal Kerr black
hole it coincides with the innermost stable circular orbit
at GM/c2. The maximal gravitational wave frequency for
a plunge into m1 is then 67 Hz.
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bital motion at frequencies much higher than this max-
imal value, with or without spin, such a system is ruled
out. Hence even the lighter of the masses must be at least
4.76 MØ > 3 MØ, beyond the maximum observed mass of
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Universe as they travel across it. This increases the wave-
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conversions, due to nonlinear GR effects, are in fact absent
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The redshift is found to be z ∑ 0.1, so the detector- and
source-frame masses differ by less than of order 10%.
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waves , the strain can be at most h ª 1, at a radius
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is obtained.
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Formation channels

• Possible BBH formation channels include: 
• Dynamical formation in a dense stellar environment (possibly assisted 

by gas drag in galactic nuclear disks). 
• Or isolated binary evolution  

• either the classical variant via a common-envelope phase (possibly 
from population III binaries).  

• or chemically homogeneous evolution in close tidally locked binaries. 
• All of these channels have been shown to be consistent with the 

GW150914 discovery. 
• The low masses of GW151226 are probably inconsistent with the 

chemically homogeneous evolution model. 
• A larger population (masses and spins) will help identify the correct 

channel(s).

LIGO-Virgo Collaboration, arXiv:1606.04856 (2016) 



Were there EM 
counterparts?

• The event time and location was 
shared with 63 teams of 
observers covering radio, 
optical, near-infrared, X-ray, and 
gamma-ray wavelengths with 
ground- and space-based 
facilities (multi-messenger 
astronomy). 


• As this event turned out to be a 
binary black hole merger, there is 
little expectation of a detectable 
electromagnetic signature.


• There was a reported Fermi 
GBM trigger for GW150914 
but…

18

Figure 3. Footprints of observations in comparison with the 50% and 90% credible levels of the initially distributed GW localiza-
tion maps. Radio fields are shaded red, optical/infrared fields are green, and XRT fields are blue circles. The all-sky Fermi GBM,
LAT, INTEGRAL SPI-ACS, and MAXI observations are not shown. Where fields overlap, the shading is darker. The initial cWB
localization is shown as thin black contour lines and the refined LIB localization as thick black lines. The inset highlights the
Swift observations consisting of a hexagonal grid and a selection of the a posteriori most highly ranked galaxies. The Schlegel
et al. (1998) reddening map is shown in the background to represent the Galactic plane. The projection is the same as in Fig. 2.

LIGO-Virgo Collaboration, arXiv:1602.08492 (2016) 



Too many to count

• The ensemble of all binary 
black hole mergers form an 
astrophysical stochastic 
background.


• This would inform us on the 
evolution of such binary 
systems over the history of the 
universe 


• This has implications for space 
based detectors (eLISA) and 
for ultra-low frequency waves 
detectable with pulsar timing 
arrays.
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FIG. 1. Expected sensitivity of the network of advanced LIGO and Virgo detectors to the Fiducial field model. Left panel:
Energy density spectra are shown in blue (solid for the total background; dashed for the residual background, excluding resolved
sources, assuming final advanced LIGO and Virgo [1, 2] sensitivity). The pink shaded region “Poisson” shows the 90% CL
statistical uncertainty, propagated from the local rate measurement, on the total background. The black power-law integrated
curves show the 1� sensitivity of the network expected for the two first observing runs O1 and O2, and for 2 years at the design
sensitivity in O5. (O3 and O4 are not significantly di↵erent than O5; see Table I.) If the astrophysical background spectrum
intersects a black line, it has expected SNR � 1. In both panels we assume a coincident duty cycle of 33% for O1 (actual) and
50% for all other runs (predicted). Right panel: Predicted SNR as a function of total observing time. The blue lines and pink
shaded region have the same interpretation as in the left panel. Each observing run is indicated by an improvement in the
LIGO-Virgo network sensitivity [35], which results in a discontinuity in the slope. The thresholds for SNR = 1, 3 (false-alarm
probability < 3⇥ 10�3) and 5 (false-alarm probability < 6⇥ 10�7) are indicated by horizontal lines.

trum for binary inspirals is an example. A power-law in-
tegrated curve is calculated by taking the locus of power-
law spectra that have expected SNR = 1, where [5]:

SNR =
3H2
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(4)
for a network of detectors i = 1, 2, · · · , n. Hence, if
the spectrum of an astrophysical background intersects
a black curve, then it has an expected SNR � 1. In Eq.
4, Pi(f) and Pj(f) are the one-sided strain noise power
spectral densities of two detectors; �ij(f) is the normal-
ized isotropic overlap reduction function [41, 42]; and T

is the accumulated coincident observation time. While
Eq. 4 is derived by assuming a Gaussian background [5],
it can also be applied to non-Gaussian backgrounds (with
signals that are clearly separated in time) such as the bi-
nary black hole background considered here [43]. The
di↵erent black curves shown in this plot illustrate the
improvement in expected sensitivity in the coming years.

Following [35, 39], we consider five di↵erent phases, de-
noted O1 to O5, corresponding to the first five observing
runs, summarized in Table I. For clarity, we show only
the O1, O2, and O5 power-law integrated curves since
the di↵erences between the projected sensitivities for O3,

O4, and O5 are relatively small. In Fig. 1b, we plot the
expected accumulated SNR for the Fiducial model as
a function of total observation time. For both the sen-
sitivity curves and the accumulated SNR, we assume a
coincident duty cycle for each pair of detectors of 33% for
O1 (actual) and 50% for all other runs (predicted). The
total background associated with the Fiducial model
could be identified with SNR = 3, corresponding to false
alarm probability < 3⇥10�3, after approximately 6 years
of observing. In the most optimistic scenario given by
statistical uncertainties, the total background could be
identified after 1.5 years with SNR = 3 and after approx-
imatively 2 years with SNR = 5, which is even before
design sensitivity is reached. It would take about 2 years
of observing to achieve SNR = 3 and about 3.5 years for
SNR = 5 for the optimistic residual background. The
most pessimistic case considered here is out of reach of
the advanced detector network but is in the scope of third
generation detectors.

Alternative Models — We now investigate the impact of
possible variations on the Fiducial model. We consider
the following alternatives:

• AltSFR di↵ers from the Fiducial model in as-
suming a di↵erent SFR proposed by Tornatore et
al. [44], who combined observations and simulations
at higher redshift; the formation rate is assumed

8

LIGO-Virgo Collaboration, arXiv:1602.03847 (2016) 



Problems

1. Show that an asymmetric mass ratio would lead to a 
more compact system. 

2. Derive an expression for the distance to a CBC event as 
a function of its frequency at peak strain and the peak 
strain. 

3. Show that ~3M⊙ of energy were emitted during the 
merger of GW150914. 

4. Repeat all calculations for GW151226 and LVT151012.



Conclusions

Extra things and a summary



What’s happening now?



GraceDB [https://gracedb.ligo.org]



GraceDB [https://gracedb.ligo.org]



Mobile alerts



Summary

• As the director of LIGO Lab put it “We did it! 
We detected gravitational waves!” (Dave 
Reitze) 

• Our very first discovery has provided the 
first observation of binary black holes. 

• Our 9 additional BBH and a BNS detection  
has proved that it wasn’t a fluke! 

• This is just the beginning of a completely 
new era of observational astronomy. 

• We are in a uniquely exciting time for 
gravitational research (LISA PathFinder, 
LIGO India, Pulsar Timing Arrays).

Albert Einstein 
Glasgow University

June 1933 
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A new spectrum



Interferometric 
detection



A global collaboration

• We have over 1000 members 
spread across 5 continents and 
over 100 institutions.



Glasgow’s role 

• Glasgow have played a pivotal 
role in this detection (laser 
stabilisation, suspension 
systems, thermal noise).

James Hough

What made you choose the field of gravita-

tional wave detection as a research topic?

I had just finished my PhD - this would be 

about 1971 - and pulsars had just been dis-

covered a few years before by Jocelyn Bur-

nell. So pulsars were very big. I had done 

my PhD in nuclear physics but I didn’t find 

it particularly exciting at the time. Ron 

What are your hopes and expectations for 

the future of gravitational wave astronomy?

I think we may have actually opened a new 

way to look at the Universe. It seems black 

holes are more ubiquitous than had been 

thought. We knew that most galaxies have a 

big one in their centers. It may even be nec-

essary for the evolution of galaxies as we 

see them to have a central black hole. One 

direction of research we now know about is 

the mass spectroscopy of black holes. This 

is interesting for both gravitational physics 

as well as astronomy. An important ques-

tion has now become the source of these 

stellar mass black holes: are they a relic of 

the formation of the first stars in the Uni-

verse or are they born in later times in rich 

clusters of stars?

If we can bring the detector to design sensitiv-

ity, we may well begin to see binary neutron 

star coalescences. These will teach us some-

thing about the nuclear interaction as well 

as astronomy. We should not forget about 

supernovae: gravitational waves will provide 

key information about the dynamics of the 

implosions that cannot be determined by any 

other means. And, there is good reason to 

expect surprises, we know so little about the 

dark (not electromagnetic) universe.

At some point with even more sensitive de-

tectors than Advanced LIGO we will be able 

to use gravitational wave sources to learn 

about cosmology. If there is a population of 

black holes extending to the time of the for-

mation of the earliest stars, it should be pos-

sible to map the geometry of the Universe 

by observing the same type of signals we 

have just uncovered at different distances.

Rainer Weiss is a cofounder of LIGO and emeritus 

Professor of Physics at MIT. The Gravitation and 

Cosmology group at MIT has been working on 

interferometric detection of gravitational waves 

since the late 1960s. The group has trained many 

of the scientists now working on LIGO.

Ron Drever (middle) with (left to right) Harry Ward, 

Jim Hough and Sheila Rowan. Ron started the gravi-

tational wave research effort in Glasgow in the 1970s. 

In 1984 he moved full time to Caltech where he co-

founded LIGO. Included in his many contributions are 

his work on resonant cavity systems and the epony-

mous Pound-Drever-Hall technique. Ron is delighted 

to send the LIGO team his congratulations and his 

best wishes for the ongoing work in the exploration of 

gravitational waves at this very exciting time.

