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Basic Cosmology
• The universe is expanding - 

Hubble 1929 

• The relationship between the 
luminosity distance and the 
recession velocity of galaxies 
is determined by a 
cosmological model and its 
parameters. 

• Hence, getting measurements 
of both quantities for multiple 
galaxies allows us to compare 
models and constrain model 
parameters, e.g. the Hubble 
constant H0. Figure 3: The dimensionless luminosity distance DL/DH. The three curves are for the three

world models, (ΩM, ΩΛ) = (1, 0), solid; (0.05, 0), dotted; and (0.2, 0.8), dashed.
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Different Ideas
• 1986 - Schutz

• 1993 - Finn & Chernoff 

• 2005 - Holz & Hughes 

• 2010 - Sathyaprakash, Schutz ,& 
Van Den Broeck 

• 2012 - Messenger & Read 

• 2012 - Del Pozzo

• 2012 - Taylor, Gair, & Mandel 

• 2013 - Nissanke, et al 

• 2014 - Messenger, et al
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ṅ0E~Z !

M
dr
dz ~Z !

4pa0
3r2~Z !

A12kr2~Z !

3CQFr08 dL~Z !

~11Z !5/6r0
S 1.2M(

M0
D 5/6G , ~4.28!

where

Z5
M
M0

21. ~4.29!

Figure 8 shows the distribution P(Mur0 ,C ,D) for cata-
logs with r greater than 8 compiled by an advanced LIGO
detector (r05355 Mpc) in several matter-dominated FRW
cosmological models. The intrinsic chirp mass of all systems
is assumed to be 1.19M( . Six different models are shown,
exploring two different h (0.5 and 0.8) and three different
q0 (1/4, 1/2 and 3/4). The closely spaced curves with colo-
cated extrema are of the same h and differ only in q0 . Note
the strong dependence of P(Mur0 ,C ,D) on h and the
weaker, but still significant, dependence on q0: The dotted
and solid curves correspond to flat cosmological models
(q051/2), the long-dashed and dot-long-dashed curves cor-
respond to open cosmological models (q051/4), and the
short-dashed and dot-short-dashed curves correspond to the
closed models (q053/4). In general the smaller q0 , the more
compressed the spectrum and the smaller the tail at large
M.

FIG. 6. The rate of NS-NS binary inspiral observations with
signal-to-noise ratio greater than 8 in an advanced LIGO detector is
largely insensitive to the neutron star mass range or the deceleration
parameter in matter-dominated Friedmann-Robertson-Walker cos-
mological models. The solid curve shows the expected rate in an
Einstein–de Sitter model as a function of the Hubble parameter h
assuming the comoving NS-NS binary coalescence rate density at
the current epoch is 1.1h Mpc23 yr21 ~solid curve!; the dashed
curve shows the same assuming the rate density is
831028 Mpc23 yr21, which is independent of h . For more dis-
cussion see Sec. IV E.

FIG. 7. The expected distribution of NS-NS inspiral events with
r greater than 8 in advanced LIGO detectors depends almost ex-
clusively on the Hubble parameter h . Shown here is the ratio of the
distribution in two matter-dominated Friedmann-Robertson-Walker
cosmological models to the distribution expected in a flat and static
cosmological model. For more details see Sec. IV E 1.

FIG. 8. A binary system’s observed chirp mass M depends on
its redshift; consequently, a NS-NS binary inspiral sample will
show a range of chirp masses corresponding to the range of system
redshifts. Shown here is the expected distribution of M for binary
systems consisting of two 1.37M( neutron stars with r.8 in ad-
vanced LIGO detectors for open (q051/4), flat (q051/2), and
closed (q053/4) matter-dominated Friedmann-Robertson-Walker
cosmological models with h50.5 and h50.8. In all cases, as q0
increases the tail of the chirp mass spectrum is extended. For more
details, see the discussion in Sec. IV F.
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expected, proportional to the NS deformability parameter
!. The consistency of the redshift determination as a
function of redshift can be explained by the combination
of 2 competing effects. Naively one would expect that the
drop in SNR at higher redshifts would cause any parameter
estimation to degrade. This is true and is the cause of the
final rise in the fractional redshift error at high redshifts. In
parallel, as the more distant sources have their waveforms
redshifted to lower frequencies, the tidal effects which
formally begin at 5PN order and have greatest effect close
to the cutoff frequency are moved towards the most sensi-
tive band of the detector (! 150 Hz). From this argument
one would conclude that this ‘‘sweet spot’’ would coincide
with z! 10, but this effect is diluted at higher redshifts due
to a reduction in SNR as the lower frequency part of the
signal moves out of band.

Discussion.—The analysis presented here is a proof of
principle and is based on a number of assumptions and
simplifications which we would like to briefly discuss and
in some cases reiterate. It is likely that by the 3rd genera-
tion GW detector era our knowledge of the tidal response
in BNS systems will have significantly advanced through
improved NR simulations [43]. Current NR simulations
have already shown that modeling these tidal phase cor-
rections using a PN formalism, while qualitatively accu-
rate, significantly underestimates the tidal phase

contribution [34–36]. In addition, these same studies sug-
gest that it is possible to accurately model tidal effects up to
the merger phase. Therefore, we feel that our use of the
ISCO as the upper cutoff frequency of the PN waveforms is
a well justified choice for this first estimate. We have also
neglected the effects of spin in our investigation, which we
expect to contribute to the PN phase approximation at the
level of!0:3% [17]. This does not preclude the possibility
that marginalizing over uncertainties in spin parameters
may weaken our ability to determine the redshift. This
seems unlikely given the small expected spins in these
systems, as well as the difference in scalings between the

spin terms and the tidal terms, x"1=2 and x5=2, respectively,
causing the tidal effects to dominate over spin in the final
stage of the inspiral. We also note that the Fisher informa-
tion estimate of parameter uncertainty is valid in the limit
of SNR * 10 [38] and under the assumption of Gaussian
noise. As such, the results at low SNR, and therefore those
at high z, should be treated as lower limits via the Cramer-
Rao bound, on the redshift uncertainty. We also mention
here that since the tidal phase corrections are, at leading
order, formally of 5th PN order, we have uncertainty in the
effect of the missing PN expansion terms in the BNS
waveform between the 3.5PN and 5PN terms. It is comfort-
ing to note that, as the PN order is increased, our results on
the redshift uncertainty do converge to the point of <1%
difference in accuracy between the 3PN and 3.5PN terms
implying (through extrapolation) that the missing PN terms
(as yet not calculated) would not affect our results. Future
detailed analysis following this work will complement
Fisher based estimates with Monte Carlo simulations
and/or Bayesian posterior based parameter estimation
techniques. Similarly, the signal parameter space should
be more extensively explored beyond the canonical 1:4M#,
equal mass case. In addition, future work will also include
black-hole–neutron star systems which will also contain,
encoded within their waveforms, extractable redshift in-
formation. Such systems are observable out to potentially
higher redshift although tidal effects will become less
important as the mass ratio increases [18]. Finally, we
briefly mention that GW detector calibration uncertainties
in strain amplitude (which for 1st generation detectors
were typically <10%) will only affect the determination
of the luminosity distance. Calibration uncertainties in
timing typically amount to phase errors of <1$ and would
be negligible in the determination of the redshift. Similarly,
the effects of weak lensing that would only affect the
luminosity distance measurement have been shown to be
negligible for ET sources [4].
Conclusions.—Current estimates on the formation rate

of BNS systems imply that in the 3rd generation GW
detector era there is the potential for up to !107 observed
events per year out to redshift z % 4 [16]. The results
presented here suggest that redshift measurements at the
level of !10% accuracy can be achieved for each BNS
event solely from the GW observation. Such systems have