Drever was here, and he thought we would 

detect x-rays from pulsars by looking at 

phase fluctuations in low frequency radio 

waves. So we set up an experiment to do 

that: to look at the phase of radio waves 

from a transmitter in Germany, and look-

ing for phase fluctuations at the same kind 

of frequency as a known pulsar - I think it 

was CP1133. Just before that, around 1969 

or 1970, Joseph Weber had set up his gravi-

tational wave detectors and was beginning 

to report having seen events. It became 

very interesting, this field of gravitational 

waves, because this was something new, 

a little bit like the new pulsars a few years 

before. So at that point Ron Drever thought 

it would be a good idea to see if we could 

build some gravitational wave detectors.

Did you ever think of giving up and mov-

ing to a different topic?

I never really thought of giving up. We had 

two big funding scares where we thought 

Thoughts and Reactions: A personal perspective
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How far could we 
hear?

• Our nominal Figure of merit is 
the binary neutron star range 
which was ~70 Mpc for O1.


• Considering more massive 
sources similar to GW150914 
this distance increases to ~1.7 
Gpc.
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LIGO-Virgo Collaboration, arXiv:1602.03844 (2016) 



Any neutrinos?

• IceCube and ANTARES 
neutrino detectors were taking 
data at the time of GW150914.


• No spatially consistent 
candidates were found within a 
±500 sec window.


• 3 events were detected by 
IceCube but were consistent 
with the background.

LIGO-Virgo Collaboration, arXiv:1602.05411 (2016) 



How heavy?

• The time evolution of the signal 
frequency tells us the “chirp 
mass” to ±10%.


• The component masses are 
estimated to be ~36 and 29 
M☉.


• The result black hole has an 
estimated mass of 62 M☉.
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Hz. The priors on spin orientation for the precessing model
is uniform on the 2-sphere. For the non-precessing model,
the prior on the spin magnitudes may be interpreted as the
dimensionless spin projection onto L̂ having a uniform dis-
tribution [�1, 1]. This range includes binaries where the
two spins are strongly antialigned relative to one another.
Many such antialigned-spin comparable-mass systems are
unstable to large-angle precession well before entering our
sensitive band [82, 83] and could not have formed from an
asymptotically spin antialigned binary. We could exclude
those systems if we believe the binary is not precessing.
However, we do not make this assumption here and instead
accept that the models can only extract limited spin infor-
mation about a more general, precessing binary.

We also need to specify the prior ranges for the
amplitude and phase error functions �Ak(f ;

~#) and
��k(f ;

~#). The calibration during the time of observa-
tion of GW150914 is characterised by a 1-� statistical
uncertainty of no more than 10% in amplitude and 10

�

in phase [1, 38]. We use zero-mean Gaussian priors on
the values of the spline at each node with widths corre-
sponding to the uncertainties quoted above [39]. Calibra-
tion uncertainties therefore add 10 parameters per instru-
ment to the model used in the analysis. For validation pur-
poses we also considered an independent method that as-
sumes frequency-independent calibration errors [84], and
obtained consistent results.

Results— The results of the analysis using binary coa-
lescence waveforms are posterior PDFs for the parameters
describing the GW signal and the model evidence. A sum-
mary is provided in Table I. For the model evidence, we
quote (the logarithm of) the Bayes factor Bs/n = Z/Zn,
which is the ratio of the evidence for a coherent signal hy-
pothesis divided by that for (Gaussian) noise [45]. At the
leading order, the Bayes factor and the optimal signal-to-
noise ratio ⇢ = [

P
khhM

k |hM
k i]1/2 are related by lnBs/n ⇡

⇢
2
/2 [85].
Before discussing parameter estimates in detail, we

consider how the inference is affected by the choice of
compact-binary waveform model. From Table I, we see
that the posterior estimates for each parameter are broadly
consistent across the two models, despite the fact that they
are based on different analytical approaches and that they
include different aspects of BBH spin dynamics. The mod-
els’ log Bayes factors, 288.7±0.2 and 290.1±0.2, are also
comparable for both models: the data do not allow us to
conclusively prefer one model over the other [88]. There-
fore, we use both for the Overall column in Table I. We
combine the posterior samples of both distributions with
equal weight, in effect marginalising over our choice of
waveform model. These averaged results give our best es-
timate for the parameters describing GW150914.

In Table I, we also indicate how sensitive our results are
to our choice of waveform. For each parameter, we give
systematic errors on the boundaries of the 90% credible

FIG. 1. Posterior PDFs for the source-frame component masses
msource

1 and msource
2 , where msource

2  msource
1 . In the

1-dimensional marginalised distributions we show the Overall
(solid black), IMRPhenom (blue) and EOBNR (red) PDFs; the
dashed vertical lines mark the 90% credible interval for the Over-
all PDF. The 2-dimensional plot shows the contours of the 50%

and 90% credible regions plotted over a colour-coded posterior
density function.

intervals due to the uncertainty in the waveform models
considered in the analysis; the quoted values are the 90%

range of a normal distribution estimated from the variance
of results from the different models.4 Assuming normally
distributed error is the least constraining choice [89] and
gives a conservative estimate. The uncertainty from wave-
form modelling is less significant than statistical uncer-
tainty; therefore, we are confident that the results are ro-
bust against this potential systematic error. We consider
this point in detail later in the paper.

The analysis presented here yields an optimal coherent
signal-to-noise ratio of ⇢ = 25.1

+1.7
�1.7. This value is higher

than the one reported by the search [1, 3] because it is ob-
tained using a finer sampling of (a larger) parameter space.

GW150914’s source corresponds to a stellar-mass BBH
with individual source-frame masses msource

1 = 36
+5
�4 M�

and msource
2 = 29

+4
�4 M�, as shown in Table I and Figure 1.

4 If X were an edge of a credible interval, we quote systematic uncertainty
±1.64�sys using the estimate �2

sys = [(XEOBNR � XOverall)2 +

(XIMRPhenom � XOverall)2]/2. For parameters with bounded ranges,
like the spins, the normal distributions should be truncated. However, for
transparency, we still quote the 90% range of the uncut distributions. These
numbers provide estimates of the order of magnitude of the potential sys-
tematic error.
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FIG. 2. Posterior PDFs for the source luminosity distance DL and
the binary inclination ✓JN . In the 1-dimensional marginalised
distributions we show the Overall (solid black), IMRPhenom
(blue) and EOBNR (red) PDFs; the dashed vertical lines mark the
90% credible interval for the Overall PDF. The 2-dimensional
plot shows the contours of the 50% and 90% credible regions
plotted over a colour-coded PDF.

misaligned to the line of sight is disfavoured; the probabil-
ity that 45� < ✓JN < 135

� is 0.35.
The masses and spins of the BHs in a (circular) binary

are the only parameters needed to determine the final mass
and spin of the BH that is produced at the end of the
merger. Appropriate relations are embedded intrinsically
in the waveform models used in the analysis, but they do
not give direct access to the parameters of the remnant BH.
However, applying the fitting formula calibrated to non-
precessing NR simulations provided in [96] to the posterior
for the component masses and spins [97], we infer the mass
and spin of the remnant BH to be M

source
f = 62

+4
�4 M�,

and af = 0.67
+0.05
�0.07, as shown in Figure 3 and Table I.

These results are fully consistent with those obtained us-
ing an independent non-precessing fit [55]. The systematic
uncertainties of the fit are much smaller than the statistical
uncertainties. The value of the final spin is a consequence
of conservation of angular momentum in which the total
angular momentum of the system (which for a nearly equal
mass binary, such as GW150914’s source, is dominated by
the orbital angular momentum) is converted partially into
the spin of the remnant black hole and partially radiated
away in GWs during the merger. Therefore, the final spin
is more precisely determined than either of the spins of the
binary’s BHs.

The calculation of the final mass also provides an esti-

FIG. 3. PDFs for the source-frame mass and spin of the rem-
nant BH produced by the coalescence of the binary. In the
1-dimensional marginalised distributions we show the Overall
(solid black), IMRPhenom (blue) and EOBNR (red) PDFs; the
dashed vertical lines mark the 90% credible interval for the Over-
all PDF. The 2-dimensional plot shows the contours of the 50%

and 90% credible regions plotted over a colour-coded PDF.

mate of the total energy emitted in GWs. GW150914 ra-
diated a total of 3.0

+0.5
�0.5 M�c

2 in GWs, the majority of
which was at frequencies in LIGO’s sensitive band. These
values are fully consistent with those given in the literature
for NR simulations of similar binaries [98, 99]. The ener-
getics of a BBH merger can be estimated at the order of
magnitude level using simple Newtonian arguments. The
total energy of a binary system at separation r is given by
E ⇡ (m1 + m2)c

2 � Gm1m2/(2r). For an equal-mass
system, and assuming the inspiral phase to end at about
r ⇡ 5GM/c

2, then around 2–3% of the initial total energy
of the system is emitted as GWs. Only a fully general rela-
tivistic treatment of the system can accurately describe the
physical process during the final strong-field phase of the
coalescence. This indicates that a comparable amount of
energy is emitted during the merger portion of GW150914,
leading to ⇡ 5% of the total energy emitted.

We further infer the peak GW luminosity achieved dur-
ing the merger phase by applying to the posteriors a sep-
arate fit to non-precessing NR simulations [100]. The
source reached a maximum instantaneous GW luminosity
of 3.6+0.5

�0.4 ⇥ 10
56

erg s
�1

= 200
+30
�20 M�c

2
/s. Here, the

uncertainties include an estimate for the systematic error
of the fit as obtained by comparison with a separate set
of precessing NR simulations, in addition to the dominant
statistical contribution. An order-of-magnitude estimate of
the luminosity corroborates this result. For the dominant

How far?

• The measured amplitude is 
determined by 4 factors - the 
mass, distance, orbital 
inclination, and detector 
calibration.


• The corresponding redshift of 
the source is z~0.1.


• In principle we can use galaxy 
catalogues to identify potential 
host galaxies. 
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Other companion 
papers

papers.ligo.org

• In addition to the discovery 
paper, the second detection 
paper and the O1 results 
paper…


• There are 12 companion 
papers describing the, burst 
search, the BBH search, the 
system parameters, the 
astrophysical rates, 
implications, tests of GR, 
stochastic background, 
calibration, detector 
characterisation, neutrinos, the 
detectors, and EM follow-up.   

http://papers.ligo.org


How do we search?

• Matched filters are correlated 
with the data to generate time-
series of signal-to-noise ratio.


• Templates are placed in the 4-
D space of component masses 
and (anti-)aligned spins.


• We have 2 independent search 
algorithms in order to verify any 
candidate signals.


• For GW150914 it was actually 
a search for un-modelled 
signals that found it.

4

tive to BBH mergers with total mass ⇠ 30M� or greater [60].
A bank of template waveforms is used to cover the parame-

ter space to be searched [53, 61–64]. The gravitational wave-
forms depend upon the masses m1,2 (using the convention that
m1 � m2), and angular momenta S1,2 of the binary compo-
nents. We characterise the angular momentum in terms of the
dimensionless spin magnitude

a1,2 =
c

Gm2
1,2

|S1,2| , (2)

and the component aligned with the direction of the orbital
angular momentum, L, of the binary [65, 66],

c1,2 =
c

Gm2
1,2

S1,2 · L̂ . (3)

We restrict this template bank to systems for which the spin
of the systems is aligned (or anti-aligned) with the orbital an-
gular momentum of the binary. Consequently, the waveforms
depends primarily upon the chirp mass [67–69]

M =
(m1m2)3/5

M1/5 , (4)

the mass ratio [18]

q =
m2

m1
 1, (5)

and the effective spin parameter [70–73]

ceff =
m1c1 +m2c2

M
, (6)

where M = m1 +m2 is the binary’s total mass. The chirp mass
and effective spin are combinations of masses and spin which
have significant impact on the evolution of the inspiral, and
are therefore accurately measured parameters for gravitational
waveforms [56, 74–77].

The minimum black hole mass is taken to be 2M�, con-
sistent with the largest known masses of neutron stars [78].
There is no known maximum black hole mass [79], however
we limit this template bank to binaries with a total mass less
than M  100M�. For higher mass binaries, the Advanced
LIGO detectors are sensitive to only the final few cycles of in-
spiral plus merger, making the analysis more susceptible to
noise transients. The results of searches for more massive
BBH mergers will be reported in future publications. In prin-
ciple, black hole spins can lie anywhere in the range from �1
(maximal and anti-aligned) to +1 (maximal and aligned). We
limit the spin magnitude to less than 0.99, which is the re-
gion over which we are able to generate valid template wave-
forms [8]. The bank of templates used for the analysis is
shown in Figure 2.

Both analyses separately correlate the data from each de-
tector with template waveforms that model the expected sig-
nal. The analyses identify candidate events that are detected
at both the Hanford and Livingston observatories consistent
with the 10 ms inter-site propagation time. Additional sig-
nal consistency tests are performed to mitigate the effects of

100 101 102

m1 [M�]

100

101

m
2

[M
�

]

|�1| < 0.9895, |�2| < 0.05

|�1,2| < 0.05

|�1,2| < 0.9895

GW150914
GW151226
LVT151012 (gstlal)
LVT151012 (PyCBC)

FIG. 2. The four-dimensional search parameter space covered by
the template bank shown projected into the component-mass plane,
using the convention m1 > m2. The colours indicate mass regions
with different limits on the dimensionless spin parameters c1 and
c2. Symbols indicate the best matching templates for GW150914,
GW151226 and LVT151012. For GW150914, GW151226 the tem-
plate was the same in the PyCBC and GstLAL searches while for
LVT151012 they differed. The parameters of the best matching tem-
plates are not the same as the detector frame masses provided by the
detailed parameter estimation discussed in Section IV.

non-stationary transients in the data. Events are assigned a
detection-statistic value that ranks their likelihood of being a
gravitational-wave signal. For PyCBC, r̂c is the quadrature
sum of signal-consistency re-weighted SNRs in the two de-
tectors. For GstLAL, lnL is the log-likelihood ratio for the
signal and noise models. The detection statistics are compared
to the estimated detector noise background to determine, for
each candidate event, the probability that detector noise would
give rise to at least one equally significant event. Further de-
tails of the analysis methods are available in Appendix A.

The results for the two different analyses are presented
in Figure 3. The figure shows the observed distribution of
events, as well as the background distribution used to assess
significance. In both analyses, there are three events that
lie above the estimated background: GW150914, GW151226
and LVT151012. All three of these are consistent with being
BBH merger signals and are discussed in further detail be-
low. The templates producing the highest significance in the
two analyses are indicated in Figure 2, the gravitational wave-
forms are shown in Figure 1 and key parameters are summa-
rized in Table I. There were no other significant BBH trig-
gers in the first advanced LIGO observing run. All other ob-
served events are consistent with the noise background for the
search. Follow up of the coincident events r̂c ⇡ 9 in the Py-
CBC analysis suggests that they are likely due to noise fluctu-
ations or poor data quality, rather than a population of weaker
gravitational-wave signals.

It is clear from Figure 3 that at high significance, the
background distribution is dominated by the presence of
GW150914 in the data. Consequently, once an event has

LIGO-Virgo Collaboration, arXiv:1606.04856 (2016) 



Matched filtering
• For a signal in additive Gaussian noise 


• The correlation of a template q with a 
dataset x is (in the frequency domain)


• For noise with zero mean, the mean 
and variance of the correlation are


• Where Sh(f) is the noise spectral 
density


• This leads to the definition of the 
signal-to-noise ratio (SNR) 

c(�) =

Z 1

�1
x̃(f)q̃⇤(f)e�2�if⇥df

N2 = (c� c̄)2 =

Z 1

�1
Sh(f)|q̃⇤(f)|2df

�2 =
�2

N2

x(t) = h(t � ta) + n(t)

� � c̄(�) =

� �

��
h̃(f)q̃�(f)e�2�if(��ta)df

5



Matched filtering

• Let us now define the noise 
weighted inner product


• This allows to us to rewrite the 
squared SNR as


• From which it is clear to see 
that the optimal filter is 

ha, bi ⌘ 2

Z 1

0

df

Sh(f)
[ã(f)b̃⇤(f) + ã⇤(f)b̃(f)]

q̃(f) / h̃(f)e2�if(⇥�ta)

Sh(f)

�2 =
�h e2�if(��ta), Sh q��

�Sh q, Sh q�

from 35 Hz to a peak amplitude at 450 Hz. The signal-to-
noise ratio (SNR) accumulates equally in the early inspiral
(∼45 cycles from 35 to 100 Hz) and late inspiral to merger
(∼10 cycles from 100 to 450 Hz). This is different from the
more massive GW150914 binary for which only the last 10
cycles, comprising inspiral and merger, dominated the
SNR. As a consequence, the parameters characterizing
GW151226 have different precision than those of
GW150914. The chirp mass [26,45], which controls the
binary’s evolution during the early inspiral, is determined
very precisely. The individual masses, which rely on
information from the late inspiral and merger, are measured
far less precisely.
Figure 1 illustrates that the amplitude of the signal is less

than the level of the detector noise,where themaximum strain
of the signal is 3.4þ0.7

−0.9 × 10−22 and 3.4þ0.8
−0.9 × 10−22 in LIGO

Hanford and Livingston, respectively. The time-frequency
representation of the detector data shows that the signal is not
easily visible. The signal is more apparent in LIGO Hanford
where the SNR is larger. The SNR difference is predomi-
nantly due to the different sensitivities of the detectors at the
time. Only with the accumulated SNR frommatched filtering
does the signal become apparent in both detectors.

III. DETECTORS

The LIGO detectors measure gravitational-wave strain
using two modified Michelson interferometers located in
Hanford, WA and Livingston, LA [2,3,46]. The two
orthogonal arms of each interferometer are 4 km in length,
each with an optical cavity formed by two mirrors acting as
test masses. A passing gravitational wave alters the

FIG. 1. GW151226 observed by the LIGO Hanford (left column) and Livingston (right column) detectors, where times are relative to
December 26, 2015 at 03:38:53.648 UTC. First row: Strain data from the two detectors, where the data are filtered with a 30–600-Hz
bandpass filter to suppress large fluctuations outside this range and band-reject filters to remove strong instrumental spectral lines [46].
Also shown (black) is the best-match template from a nonprecessing spin waveform model reconstructed using a Bayesian analysis [21]
with the same filtering applied. As a result, modulations in the waveform are present due to this conditioning and not due to precession
effects. The thickness of the line indicates the 90% credible region. See Fig. 5 for a reconstruction of the best-match template with no
filtering applied. Second row: The accumulated peak signal-to-noise ratio (SNRp) as a function of time when integrating from the start of
the best-match template, corresponding to a gravitational-wave frequency of 30 Hz, up to its merger time. The total accumulated SNRp

corresponds to the peak in the next row. Third row: Signal-to-noise ratio (SNR) time series produced by time shifting the best-match
template waveform and computing the integrated SNR at each point in time. The peak of the SNR time series gives the merger time of
the best-match template for which the highest overlap with the data is achieved. The single-detector SNRs in LIGO Hanford and
Livingston are 10.5 and 7.9, respectively, primarily because of the detectors’ differing sensitivities. Fourth row: Time-frequency
representation [47] of the strain data around the time of GW151226. In contrast to GW150914 [4], the signal is not easily visible.
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with the same filtering applied. As a result, modulations in the waveform are present due to this conditioning and not due to precession
effects. The thickness of the line indicates the 90% credible region. See Fig. 5 for a reconstruction of the best-match template with no
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the best-match template, corresponding to a gravitational-wave frequency of 30 Hz, up to its merger time. The total accumulated SNRp

corresponds to the peak in the next row. Third row: Signal-to-noise ratio (SNR) time series produced by time shifting the best-match
template waveform and computing the integrated SNR at each point in time. The peak of the SNR time series gives the merger time of
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bandpass filter to suppress large fluctuations outside this range and band-reject filters to remove strong instrumental spectral lines [46].
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template waveform and computing the integrated SNR at each point in time. The peak of the SNR time series gives the merger time of
the best-match template for which the highest overlap with the data is achieved. The single-detector SNRs in LIGO Hanford and
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representation [47] of the strain data around the time of GW151226. In contrast to GW150914 [4], the signal is not easily visible.

PRL 116, 241103 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JUNE 2016

241103-2

LIGO-Virgo Collaboration, PRL 116, 241103 (2016) 

6

H1

L1

GW151226



How can we be 
sure?