FIG. 1. The fractional uncertainties in the redshift as a func-
tion of redshift obtained from the Fisher matrix analysis for BNS
systems using 3 representative EOSs: APR [40], SLy [41], and
MS1 [42]. In all cases the component NSs have rest masses of
1:4M# and waveforms have a cutoff frequency equal to the ISCO
frequency (as defined in the BNS rest frame). We have used a
cosmological parameter set H0 ¼ 70:5 km s"1 Mpc"1, !m ¼
0:2736, !k ¼ 0, w0 ¼ "1 to compute the luminosity distance
for given redshifts and have assumed detector noise correspond-
ing to the ET-D [16,39] design (a frequency domain analytic fit
to the noise floor can be found in [45]).
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detector era. It was shown in Refs. [32,34] that the
determination of the peak frequency in the postmerger
GW signal from a single source will constrain the NS EOS
significantly. It has not been widely discussed in the
literature that in order to do this accurately a host galaxy
must be associated with the source and its redshift
measured so as to infer the unredshifted mass. It is likely
that at least a small number of BNS detections from
advanced detectors will be sufficient to constrain the
EOS, which will then be improved upon by third-
generation detectors. It is expected that a population of
BNS events observed by advanced GW detectors will be
able to measure the EOS quite accurately [35].
The statistical measurement uncertainties in redshift

quoted in this work neglect systematic uncertainties that
could arise due to poorly constrained EOS, in particular, the
dependence of the peak frequencies on the total mass of the
merged object. Such uncertainties could lead to a bias in
redshift measurement that might be comparable to the
statistical uncertainties if it is not possible to accurately

constrain the EOS on the time scale of the ET. We expect,
however, that these uncertainties will be sufficiently
resolved by the time of the ET: It should be possible to
establish an accurate relationship between the mass and
postmerger spectral frequencies both by observations of
nearby events by advanced detectors and the ET and by
more advanced numerical simulations. Finally, we note that
measurements by x-ray satellites, such as the large observa-
tory for x-ray timing (LOFT), could also provide stringent
constraints on the NS EOS by the measurement, using three
complementary types of pulsations, of mass and radius of at
least four NSs with an instrumental accuracy of 4% in mass
and 3% in radius [36].
The rest of the paper is organized as follows: In Sec. II,

we describe the numerical waveforms used for this
analysis. In Sec. III, we describe our robust, but ad hoc,
parametrization and modeling of the HMNS power spec-
trum. In Sec. IV, we describe the analysis methods used to
simulate and measure the HMNS spectral features. We then
describe the procedure with which these measurements are
combined to obtain the redshift and gravitational masses of
the source. Finally, in Sec. V, we conclude with discussions
of our results and future directions for this research.

II. NUMERICAL SIMULATIONS OF BNS SYSTEMS

All of our calculations were performed in full general
relativity. The evolution of the spacetime is obtained by
using the CCATIE code, a finite-differencing code providing
the solution of a conformal traceless formulation of the
Einstein equations [37], with a “1þ log” slicing condition
and a “Gamma-driver” shift condition. The general-
relativistic hydrodynamics equations are solved using the
WHISKY code [30,38], with the Marquina flux formula and
a piecewise parabolic method (PPM) reconstruction. For
the sake of simplicity, we model the NS matter as an ideal
fluid with a gamma-law EOS, p ¼ ðΓ − 1Þρϵ with Γ ¼ 2,
where p is the pressure, ρ the rest-mass density, and ϵ
specific internal energy (see Ref. [39] for details). The grid
hierarchy, with a reflection symmetry condition across the
z ¼ 0 plane and a π-symmetry condition across the x ¼ 0
plane, is handled by the CARPET mesh refinement driver
[40], where we use six refinement levels and the spacing of

FIG. 1. Illustration of how the mass-redshift degeneracy is
broken through the use of information from the inspiral and
HMNS stage of a BNS merger event. Information on the
redshifted mass as a function of the redshift (blue stripe) can
be correlated with complementary information from the spectral
properties of the HMNS phase. The overlap will provide a
localized range in mass and redshift, breaking the degeneracy.

TABLE I. Properties of our initial data of equal-mass BNSs with the initial coordinate separation 45 km. Reported
in the various columns are the baryon mass Mb of each star, the Arnowitt-Deser-Misner (ADM) mass MADM of the
system at initial data, the gravitational mass M∞ of each star at infinite separation (M ¼ 2M∞), the circumferential
radius R∞ of each star at infinite separation, the compactness C≡M∞=R∞, and the orbital frequency forb at the
initial separation.