• We use a method known as 
time-slides (or something 
mathematically equivalent).


• We impose repeated artificial 
time shifts between detectors 
to remove all possible 
coincident signals - leaving 
only background?

time

time

SNR

SNR

H1
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Are we sure?
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For both detections?
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FIG. 3. Search results from the two analyses. The upper left hand plot shows the PyCBC result for signals with chirp mass M > 1.74M�
(the chirp mass of a m1 = m2 = 2M� binary) and fpeak > 100Hz while the upper right hand plot shows the GstLAL result. In both analyses,
GW150914 is the most significant event in the data, and is more significant than any background event in the data. It is identified with a
significance greater than 5s in both analysies. As GW150914 is so significant, the high significance background is dominated by its presence
in the data. Once it has been identified as a signal, we remove it from the background estimation to evaluate the significance of the remaining
events. The lower plots show results with GW150914 removed from both the foreground and background, with the PyCBC result on the left and
GstLAL result on the right. In both analyses, GW151226 is identified as the most significant event remaining in the data. GW151226 is more
significant than the remaining background in the PyCBC analysis, with a significance of greater than 5s . In the GstLAL search GW151226 is
measured to have a significance of 4.5s . The third most significant event in the search, LVT151012 is identified with a significance of 1.7s
and 2.0s in the two analyses respectively. The significance obtained for LVT151012 is only marginally affected by including or removing
background contributions from GW150914 and GW151226.

been confidently identified as a signal, we remove triggers
associated to it from the background in order to get an ac-
curate estimate of the noise background for lower amplitude
events. The lower panel of Figure 3 shows the search results
with GW150914 removed from both the foreground and back-
ground distributions.

A. GW150914

GW150914 was observed on September 14, 2015 at
09:50:45 UTC with a matched filter SNR of 23.7.1 It is re-
covered with a re-weighted SNR in the PyCBC analysis of
r̂c = 22.7 and a likelihood of 84.7 in the GstLAL analysis.
A detailed discussion of GW150914 is given in [16, 38, 43],
where it was presented as the most significant event in the first

1 We quote the matched filter SNR as computed by the PyCBC search using
the updated calibration, the GstLAL values agree within 2%.

LIGO-Virgo Collaboration, arXiv:1606.04856 (2016) 



Where was 
GW150914?

• Most likely somewhere in the 
southern hemisphere.


• We can very rapidly estimate 
the source sky location and tell 
astronomers to point there 
telescopes. 


• This is relevant to how we first 
identified this signal. It was 
found with an unmodelled 
“burst” search.



Where were the 
others?

• Notice the typical scale of 
error-region, O(100s) square 
degrees for 2 detectors.


• GW150914, GW151226 and 
LVT151012 have 230, 850, 
1600 sq deg error regions.


• It’s low number statistics but 
also notice the bias towards 
detection directly over/under 
the detectors. 

9

FIG. 5. Posterior probability distributions for the sky locations of GW150914, LVT151012 and GW151226 shown in a Mollweide projection.
The left plot shows the probable position of the source in equatorial coordinates (right ascension is measured in hours and declination is
measured in degrees). The right plot shows the localization with respect to the Earth at the time of detection. H+ and L+ mark the Hanford
and Livingston sites, and H� and L� indicate antipodal points; H-L and L-H mark the poles of the line connecting the two detectors (the
points of maximal time delay). The sky localization forms part of an annulus, set by the difference in arrival times between the detectors.

ponents’ spins [98]; we now use an updated formula which
also incorporates the effects of in-plane spins [113]. This has a
small impact on spin of GW150914 (changing from 0.67+0.05

�0.06
to 0.68+0.05

�0.06), and a larger effect on GW151226 (changing
from 0.72+0.05

�0.05 to 0.74+0.06
�0.06) as its components have more sig-

nificant spins.

C. Distance, inclination and sky location

The luminosity distance to the source is inversely propor-
tional to the signal’s amplitude. GW150914 and GW151226
have comparable distance estimates of DL = 420+150

�180 Mpc
(redshift z = 0.09+0.03

�0.04) and DL = 440+180
�190 Mpc (z =

0.09+0.03
�0.04) respectively.5 GW151226 originates from a lower

mass system than GW150914 and hence the GW signal is in-
trinsically quieter, and its SNR is lower than GW150914’s
even though the distances are comparable. LVT151012 is
the quietest signal and is inferred to be at a greater distance
DL = 1000+500

�500 Mpc (z = 0.20+0.09
�0.09).

In all cases, there is significant fractional uncertainty for the
distance. This is predominantly a consequence of the degen-
eracy between the distance and the binary’s inclination, which
also impacts the signal amplitude [93, 115, 116].

The inclination is only weakly constrained; in all cases
there is greatest posterior support for the source being either
face on or face off (angular momentum pointed parallel or
antiparallel to the line of sight). This is the orientation that
produces the greatest GW amplitude and so is consistent with
the largest distance. The inclination could potentially be bet-
ter constrained in a precessing system [96, 117]. Only for

5 We convert between luminosity distance and redshift using a flat LCDM
cosmology with Hubble parameter H0 = 67.9 kms�1 Mpc�1 and matter
density parameter Wm = 0.306 [40]. The redshift is used to convert be-
tween the observed detector-frame masses and the physical source-frame
masses, m = (1+ z)msource [114].

GW150914 is there preference for one of the configurations,
with there being greater posterior support for the source being
face off [38].

Sky localization from a GW detector network is primar-
ily determined by the measured delay in the signal arriving
at the sites, with additional information coming from the sig-
nal amplitude and phase [118–120]. For a two-detector net-
work, the sky localization forms a characteristic broken an-
nulus [121–124]. Adding additional detectors to the network
would improve localization abilities [125–128]. The sky lo-
calizations of the three events are shown in Fig. 5; this shows
both celestial coordinates (indicating the origin of the signal)
and geographic coordinates (illustrating localization with re-
spect to the two detectors). The arrival time at Hanford rel-
ative to Livingston was DtHL = 7.0+0.2

�0.2 ms for GW150914,
DtHL = �0.6+0.6

�0.6 ms for LVT151012, and DtHL = 1.1+0.3
�0.3 ms

for GW151226.
The 90% credible region for sky localization is 230 deg2

for GW150914, 850 deg2 for GW151226, and 1600 deg2 for
LVT151012. As expected, the sky area is larger for quieter
events. The sky area is expected to scale inversely with the
square of the SNR [124, 129], and we see that this trend is
followed.

V. TESTS OF GENERAL RELATIVITY

GW150914 provided us with the first empirical access to
the genuinely strong-field dynamics of gravity. With the fre-
quency of the waveform peak amplitude well aligned with the
best instrument sensitivity, the part of the coalescence just be-
fore merger, as well as the merger-ringdown regime, could be
studied in considerable detail, as described in [41]. This al-
lowed for checks of the consistency between masses and spins
estimated from different portions of the waveform [130], as
well as parameterized tests of the waveform as a whole [131–
134]. Even though not much of the early inspiral was in the
detectors’ sensitive band, interesting bounds could be placed
on departures from general relativity in the PN coefficients
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How to measure 
parameters?
• We rely heavily on Bayesian parameter 

estimation.


• We must make (motivated) assumptions 
regarding our noise distribution and the 
prior values of of the parameters. 


• In practice, obtaining posterior 
probability densities on system 
parameters is done via Monte-Carlo 
techniques (MCMC, nested sampling).

posterior

likelihood
prior

evidence

p(�|x, I) =
p(x|�, I)p(�|I)

p(x|I)

log p(x|�, I) = exp
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��
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|x̃j � h̃j(�)|2

TSh(fj)

�
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Gravitational waves

• “Mass tells space-time how to 
curve and spacetime tells mass 
how to move”


• 100 years ago Einstein 
theorised the existence of 
gravitational waves - tiny 
distortions in space-time 
caused by accelerating mass 
and travel at the speed of light .


• Apart from Electromagnetic 
waves, gravitational waves are 
the only other fundamental 
wave phenomena we know - a 
new window on the universe.



Measurable effects

h =
�l

l

+ +

h =
�l

l
h =

�l

l

• GWs are transverse waves 
composed of 2 polarisation 
states.


• Their effect is quantified by the 
dimensionless strain


• Typical levels of strain 
expected from astrophysical 
events is

O(10�21)



Interferometric 
detection

LIGO-Virgo Collaboration, PRL 116, 061102 (2016) 



Interferometric 
detection

• An aerial view of the LIGO 
Livingston gravitational wave 
detector.



The global network
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How can we locate 
it?

• Sky localisation information is 
key to GW multi-messenger 
astronomy.


• The time delay (with associated 
timing uncertainty) determines 
the bulk of the localisation 
ability.


• For four or more detectors 
there is a unique intersection 
region of all of the annuli.


• Additional antenna response 
modulation refine the estimate.

HV
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LV
V
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Sv

L
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LV
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Figure 2: Source localization by triangulation for the aLIGO-AdV network. The locus of constant
time delay (with associated timing uncertainty) between two detectors forms an annulus on the
sky concentric about the baseline between the two sites. For three detectors, these annuli may
intersect in two locations. One is centered on the true source direction, S, while the other (S0) is
its mirror image with respect to the geometrical plane passing through the three sites. For four or
more detectors there is a unique intersection region of all of the annuli. Figure adapted from [22].

bandwidth is ⇠ 100Hz, determined by the most sensitive frequencies of the detector. For shorter
transients the bandwidth �f depends on the specific signal. For example, GWs emitted by various
processes in core-collapse supernovae are anticipated to have relatively large bandwidths, between
150-500Hz [23, 24, 25, 26], largely independent of detector configuration. By contrast, the sky
localization region for narrowband burst signals may consist of multiple disconnected regions; see
for example [27, 12].

Finally, we note that some GW searches are triggered by electromagnetic observations, and in
these cases localization information is known a priori. For example, in GW searches triggered by
gamma-ray bursts [10] the triggering satellite provides the localization. The rapid identification of
a GW counterpart to such a trigger could prompt further followups by other observatories. This
is of particular relevance to binary mergers, which are considered the likely progenitors of most
short gamma-ray bursts. It is therefore important to have high-energy satellites operating during
the advanced detector era.

Finally, it is also worth noting that all GW data are stored permanently, so that it is possible
to perform retroactive analyses at any time.

3.2 Detection and False Alarm Rates

The rate of BNS coalescences is uncertain, but is currently predicted to lie between 10�8 �
10�5Mpc�3 yr�1 [28]. This corresponds to between 0.4 and 400 signals above SNR 8 per year
of observation for a single aLIGO detector at final sensitivity [28]. The predicted observable rates
for NS-BH and BBH are similar. Expected rates for other transient sources are lower and/or less
well constrained.

The rate of false alarm triggers above a given SNR will depend critically upon the data quality of
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LIGO-Virgo Collaboration, arXiv:1304.0670 (2013) 



BBH masses



GW150914 spin

• Spin affects the relativistic 
motion of the binary but has 
subtle influence on the 
waveform (extra/less cycles, 
modulation).  

• The spin measurement for 
GW150914 suggests that the 
individual spins were either 
small, or they were pointed 
opposite from one another, 
cancelling each other's effect. 

• Spin components in the orbital 
plane are poorly contained.

LIGO-Virgo Collaboration, arXiv:1602.03840 (2016) 

spins (right panel of Fig. 5) matches our expectations once
the information that jχeff j is small has been included. Two
elements may be responsible for this. If precession occurs,
at most one modulation cycle would be present in the LIGO
sensitivity window. If the source was viewed with J close
to the line of sight (Fig. 2), the amplitude of possible
modulations in the recorded strain is suppressed.
The joint posterior PDFs of the magnitude and orienta-

tion of S1 and S2 are shown in the right panel of Fig. 5.
The angle of the spins with respect to L (the tilt angle)
is considered a tracer of BBH formation channels [97].
However, we can place only weak constraints on this
parameter for GW150914: the probabilities that S1 and S2
are at an angle between 45° and 135° with respect to the
normal to the orbital plane L are 0.77 and 0.75, respec-
tively. For this specific geometrical configuration the spin
magnitude estimates are a1 < 0.8 and a2 < 0.8 at 90%
probability.
Some astrophysical formation scenarios favor spins

nearly aligned with the orbital angular momentum, par-
ticularly for the massive progenitors that in these scenarios
produce GW150914 [97,114,115]. To estimate the impact
of this prior hypothesis on our interpretation, we used the
fraction (2.5%) of the spin-aligned result (EOBNR) with
S1;2 · L > 0 to revise our expectations. If both spins must
be positively and strictly co-aligned with L, then we can
constrain the two individual spins at 90% probability to be
a1 < 0.2 and a2 < 0.3.
The loss of linear momentum through GWs produces a

recoil of the merger BH with respect to the binary’s original

center of mass [116,117]. The recoil velocity depends on
the spins (magnitude and orientation) of the BHs of the
binary and could be large for spins that are appropriately
misaligned with the orbital angular momentum [118–121].
Unfortunately, the weak constraints on the spins
(magnitude and direction) of GW150914 prevent us from
providing a meaningful limit on the kick velocity of the
resulting BH.

A. A minimal-assumption analysis

In addition to the analysis based on the assumption that
the signal is generated by a binary system, we also consider
a model which is not derived from a particular physical
scenario and makes minimal assumptions about hþ;×.
In this case we compute directly the posterior pð~hj~dÞ by
reconstructing hþ;× using a linear combination of ellipti-
cally polarized sine-Gaussian wavelets whose amplitudes
are assumed to be consistent with a uniform source
distribution [84,122], see Fig. 6. The number of wavelets
in the linear combination is not fixed a priori but is
optimized via Bayesian model selection. This analysis
directly infers the PDF of the GW strain given the data
pð~hj~dÞ.
We can compare the minimal-assumption posterior for

the strain at the two instruments with the results of the
compact binary modeled analysis pð~hð~ϑÞj~dÞ. The wave-
forms are shown in Fig. 6. There is remarkable agreement
between the actual data and the reconstructed waveform
under the two model assumptions. As expected, the

FIG. 5. Left: PDFs (solid black line) for the χp and χeff spin parameters compared to their prior distribution (green line). The dashed
vertical lines mark the 90% credible interval. The one-dimensional plots show probability contours of the prior (green) and marginalized
PDF (black). The two-dimensional plot shows the contours of the 50% and 90% credible regions plotted over a color-coded PDF. Right:
PDFs for the dimensionless component spins cS1=ðGm2

1Þ and cS2=ðGm2
2Þ relative to the normal to the orbital plane L, marginalized

over uncertainties in the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt angles,
cos θLSi ¼ Si · L=ðjSijjLjÞ, where i ¼ f1; 2g, and therefore have equal prior probability.
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Is general relativity 
right?

• We perform 3 main GR 
consistency tests.


• We test if the final mass and 
spin of the final black hole is 
consistent with predictions 
based on the inspiral.


• We test each post-newtonian 
expansion coefficient.


• We constrain the compton 
wavelength of the graviton to 
<1013 km.


• GR passes all tests.  
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FIG. 4. We show the posterior 90% confidence regions from
Bayesian parameter estimation for a damped-sinusoid model, assum-
ing di↵erent start-times t0 = tM + 1, 3, 5, 7 ms, labeled by o↵set from
the merger time tM of the most-probable waveform from GW150914.
The black solid line shows contours of 90% confidence region for the
frequency f0 and decay time ⌧ of the ` = 2, m = 2 and n = 0 (i.e.,
the least damped) QNM obtained from the inspiral-merger-ringdown
waveform for the entire detector’s bandwidth.

ringdown signal. It confirms the expected behavior: the in-
tersection of the inspiral and post-inspiral 90% confidence re-
gions (defined by the isoprobability contours that enclose 90%
of the posterior) contain the inspiral-merger-ringdown 90%
confidence region. We have verified that these conclusions
are not a↵ected by the specific formula [38, 57, 60] used to
predict Mf and a f , nor by the choice of f end insp

GW within a few
cycles of the waveform’s peak.

To assess the significance of our findings more quantita-
tively, we define parameters �Mf /Mf and �a f /a f that de-
scribe the fractional di↵erence in the two estimates of the final
mass and spin [58]. In the bottom panel of Fig. 3 we show
their joint posterior distribution; the solid line marks the iso-
probability contour that contains 90% of the posterior. The
plus symbol indicates the null (0, 0) result expected in GR,
which lies on the isoprobability contour that encloses 28% of
the posterior. We have checked that when performing anal-
yses of NR signals added to LIGO instrumental noise, the
null (0, 0) result expected in GR lies within isoprobability con-
tours that encloses 68% of the posterior, roughly 68% of the
time, as expected from random-noise fluctuations. By con-
trast, our test can rule out the null hypothesis (with high statis-
tical significance) when analyzing a simulated signal that re-
flects a significant GR violation in the frequency dependence
of the energy and angular-momentum loss [58], even when we
choose violations which would be too small to be noticeable
in double-pulsar observations [12]. Thus, our inspiral-merger-
ringdown test shows no evidence of discrepancies with the
predictions of GR.

The mass and dimensionless spin of the final black hole im-
plied by formulae obtained from NR simulations together with
the component mass and spin posteriors [3] are 67+4

�4 M� (in

the source frame 62+4
�4 M�) and 0.67+0.05

�0.07 at 90% confidence.
From the posterior distributions of the mass and spin of the
final black hole, we can predict the frequency and decay time
of the least-damped QNM (i.e., the ` = 2,m = 2, n = 0 over-
tone) [61]. We find f QNM

220 = 251+8
�8 Hz and ⌧QNM

220 = 4.0+0.3
�0.3 ms

at 90% confidence.
Testing for the least-damped QNM in the data. We per-

form a test to check the consistency of the data with the pre-
dicted least-damped QNM of the remnant black hole. For
this purpose we compute the Bayes factor between a damped-
sinusoid waveform model and Gaussian noise, and estimate
the corresponding parameter posteriors. The signal model
used is h(t � t0) = A e�(t�t0)/⌧ cos

⇥
2⇡ f0 (t � t0) + �0

⇤
, h(t <

t0) = 0, with fixed starting time t0, and uniform priors over
the unknown frequency f0 2 [200, 300] Hz and damping time
⌧ 2 [0.5, 20] ms. The prior on amplitude A and phase �0 is
chosen as a two-dimensional Gaussian isotropic prior in {As ⌘
�A sin �0, Ac ⌘ A cos �0} with a characteristic scale H, which
is in turn marginalized over the range H 2 [2, 10]⇥10�22 with
a prior / 1/H. This is a practical choice that encodes relative
ignorance about the detectable damped-sinusoid amplitude in
this range.

We compute the Bayes factor and posterior estimates of
{ f0, ⌧} as a function of the unknown QNM start-time t0, which
we parameterize as an o↵set from a fiducial GPS merger time3

tM = 1126259462.423 (referring to the GPS arrival time at the
LIGO Hanford site). Figure 4 shows various di↵erent poste-
rior 90% credible contours in { f0, ⌧} as a function of the start-
time o↵set t0�tM from merger, in addition to the least-damped
QNM prediction from GR derived in the previous section.

The 90% posterior contour starts to overlap the GR predic-
tion from the IMR waveform at t0 = tM + 3 ms, or ⇠ 10 M
after merger. The corresponding Bayes factor at this point is
log10 B ⇠ 17 with an SNR in the MAP waveform { f0, ⌧} of
SNR ⇠ 9. At t0 = tM + 5 ms the MAP waveform actually falls
within the (much smaller) IMR prediction uncertainty, and the
Bayes factor is log10 B ⇠ 9 and SNR ⇠ 7. At t0 = tM + 7 ms,
or about 20 M after merger, the posterior uncertainty becomes
quite large, and the Bayes factor drops to log10 B ⇠ 2.6 with
SNR ⇠ 4.4. The signal becomes undetectable shortly there-
after, t0 � tM + 8 ms or so, where B ⇠ 1.