Mb ½M⊙& MADM ½M⊙& M∞ ½M⊙& R∞ ½GM⊙=c2& C forb [Hz]

1.4237 2.6578 1.3413 11.386 0.117 81 281.80
1.4662 2.7305 1.3784 11.276 0.122 24 284.62
1.5099 2.8049 1.4163 11.158 0.126 93 287.45
1.5549 2.8811 1.4550 11.031 0.131 90 290.29
1.5947 2.9478 1.4890 10.914 0.136 43 292.74

SOURCE REDSHIFTS FROM GRAVITATIONAL-WAVE … PHYS. REV. X 4, 041004 (2014)
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FIG. 8. Known systematic error and uncertainty for the response
function R( f ) at the time of GW150914, expressed as a complex cor-
rection factor 1+�R( f , t)/R( f ). The upper panel shows the magnitude,
and the lower panel shows the phase. Dashed lines in each subplot
indicate the nominal value (i.e., systematic error) of the correction
factor, which accounts for known systematic errors {�q} in the model
parameters. The solid lines are the total statistical uncertainty �R sur-
rounding the systematic error which define the limits of the precision
and accuracy of our estimate of h(t).

For all frequencies relevant to GW150914, between 20 Hz and
1 kHz, the uncertainty is less than 10% in magnitude and 10�
in phase. The comparison of measurements with models pre-
sented in Sec. V and Sec. VI of this paper are consistent with
that expectation.

IX. INTER-SITE TIMING ACCURACY

Digital signals derr and dctrl are derived from signals cap-
tured by analog-to-digital converters as a part of the LIGO
data acquisition system [22] and are stored in a mass data
storage system which records these signals for later analysis.
The LIGO timing system [23] provides the reference timing
information for the data acquisition system.

Each detector’s timing system uses a single Trimble Thun-
derbolt E GPS receiver as the timing reference. Additional
GPS receivers and one cesium atomic clock serve as witness
clocks to independently monitor the functionality of the main
GPS reference. Once a second, timing comparators monitor the
clock edge di↵erences (modulo one second) between the main
GPS receiver and the witness clocks with sub-microsecond
accuracy. We did not observe any anomaly at the time of
GW150914.

As a check of relatively large absolute timing o↵set, two wit-
ness GPS units at each site produce IRIG-B time code signals

which are recorded by the data acquisition system. IRIG-B
time code maps the GPS time onto the Coordinated Universal
Time (UTC). Comparison of the IRIG-B time code and the
data acquisition time stamp of the recorded signal allows us to
measure any large time o↵set which cannot be measured by
the timing comparators. At the time of GW150914, IRIG-B
witness signals were available at H1. At L1, IRIG-B signals
generated by the timing system itself were recorded as a self-
consistency check at the time of GW150914. Later into the
O1 run, the L1 IRIG-B witness signals were added. Through-
out all 38 days of observation, no inconsistency was observed
between any of recorded IRIG-B signals and the data time
stamps.

Additional monitoring is performed to measure any poten-
tial timing o↵set between the timing system and the analog-
to-digital converters. Analog diagnostic signals with a known
waveform are generated by the timing system and injected into
a subset of analog-to-digital converters. The diagnostic signals
on the units most directly related to the estimated detector
strain h(t)—the ones of the photon calibrator readback sensor
and of the GW readout photodetectors—are recorded and ana-
lyzed. The time o↵set of the recorded waveform is compared
against the expected delay, where any discrepancy would re-
veal a single analog-to-digital converter’s deviation relative
to the timing system. This comparison was performed over a
10-minute window centered on the time of detection. In both
detectors, all o↵sets were only 0.6 to 0.7 µs on average, with the
standard deviation smaller than 1 ns and without any significant
outliers. Although potential timing o↵sets between di↵erent
channels on the same analog-to-digital-converter board were
not measured, there is no reason to believe that there were any
timing o↵sets larger than a few microseconds.

The time o↵set of each LIGO detector also depends on the
o↵set of the main GPS receiver relative to the common time
frame, i.e., UTC. We expect this typically to be smaller than
1 µs based on the conservative estimate of the GPS specifica-
tion [24] as well as the comparator and IRIG-B measurements.

Based on these observations we conclude that the LIGO
timing systems at both sites were working as designed and
internally consistent over all 38 days of observation. Even if
we use the most conservative estimate as a measure of caution,
we conclude that the absolute timing o↵sets from UTC at both
sites were no larger than 10 µs.

X. IMPACT OF CALIBRATION UNCERTAINTIES ON
GW150914

The total uncertainty in h(t) reported in Section VIII is less
than 10% in magnitude and 10� in phase from 20 Hz to 1 kHz
for the entire 38 calendar days of observational data during
which GW150914 was observed. The astrophysical searches
used for detecting events like GW150914 are not limited by
this level of calibration uncertainty [25, 26].

Calibration uncertainties directly a↵ect the estimation of
the source parameters associated with events like GW150914.
The amplitude of the gravitational wave depends on both the
luminosity distance and the orbital inclination of the source, so

Standard Calibration
• It is very hard to calibrate 

gravitational wave detectors  

• The LIGO method is to use a 
“known” strength laser source to 
push on the test-mass mirrors. 

• Current calibration levels are 
at 10% in amplitude and 10o in 
phase. 

• It is unclear what fraction of 
uncertainty is systematic - this 
is crucial for GW cosmology - 
directly impacts distance 
measurements. frequency (Hz)
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• The one common issue is that 
we require measurement of 
quantities directly related to the 
absolute calibration. 

• Parameter estimation will/does 
incorporate calibration 
uncertainties BUT… 

• Hierarchical schemes cannot 
necessarily assume 
independent distance/SNR 
uncertainties. 

• We can live with a statistical 
uncertainty but a systematic 
would kill any Hubble 
measurement at that level.  
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Figure 3: The dimensionless luminosity distance DL/DH. The three curves are for the three
world models, (ΩM, ΩΛ) = (1, 0), solid; (0.05, 0), dotted; and (0.2, 0.8), dashed.
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Standard Sirens for Calibration
• Compact binaries allow us to accurately 

measure the redshifted chirp-mass ℳz = 
ℳ(1+z) from their frequency evolution. 

• The amplitude of the signal scales as 

• So if we independently knew the distance to 
the source then we could predict the received 
amplitude - and then compare it to the 
measured value. 

• Important - We have to assume a 
cosmology. 

• Differences between the amplitude values 
would imply an incorrectly calibrated 
dataset.

A � M5/6
z /dL

A � M5/6
z /dLMz

10

M =
(m1m2)3/5

(m1 + m2)1/5

chirp mass



Astrophysical Calibration
• As a feasibility study we 

looked at the possibility of 
using joint GW-Gamma Ray 
Burst (GRB) detections. 

• In this case we would likely 
identify the host galaxy from 
the GRB and therefore obtain 
a precise redshift. 

• Using the standard 
cosmological model we can 
convert this to a distance - 
and then to a predicted 
amplitude.

estimation over the unknown source parameters using the
priors as discussed in Sec. VA 1. In each case when
calculating the likelihood we used an estimate of the noise
PSD based on the advanced detector design sensitivities
(using those given in [23]), but calculated by averaging 64
separate noisy realizations of the PSD and scaled with the
same calibration scale factor as applied to the injection and
noise.9 This has provided posterior probability distribu-
tions10 on the calibration scale factors for each detector.
Examples of the marginalized posterior probabilities for a
BNS system and a NSBH system observed with the three
detector network are shown in Figs. 1 and 2 respectively.
From these posterior distributions we have calculated the

minimal 68% credible region for the calibration scale
factors for each detector (if these were Gaussian distribu-
tions this is equivalent to the region either side of the mean
bounded by the 1σ intervals). For all the signals at each
distance increment we have produced the distribution of the
fractional half widths (i.e. 1σ) of these scale factors’
confidence intervals compared to the true value. These
are shown as boxplots in Figs. 3–4 for the BNS and NSBH