Measuring only the frequency and decay time of one
damped sinusoid in the data does not allow us to conclude
that we have observed the least-damped QNM of the final
black hole. The measured quality factor can be obtained from
several QNMs that have di↵erent black-hole’s spin, harmon-
ics and overtones (see, e.g., Ref. [61] and references therein).
However, the overlap between the 90% posterior contour of
the damped-sinusoid waveform model and the 90% confi-
dence region estimated from the IMR waveform indicates that

3 The merger time is obtained by taking the EOBNR MAP waveform and
lining this waveform up with the data such that the largest SNR is obtained.
The merger time is then defined as the point at which the quadrature sum
of the h+ and h⇥ polarizations is maximum.
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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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GW151226 spin

• At 99% confidence at least one 
of the components had non-
zero spin.


• With 99% confidence we can 
also say the spin of that 
component was >0.2


• Again, the data are not 
informative regarding 
precession effects in the orbital 
plane.


• Spin can also give us an 
indication of the binary system 
formation mechanism.
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follow a line of constant chirp mass 8.9þ0.3
−0.3M⊙, and

constrain the mass ratio to be greater than 0.28. The
posterior distribution is not consistent with component
masses below 4.5M⊙ (99% credible level). This is above
the theoretical maximum mass of a neutron star for
common equations of state [66,67]. Thus, both components
are identified as black holes.
Compact binary coalescences act as standard sirens

[68,69]. Their luminosity distance can be extracted from
the amplitude of an observed signal provided the orienta-
tion of the orbital plane can be determined. Information
about whether the orbit is face-on, edge-on, or in between is
encoded in the two polarizations of the gravitational wave.
However, the two LIGO detectors are nearly coaligned and
the source of GW151226 is likely to be located close to the
maxima of the directional responses of both detectors [3].
Consequently, it is difficult to extract the polarization
content, and therefore the orientation of the orbital plane.
As a result, the luminosity distance is only weakly con-
strained to be 440þ180

−190 Mpc, corresponding to a redshift of
0.09þ0.03

−0.04 assuming a flat ΛCDM cosmology [62].
Component spins affect the relativistic motion of the

binary but often have only subtle effects on the gravita-
tional waveform. Therefore, we can only extract limited
information about the spins. Figure 4 (left) shows the
probability density functions of the mass-weighted combi-
nations of orbit-aligned spins χeff [70,71] and in-plane
spins χp [72] for the precessing spin waveform model. The
same figure (right) shows the individual spins of the
component black holes. The posterior density functions

inferred from the precessing and nonprecessing spin wave-
form models indicate that χeff is positive at greater than the
99% credible level; therefore, at least one of the black holes
has nonzero spin. We find that at least one black hole has a
spin magnitude greater than 0.2 at the 99% credible level.
Only weak constraints can be placed on χp, suggesting that
the data are not informative regarding spin-precession
effects [5].
To test whether GW151226 is consistent with general

relativity, we allow the coefficients that describe the
waveform (which are derived as functions of the source
parameters from the post-Newtonian approximation
[26–28] and from fits to numerical relativity simulations)
to deviate from their nominal values, and check whether
the resulting waveforms are consistent with the data [73].
The posterior probability densities of the coefficients
are found to center on their general relativity values.
Additionally, both the offsets and widths of the posteriors
for the post-Newtonian inspiral coefficients decrease sig-
nificantly when analyzing GW150914 and GW151226
jointly, in some cases to the 10% level, as discussed in [5].
The waveform models used are consistent with general

relativity simulations. Figure 5 shows GW151226’s wave-
form reconstruction (90% credible region as in [57]) using
the nonprecessing spin templates employed to find the
signal and extract parameters, plotted during the time
interval with the most significant SNR. Also shown is a
direct numerical solution of Einstein’s equations [38,74,75]
for a binary black hole with parameters near the peak of the
parameter estimation posterior.

FIG. 4. Left: Posterior density function for the χp and χeff spin parameters (measured at 20 Hz) compared to their prior distributions.
The one-dimensional plot shows probability contours of the prior (green) and marginalized posterior density function (black) [58,59].
The two-dimensional plot shows the contours of the 50% and 90% credible regions plotted over a color-coded posterior density
function. The dashed lines mark the 90% credible interval. Right: Posterior density function for the dimensionless component spins,
cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the normal of the orbital plane L̂. Si and mi are the spin angular momenta and masses of the

primary (i ¼ 1) and secondary (i ¼ 2) black holes, c is the speed of light and G is the gravitational constant. The posterior density
functions are marginalized over the azimuthal angles. The bins are designed to have equal prior probability; they are constructed linearly
in spin magnitudes and the cosine of the tilt angles cos−1ðŜi · L̂Þ.
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follow a line of constant chirp mass 8.9þ0.3
−0.3M⊙, and

constrain the mass ratio to be greater than 0.28. The
posterior distribution is not consistent with component
masses below 4.5M⊙ (99% credible level). This is above
the theoretical maximum mass of a neutron star for
common equations of state [66,67]. Thus, both components
are identified as black holes.
Compact binary coalescences act as standard sirens

[68,69]. Their luminosity distance can be extracted from
the amplitude of an observed signal provided the orienta-
tion of the orbital plane can be determined. Information
about whether the orbit is face-on, edge-on, or in between is
encoded in the two polarizations of the gravitational wave.
However, the two LIGO detectors are nearly coaligned and
the source of GW151226 is likely to be located close to the
maxima of the directional responses of both detectors [3].
Consequently, it is difficult to extract the polarization
content, and therefore the orientation of the orbital plane.
As a result, the luminosity distance is only weakly con-
strained to be 440þ180

−190 Mpc, corresponding to a redshift of
0.09þ0.03

−0.04 assuming a flat ΛCDM cosmology [62].
Component spins affect the relativistic motion of the

binary but often have only subtle effects on the gravita-
tional waveform. Therefore, we can only extract limited
information about the spins. Figure 4 (left) shows the
probability density functions of the mass-weighted combi-
nations of orbit-aligned spins χeff [70,71] and in-plane
spins χp [72] for the precessing spin waveform model. The
same figure (right) shows the individual spins of the
component black holes. The posterior density functions

inferred from the precessing and nonprecessing spin wave-
form models indicate that χeff is positive at greater than the
99% credible level; therefore, at least one of the black holes
has nonzero spin. We find that at least one black hole has a
spin magnitude greater than 0.2 at the 99% credible level.
Only weak constraints can be placed on χp, suggesting that
the data are not informative regarding spin-precession
effects [5].
To test whether GW151226 is consistent with general

relativity, we allow the coefficients that describe the
waveform (which are derived as functions of the source
parameters from the post-Newtonian approximation
[26–28] and from fits to numerical relativity simulations)
to deviate from their nominal values, and check whether
the resulting waveforms are consistent with the data [73].
The posterior probability densities of the coefficients
are found to center on their general relativity values.
Additionally, both the offsets and widths of the posteriors
for the post-Newtonian inspiral coefficients decrease sig-
nificantly when analyzing GW150914 and GW151226
jointly, in some cases to the 10% level, as discussed in [5].
The waveform models used are consistent with general

relativity simulations. Figure 5 shows GW151226’s wave-
form reconstruction (90% credible region as in [57]) using
the nonprecessing spin templates employed to find the
signal and extract parameters, plotted during the time
interval with the most significant SNR. Also shown is a
direct numerical solution of Einstein’s equations [38,74,75]
for a binary black hole with parameters near the peak of the
parameter estimation posterior.

FIG. 4. Left: Posterior density function for the χp and χeff spin parameters (measured at 20 Hz) compared to their prior distributions.
The one-dimensional plot shows probability contours of the prior (green) and marginalized posterior density function (black) [58,59].
The two-dimensional plot shows the contours of the 50% and 90% credible regions plotted over a color-coded posterior density
function. The dashed lines mark the 90% credible interval. Right: Posterior density function for the dimensionless component spins,
cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the normal of the orbital plane L̂. Si and mi are the spin angular momenta and masses of the

primary (i ¼ 1) and secondary (i ¼ 2) black holes, c is the speed of light and G is the gravitational constant. The posterior density
functions are marginalized over the azimuthal angles. The bins are designed to have equal prior probability; they are constructed linearly
in spin magnitudes and the cosine of the tilt angles cos−1ðŜi · L̂Þ.
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How common is 
this?

• We need to know how many 
events there are how sensitive 
our detectors were.


• We’ve only detected 6 event(s) 
(at present) and hence 
extrapolating the astrophysical 
event rate is hard.


• Uncertainties stem from 
Poisson counting noise, 
distance errors, calibration, 
and prior mass distributions.

13

FIG. 9. The posterior density on the rate of GW150914-like BBH,
LVT151012-like BBH, and GW151226-like BBH mergers. The
event based rate is the sum of these. The median and 90% credi-
ble levels are given in Table II.
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FIG. 10. The posterior density on the rate of BBH mergers. The
curves represent the posterior assuming that BBH masses are dis-
tributed flat in log(m1)-log(m2) (Flat), match the properties of the
observed events (Event Based), or are distributed as a power law in
m1 (Power Law). The posterior median rates and symmetric 90%
symmetric credible intervals are given in Table II.

signals (rather than two) in three times as much data. Further-

FIG. 11. The posterior distribution for a in Eq. (7) using the in-
ferred masses for our three most significant triggers, GW150914,
LVT151012, and GW151226. The vertical line indicates the value of
a = 2.35 that corresponds to the power law mass distribution used to
infer the rate of BBH coalescence. This value is fully consistent with
the posterior, which allows a broad range of possible values with a
median and 90% credible interval of a = 2.5+1.5

�1.6.

more, due to the observation of an additional highly signifi-
cant signal GW151226, the uncertainty in rates has reduced.
In particular, the 90% range of allowed rates has been updated
to 9–240Gpc�3 yr�1, where the lower limit comes from the
flat in log mass population and the upper limit from the power
law population distribution.

With three significant triggers, GW150914, LVT151012,
and GW151226, all of astrophysical origin to high probabil-
ity, we can begin to constrain the mass distribution of coa-
lescing BBHs. Here we present a simple, parametrized fit to
the mass distribution using these triggers; a non-parametric
method that can fit general mass distributions will be pre-
sented in future work. Our methodology is described more
fully in Appendix D.

We assume that the distribution of black hole masses in co-
alescing binaries follows

p(m1) µ m�a
1 , (7)

with Mmin  m2  m1 and m1 +m2  100M�, and a uniform
distribution on the secondary mass between Mmin = 5M� and
m1. With a = 2.35, this mass distribution is the power law
distribution used in our rate estimation. Our choice of Mmin
is driven by a desire to incorporate nearly all the posterior
samples from GW151226 and because there is some evidence
from electromagnetic observations for a minimum black hole
(BH) mass near 5M� [82, 142] (but see [84]).

We use a hierarchical analysis [142–145] to infer a from
the properties of the three significant events — GW150914,
GW151226 and LVT151012 — where all three are treated
equally and we properly incorporate parameter-estimation un-
certainty on the masses of each system. Our inferred posterior
on a is shown in Fig. 11. The value a = 2.35, corresponding
to the power law mass distribution used above to infer rates
lies near the peak of the posterior, and the median and broad
90% credible interval is

a = 2.5+1.5
�1.6 . (8)
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based on 2.9 
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GW170104 spin

• The measurements disfavour a large total spin positively aligned 
with the orbital angular momentum, but do not exclude zero spins. 

LIGO-Virgo Collaboration, PRL 118, 221101 (2017) 

two. The inferred component masses are shown in Fig. 2.
The formof the two-dimensional distribution is guidedby the
combination of constraints on M and M. The binary was
composed of two black holeswithmassesm1 ¼ 31.2þ8.4

−6.0M⊙
and m2 ¼ 19.4þ5.3

−5.9M⊙; these merged into a final black hole
of mass 48.7þ5.7

−4.6M⊙. This binary ranks second, behind
GW150914’s source [5,37], as themost massive stellar-mass
binary black hole system observed to date.
The black hole spins play a subdominant role in the

orbital evolution of the binary, and are more difficult to
determine. The orientations of the spins evolve due to
precession [62,63], and we report results at a point in the
inspiral corresponding to a gravitational-wave frequency of
20 Hz [37]. The effective inspiral spin parameter χeff ¼
ðm1a1 cos θLS1 þm2a2 cos θLS2Þ=M is the most important
spin combination for setting the properties of the inspiral
[64–66] and remains important through to merger [67–71];
it is approximately constant throughout the orbital evolu-
tion [72,73]. Here θLSi ¼ cos−1ðL̂ · ŜiÞ is the tilt angle
between the spin Si and the orbital angular momentum L,
which ranges from 0° (spin aligned with orbital angular
momentum) to 180° (spin antialigned); ai ¼ jcSi=Gm2

i j is
the (dimensionless) spin magnitude, which ranges from 0 to
1, and i ¼ 1 for the primary black hole and i ¼ 2 for the
secondary. We use the Newtonian angular momentum for
L, such that it is normal to the orbital plane; the total orbital
angular momentum differs from this because of post-
Newtonian corrections. We infer that χeff ¼ −0.12þ0.21

−0.30 .
Similarly to GW150914 [5,37,44], χeff is close to zero with
a preference towards being negative: the probability that
χeff < 0 is 0.82. Our measurements therefore disfavor a
large total spin positively aligned with the orbital angular
momentum, but do not exclude zero spins.
The in-plane components of the spin control the amount

of precession of the orbit [62]. This may be quantified by
the effective precession spin parameter χp which ranges
from 0 (no precession) to 1 (maximal precession) [39].
Figure 3 (top) shows the posterior probability density for
χeff and χp [39]. We gain some information on χeff ,
excluding large positive values, but, as for previous events
[3,5,37], the χp posterior is dominated by the prior (see
Sec. III of the Supplemental Material [11]). No meaningful
constraints can be placed on the magnitudes of the in-plane
spin components and hence precession.
The inferred component spin magnitudes and orienta-

tions are shown in Fig. 3 (bottom). The lack of constraints
on the in-plane spin components means that we learn
almost nothing about the spin magnitudes. The secondary’s
spin is less well constrained as the less massive component
has a smaller impact on the signal. The probability that the
tilt θLSi is less than 45° is 0.04 for the primary black hole
and 0.08 for the secondary, whereas the prior probability is
0.15 for each. Considering the two spins together, the
probability that both tilt angles are less than 90° is 0.05.

FIG. 3. Top: Posterior probability density for the effective
inspiral and precession spin parameters, χeff and χp. The
one-dimensional distributions show the posteriors for the two
waveform models, their average (black), and the prior distribu-
tions (green). The dashed lines mark the 90% credible interval for
the average posterior. The two-dimensional plot shows the 50%
and 90% credible regions plotted over the posterior density
function. Bottom: Posterior probabilities for the dimensionless
component spins, cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the

normal of the orbital plane L̂. The tilt angles are 0° for spins
aligned with the orbital angular momentum and 180° for spins
antialigned. The probabilities are marginalized over the azimuthal
angles. The pixels have equal prior probability (1.6 × 10−3);
they are spaced linearly in spin magnitudes and the cosine
of the tilt angles. Results are given at a gravitational-wave
frequency of 20 Hz.
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two. The inferred component masses are shown in Fig. 2.
The formof the two-dimensional distribution is guidedby the
combination of constraints on M and M. The binary was
composed of two black holeswithmassesm1 ¼ 31.2þ8.4

−6.0M⊙
and m2 ¼ 19.4þ5.3

−5.9M⊙; these merged into a final black hole
of mass 48.7þ5.7

−4.6M⊙. This binary ranks second, behind
GW150914’s source [5,37], as themost massive stellar-mass
binary black hole system observed to date.
The black hole spins play a subdominant role in the

orbital evolution of the binary, and are more difficult to
determine. The orientations of the spins evolve due to
precession [62,63], and we report results at a point in the
inspiral corresponding to a gravitational-wave frequency of
20 Hz [37]. The effective inspiral spin parameter χeff ¼
ðm1a1 cos θLS1 þm2a2 cos θLS2Þ=M is the most important
spin combination for setting the properties of the inspiral
[64–66] and remains important through to merger [67–71];
it is approximately constant throughout the orbital evolu-
tion [72,73]. Here θLSi ¼ cos−1ðL̂ · ŜiÞ is the tilt angle
between the spin Si and the orbital angular momentum L,
which ranges from 0° (spin aligned with orbital angular
momentum) to 180° (spin antialigned); ai ¼ jcSi=Gm2

i j is
the (dimensionless) spin magnitude, which ranges from 0 to
1, and i ¼ 1 for the primary black hole and i ¼ 2 for the
secondary. We use the Newtonian angular momentum for
L, such that it is normal to the orbital plane; the total orbital
angular momentum differs from this because of post-
Newtonian corrections. We infer that χeff ¼ −0.12þ0.21

−0.30 .
Similarly to GW150914 [5,37,44], χeff is close to zero with
a preference towards being negative: the probability that
χeff < 0 is 0.82. Our measurements therefore disfavor a
large total spin positively aligned with the orbital angular
momentum, but do not exclude zero spins.
The in-plane components of the spin control the amount

of precession of the orbit [62]. This may be quantified by
the effective precession spin parameter χp which ranges
from 0 (no precession) to 1 (maximal precession) [39].
Figure 3 (top) shows the posterior probability density for
χeff and χp [39]. We gain some information on χeff ,
excluding large positive values, but, as for previous events
[3,5,37], the χp posterior is dominated by the prior (see
Sec. III of the Supplemental Material [11]). No meaningful
constraints can be placed on the magnitudes of the in-plane
spin components and hence precession.
The inferred component spin magnitudes and orienta-

tions are shown in Fig. 3 (bottom). The lack of constraints
on the in-plane spin components means that we learn
almost nothing about the spin magnitudes. The secondary’s
spin is less well constrained as the less massive component
has a smaller impact on the signal. The probability that the
tilt θLSi is less than 45° is 0.04 for the primary black hole
and 0.08 for the secondary, whereas the prior probability is
0.15 for each. Considering the two spins together, the
probability that both tilt angles are less than 90° is 0.05.

FIG. 3. Top: Posterior probability density for the effective
inspiral and precession spin parameters, χeff and χp. The
one-dimensional distributions show the posteriors for the two
waveform models, their average (black), and the prior distribu-
tions (green). The dashed lines mark the 90% credible interval for
the average posterior. The two-dimensional plot shows the 50%
and 90% credible regions plotted over the posterior density
function. Bottom: Posterior probabilities for the dimensionless
component spins, cS1=ðGm2

1Þ and cS2=ðGm2
2Þ, relative to the

normal of the orbital plane L̂. The tilt angles are 0° for spins
aligned with the orbital angular momentum and 180° for spins
antialigned. The probabilities are marginalized over the azimuthal
angles. The pixels have equal prior probability (1.6 × 10−3);
they are spaced linearly in spin magnitudes and the cosine
of the tilt angles. Results are given at a gravitational-wave
frequency of 20 Hz.
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GW170608 spin

LIGO-Virgo Collaboration, ApJ Lett., 851, L35, (2017) (90% credible limit); this limit is robust to extending the prior
range of spin magnitudes and to using different waveform models.

The measurability of precession depends on the intrinsic source
properties as well as the angle of the binary orbital angular
momentum to the line of sight (i.e., inclination). The inclination of
GW170608ʼs orbit is likely close to either 0° or 180°, due to a
selection effect: the distance inside which a given binary merger
would be detectable at a fixed S/N threshold is largest for these
inclination values (Schutz 2011). For such values, the waveform
carries little information on precession.

The distance of GW170608 is extracted from the observed
signal amplitude given the binary’s inclination(Abbott
et al. 2016e). With the network of two nearly co-aligned LIGO
detectors, the uncertainty on inclination translates into a large
distance uncertainty: we infer a luminosity distance of

� �
�D 340 MpcL 140

140 , corresponding to a redshift of �z

�
�0.07 0.03

0.03 assuming a flat -CDM cosmology(Ade et al. 2016).

GW170608 is localized to a sky area of _520 deg2 in the
northern hemisphere (90% credible region), determined largely
by the signal’s measured arrival time at LLO∼7 mslater than
at LHO. This reduction in area relative to the low-latency map
is partly attributable to the use of noise-subtracted data with
offline calibration(Abbott et al. 2017b).