systems respectively. The boxes show the extent from the
lower to upper quartile of the values, while the whiskers
extend from the fifth to 95th percentile. The black line
within each box gives the median value and the star gives
the mean value. Also shown on each plot as the dashed
magenta line is the percentage of signals drawn from the
prior distribution that fulfils the detection criterion.
In Fig. 3 we see that on average the scale factor can be

recovered to equivalent precision in both aLIGO detectors,
as would be expected, with uncertainties generally within
the 10% range for sources at 100 Mpc. This is comparable
to previous estimates of the calibration error in the initial
LIGO detectors. An interesting feature is that for distances
≳250 Mpc the upper extent of the uncertainty for H1 and
L1 hits a maximum at ∼25%, while the width of boxes
narrows. This is due to our “detectibility” criteria, where for
all distances we only see those sources with a high enough
SNR that we would consider them detectable, i.e. the
weakest signals that could still be detected would always
have a single detector SNR of ∼5.5 no matter their distance,
hence the plateau. In addition there will also be fewer
sources with SNR higher than this criteria at large dis-
tances, giving us a narrower range, and we automatically
exclude those with SNR that are too small thus truncating
our uncertainty distribution at the upper end. However, this
does show that on average for sources that are detectable
out to 450 Mpc we would be able to constrain the
calibration scale factor uncertainty for the aLIGO detectors
to ∼20%.
The largest SNR contribution will generally come from

the two aLIGO detectors and thus the detection criteria
(SNR threshold) will not apply to the AdV result. Hence,
the SNR in AdV can be small and thus the ability to
constrain its scale factor becomes poor (although it still
provides information that the calibration is not grossly
inaccurate). We also see that true uncertainties achievable

FIG. 3. Distributions of the percentage accuracy at which the
calibration scale factors can be determined for a three detector
network using BNS systems (provided a coincident GRB is
observed and can yield a distance estimate). The boxplots span
the lower to upper quartile range of the distributions, with the
median value shown as a horizontal line within the box and the
mean shown as a white star. The dashed magenta line shows
the percentage of sources drawn from the prior distribution that
would be detectable at each distance value.

FIG. 4. Distributions of the percentage accuracy at which the
calibration scale factors can be determined for a three detector
network if using NSBH systems (provided a coincident GRB is
observed and can yield a distance estimate). The plot contents are
the same as in Fig. 3.

9We do not account for there being a potential difference
between the estimated PSD and the actual PSD of the analyzed
section of data as described in e.g. [10]. This difference would be
very highly correlated with the calibration scale factor, so in
reality our estimate of the scale factor would be a combination of
the calibration offset and the difference in the PSD. As such our
results on real data would be an upper limit on the calibration
scale factor.

10As a proxy to check for convergence of the MCMC chains
we check that the calibration scale factor posterior histograms do
not contain many disjoint modes.
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Astrophysical Calibration

• Combining multiple EM counterpart results would improve the 
result if the intrinsic calibration was stable over long periods, i.e. 
systematic would be good in this case. 

• However, even waiting for one EM counterpart isn’t ideal. 

• Without a counterpart we can still do relative network calibration 
astrophysically without even assuming a cosmology. 

• Will it ever be possible to estimate both the network calibration and 
cosmological parameters simultaneously? Probably not for H0 but 
maybe for other parameters. 
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Questions
• Can systematic calibration errors be defined alongside statistical errors (plus 

variation timescales)? 

• Can we get systematic calibration uncertainty <1%? (or better) 

• Do we need better galaxy catalogues? 

• Can we do direct deep EM follow-up on events with <O(10) expected host 
galaxies. 

• How sensitive are statistical approaches to mass priors? 

• Combine the results of different correlated approaches or develop a inclusive 
analysis? 

• Can we do a joint EOS-Cosmology-Calibration analysis for BNS? 

• Will a few (or single) golden OR joint GW-EM transient events dominate the 
results.? 

• Is a selection bias introduced by only using golden events? 

• How long will the “independent measurement” argument work when comparing 
against ever improving EM measurements?
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thank you
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