4.2. Consistency with General Relativity

To test whether GW170608 is consistent with the predictions of
GR, we consider possible deviations of coefficients describing the
binary inspiral part of the signal waveform from the values
expected in GR, as was done for previous detections(Abbott et al.
2016d, 2016i, 2017a). Tests involving parameters describing the
merger and ringdown do not yield informative results, since the
merger happens at relatively high frequency where the LIGO
detectors are less sensitive. As in Abbott et al. (2017b), we also
allow a sub-leading phase contribution at effective −1PN order,
i.e., with a frequency dependence of �f 7 3, which is absent in GR.
The GR predicted value is contained within the 90% credible
interval of the posterior distribution for all parameters tested.
Assuming that gravitons are dispersed in vacuum similarly to

massive particles, we also obtained an upper bound on the mass of
the graviton comparable to the constraints previously obtained
(Abbott et al. 2016b, 2016i, 2017a). Possible violations of local
Lorentz invariance, manifested via modifications to the GW
dispersion relation, were investigated(Abbott et al. 2017a), again
finding upper bounds comparable to previous results.

5. Astrophysical Implications

The low mass of GW170608ʼs source binary, in comparison to
other binary black hole systems observed by LIGO and Virgo, has
potential implications for the binary’s progenitor environment.
High-metallicity progenitors are expected to experience substantial
mass loss through strong stellar winds, while less mass loss is
exhibited for low-metallicity progenitors (Belczynski et al. 2010;
Spera et al. 2015). Thus, unlike more massive black hole binaries,
GW170608ʼs low component masses do not necessarily require
formation at low metallicity. Further discussion of the relationship
between black hole masses and metallicity can be found in Abbott
et al. (2016j).
We may compare GW170608’s relatively low-mass black hole

binary components to black holes found in X-ray binaries. X-ray
binary systems contain either a black hole or neutron star that
accretes matter from a companion donor star. Low-mass X-ray
binaries (LMXBs) are X-ray binaries with a low-mass donor star
that transfer mass through Roche lobe overflow (Charles &
Coe 2003). The inferred component masses of GW170608 are
consistent with dynamically measured masses of black holes
found in LMXBs, typically less than :M10 (Özel et al. 2010; Farr
et al. 2011; Corral-Santana et al. 2016).
Binary black holes may form through many different channels,

including, but not limited to, dynamical interaction (Mapelli 2016;
O’Leary et al. 2016; Rodriguez et al. 2016) and isolated binary
evolution (Belczynski et al. 2016; Eldridge & Stanway 2016;
Lipunov et al. 2017; Stevenson et al. 2017b). While the inferred
masses and tilt measurements of GW170608 are not sufficiently
constrained to favor a formation channel, future measurements of
binary black hole systems may hint at the formation histories of
such systems (Abbott et al. 2017a, 2016j and references therein). It
may be possible to determine the relative proportion of binaries
originating in each canonical formation channel following'( )100

Figure 3. Top panel: marginalized one-dimensional posterior density functions for
the spin parameters Dp and Deff (blue) in comparison to their prior distributions
(pink) as obtained from the effective precession model. The dashed lines indicate
the 90% credible interval. The two-dimensional plot shows the 50% and 90%
credible regions plotted over the posterior density function. Bottom panel:
posterior probabilities for the dimensionless component spins Di with i=1, 2
relative to the Newtonian orbital angular momentum L̂, i.e., the normal of the
orbital plane. The tilt angles are 0° for spins parallel to L̂ and 180° for spins anti-
parallel to L̂. The posterior density functions are marginalized over the azimuthal
angles. Each pixel has a prior probability of _ q �1.8 10 ;3 they are spaced
linearly in spin magnitudes and the cosine of the tilt angles.
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(90% credible limit); this limit is robust to extending the prior
range of spin magnitudes and to using different waveform models.
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distance uncertainty: we infer a luminosity distance of

� �
�D 340 MpcL 140

140 , corresponding to a redshift of �z

�
�0.07 0.03

0.03 assuming a flat -CDM cosmology(Ade et al. 2016).
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• In this case the data constrains the total effective spin to be small and likely 
positive. As with the others sources, we are insensitive to in-plane spin. 
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FIG. 4. Posterior probability densities of the masses, spins and distance to the three events GW150914, LVT151012 and GW151226. For the
two dimensional distributions, the contours show 50% and 90% credible regions. Top left: component masses msource

1 and msource
2 for the three

events. We use the convention that msource
1 � msource

2 , which produces the sharp cut in the two-dimensional distribution. For GW151226 and
LVT151012, the contours follow lines of constant chirp mass (M source = 8.9+0.3

�0.3 M� and M source = 15.1+1.4
�1.1 M� respectively). In all three

cases, both masses are consistent with being black holes. Top right: The mass and dimensionless spin magnitude of the final black holes.
Bottom left: The effective spin and mass ratios of the binary components. Bottom right: The luminosity distance to the three events.

a greater impact upon the inspiral. We find that smaller spins
are favoured, and place 90% credible bounds on the primary
spin a1  0.7 for GW150914, a1  0.7 for LVT151012, and
a1  0.8 for GW151226. In the case of GW151226, we infer
that at least one of the components has a spin of � 0.2 at the
99% credible level.

While the individual component spins are poorly con-
strained, there are combinations that can be better inferred.
The effective spin ceff, as defined in Equation 6, is a mass-
weighted combination of the spins parallel to the orbital an-
gular momentum [71–73]. It is +1 when both the spins are
maximal and parallel to the angular momentum, �1 when
both spins are maximal and antiparallel to the angular mo-
mentum, and 0 when there is no net mass-weighted aligned
spin. Systems with positive ceff complete more cycles when
inspiralling from a given orbital separation than those with
negative ceff [70, 110]. While ceff has a measurable effect
on the inspiral, this is degenerate with that of the mass ratio
as illustrated for the lower mass inspiral-dominated signals in
Fig. 4.

Observations for all three events are consistent with small
values of the effective spin: |ceff|  0.17, 0.28 and 0.35 at
90% probability for GW150914, LVT151012 and GW151226
respectively. This indicates that large parallel spins aligned or
antialigned with the orbital angular momentum are disfavored.

It may be possible to place tighter constraints on each com-
ponent’s spin by using waveforms that include the full effects
of precession [39]. This will be investigated in future analy-
ses.

All three events have final black holes with spins of ⇠ 0.7,
as expected for mergers of similar-mass black holes [111,
112]. The final spin is dominated by the orbital angular mo-
mentum of the binary at merger. Consequently, it is more pre-
cisely constrained than the component spins and is broadly
similar across the three events. The masses and spins of the
final black holes are plotted in Fig. 4.

The spin of the final black hole, like its mass, is calcu-
lated using fitting formulae calibrated against numerical rel-
ativity simulations. In [38] we used a formula which only in-
cluded contributions from the aligned components of the com-
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What about the final 
black hole?

• The final black hole has a mass 
of 3 M☉ less than the sum of its 
components. 

• It has a well constrained final 
spin of ~0.7. 

• This is due to the fact that the 
final spin is mostly a function of 
the orbital angular momentum at 
merger. 
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FIG. 2. Posterior PDFs for the source luminosity distance DL and
the binary inclination ✓JN . In the 1-dimensional marginalised
distributions we show the Overall (solid black), IMRPhenom
(blue) and EOBNR (red) PDFs; the dashed vertical lines mark the
90% credible interval for the Overall PDF. The 2-dimensional
plot shows the contours of the 50% and 90% credible regions
plotted over a colour-coded PDF.

misaligned to the line of sight is disfavoured; the probabil-
ity that 45� < ✓JN < 135

� is 0.35.
The masses and spins of the BHs in a (circular) binary

are the only parameters needed to determine the final mass
and spin of the BH that is produced at the end of the
merger. Appropriate relations are embedded intrinsically
in the waveform models used in the analysis, but they do
not give direct access to the parameters of the remnant BH.
However, applying the fitting formula calibrated to non-
precessing NR simulations provided in [96] to the posterior
for the component masses and spins [97], we infer the mass
and spin of the remnant BH to be M

source
f = 62

+4
�4 M�,

and af = 0.67
+0.05
�0.07, as shown in Figure 3 and Table I.

These results are fully consistent with those obtained us-
ing an independent non-precessing fit [55]. The systematic
uncertainties of the fit are much smaller than the statistical
uncertainties. The value of the final spin is a consequence
of conservation of angular momentum in which the total
angular momentum of the system (which for a nearly equal
mass binary, such as GW150914’s source, is dominated by
the orbital angular momentum) is converted partially into
the spin of the remnant black hole and partially radiated
away in GWs during the merger. Therefore, the final spin
is more precisely determined than either of the spins of the
binary’s BHs.

The calculation of the final mass also provides an esti-

FIG. 3. PDFs for the source-frame mass and spin of the rem-
nant BH produced by the coalescence of the binary. In the
1-dimensional marginalised distributions we show the Overall
(solid black), IMRPhenom (blue) and EOBNR (red) PDFs; the
dashed vertical lines mark the 90% credible interval for the Over-
all PDF. The 2-dimensional plot shows the contours of the 50%

and 90% credible regions plotted over a colour-coded PDF.

mate of the total energy emitted in GWs. GW150914 ra-
diated a total of 3.0

+0.5
�0.5 M�c

2 in GWs, the majority of
which was at frequencies in LIGO’s sensitive band. These
values are fully consistent with those given in the literature
for NR simulations of similar binaries [98, 99]. The ener-
getics of a BBH merger can be estimated at the order of
magnitude level using simple Newtonian arguments. The
total energy of a binary system at separation r is given by
E ⇡ (m1 + m2)c

2 � Gm1m2/(2r). For an equal-mass
system, and assuming the inspiral phase to end at about
r ⇡ 5GM/c

2, then around 2–3% of the initial total energy
of the system is emitted as GWs. Only a fully general rela-
tivistic treatment of the system can accurately describe the
physical process during the final strong-field phase of the
coalescence. This indicates that a comparable amount of
energy is emitted during the merger portion of GW150914,
leading to ⇡ 5% of the total energy emitted.

We further infer the peak GW luminosity achieved dur-
ing the merger phase by applying to the posteriors a sep-
arate fit to non-precessing NR simulations [100]. The
source reached a maximum instantaneous GW luminosity
of 3.6+0.5

�0.4 ⇥ 10
56

erg s
�1

= 200
+30
�20 M�c

2
/s. Here, the

uncertainties include an estimate for the systematic error
of the fit as obtained by comparison with a separate set
of precessing NR simulations, in addition to the dominant
statistical contribution. An order-of-magnitude estimate of
the luminosity corroborates this result. For the dominant
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