Machine learning for rapid Bayesian parameter estimation Computing gravitational wave posteriors in fractions of a second

Chris Messenger 25th March 2021

Overview

- The problem
- Autoencoders
- CVAE Vitamin
 - The maths
 - Some results
- Summary

The problem GW parameter estimation is slow

LIGO-Virgo Collaboration, PRL, 118, 22 (2017)

Very brief GW intro What is it that we are interested in

- GWs are ripples in space-time that travel at the speed of light
- They are generated by time varying mass distributions
- They have 2 polarisation states and affect the relative positions of test particles
- We will focus on signals generated from compact binary coalescences

LIGO-Virgo Collaboration, PRL, 116, 6 (2016)

Example detections

https://www.youtube.com/watch?v=gmmD72cFOU4&t=28s

Current latency Optimal but not fast

- Typical analyses (for O3) have taken between 6 hours and 5 days
- This is for full PE and not to be compared with the rapid sky only tools [Singer & Price PRD, 93, 2 (2016)]
- There are other overheads in getting analyses running
- Important for multi-messenger astrophysics and computationally

Please log in to view full database contents

LIGO/Virgo O3 Public Alerts

Detection candidates: 56

https://gracedb.ligo.org/superevents/public/O3/

SORT: EVENT ID (A-Z)

Event ID	Possible Source (Probability)	UTC	GCN	Location	F/
S200316bj	MassGap (>99%)	March 16, 2020 21:57:56 UTC	GCN Circulars Notices VOE		1 y
S200311bg	BBH (>99%)	March 11, 2020 11:58:53 UTC	GCN Circulars Notices VOE		1 3 y
S200308e	NSBH (83%), Terrestrial (17%)	March 8, 2020 01:19:27 UTC	GCN Circulars Notices VOE		1 y
S200303ba	BBH (86%), Terrestrial (14%)	March 3, 2020 12:15:48 UTC	GCN Circulars Notices VOE	All HE	1 y

per 8.757

ears

per 2.4086

ears

Autoencoders Through the eye of a needle with a bit of uncertainty

Machine learning background Assumed knowledge

- I will assume that you know what the following are
 - neuron
 - layer
 - fully connected or convolutional layer
 - activation function
 - etc...
- If lost, just think of a network/layer as a black box with inputs and outputs

Basic autoencoder

- 2 networks in sequence
- Encoder maps the input into a (reduced) abstract "latent" representation
- The Decoder network converts the latent representation into an output
- The loss function is minimised when the output best matches the input

Variational autoencoder, but...

- Encoder predicts the mean and covariance of a multidimensional Gaussian in the latent space
- We then randomly sample from that distribution
- The Decoder network converts the (random) latent representation into an output
- The loss function is minimised when the output best matches the input, and...
- there's an extra loss component that keeps the latent space Gaussian averaged over all inputs

Variational autoencoder, but...

- So, here an image of a "3" gets mapped to a particular part of the latent space.
- The inherent spread in latent space represents the acceptable variation in that "3".
- A "6" lives elsewhere in the latent space, probably close to the "8"s, and "5"s since they share similar characteristics.

Variational autoencoder Same as autoencoder, but...

- variance Gaussian.
- So you can then sample from it after training to generate new images

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

• The KL loss keeps the ensemble of training data mapped to a zero-mean, unit-

Conditional Variational Autoencoder (CVAE) Getting what you asked for

Passing labels allows you specify properties of the output

Conditional Variational Autoencoder (CVAE) Getting what you asked for

- For this basic CVAE the encoder is modelling the distribution

p(z|x,y)x is the image y is the label z is the latent space location f(y,z)(y,z) + KL(p(z|x,y)|G(0,1))

 The decoder is modelling the function and the loss function is (something like)

$$L = \langle (f(z, y) - x)^2 \rangle_{p(x, y)}$$

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

You should think of the encoder network in terms of probability distributions.

CVAE - Vitamin Variational Inference ...

... tamin?

https://hagabbar.github.io

Defining the data What are the quantities of interest

- The data we measure is a noisy timeseries (y) consisting of a deterministic signal plus noise
- The signal is defined by the parameters (x)
- We want to obtain the posterior on the signal parameters

<u>Gabbard et al, arXiv 1909.06296 (2019)</u>

Parameter name	symbol	min	max
mass 1	m_1	35	80
mass 2	${m_2}^{\mathrm{a}}$	35	80
luminosity distance	$d_{ m L}$	1	3
time of coalescence	t_0	0.65	0.85
phase at coalescence	ϕ_0	0	2π
right ascension	lpha	0	2π
declination	δ	$-\pi/2$	$\pi/2$
inclination	ι	0	π
polarisation	ψ	0	π
spins	_		

CVAE mathematics

How the networks model probability distributions

- My aim in the next few slides is to show you how this diagram is completely motivated mathematically
- We start with the definition of the cross entropy between the true posterior and the approximation

$$H(y) = \int dx \, p(x|y) \log r(x|y)$$

Gabbard et al, arXiv 1909.06296 (2019)

CVAE mathematics How the networks model probability distributions

 Generalising the loss by taking the expectation over all possible values of y

 Introducing our latent variable and approximating the posterior allows us to have an expressive approximation

$$H = \left\langle \int dx \, p(x|y) \log r(x|y) \right\rangle_{y \sim p(y|x)},$$

= $\int dx \int dy \, p(x|y) p(y) \log r(x|y),$
= $\int dx \int dy \, p(x) p(y|x) \log r(x|y),$

$$r(x|y) = \int dz r(z|y) r(x|z,y).$$

CVAE mathematics How the networks model probability distributions

 Introduce the recognition function, q, and derive the Evidence Lower Bound $\operatorname{KL}\left[q(z|x,y)||r(z|x,y)\right] = \int dz \, q(z|x,y) \log\left(\frac{q(z|x,y)}{r(z|x,y)}\right)$ $\operatorname{KL}\left[q(z|x,y)||r(z|x,y)\right] = \int dz \, q(z|x,y) \log\left(\frac{q(z|x,y)r(x|y)}{r(x|z,y)r(z|y)}\right),$ $= \int dz q(z|x,y) \log r(x|y) - \int dz q(z|x,y) \log \left(\frac{r(x|z,y)r(z|y)}{q(z|x,y)}\right),$ $= \log r(x|y) - \int dz \, q(z|x,y) \log \left(\frac{r(x|z,y)r(z|y)}{q(z|x,y)} \right).$ $\log r(x|y) = \mathrm{KL}\left[q(z|x, y)||r(z|x, y)\right] + \mathrm{ELBO},$ $\log r(x|y) \ge \text{ELBO}$

Bayes Theorem : p(a|b)p(b) = p(b|a)p(a)

CVAE mathematics How the networks model probability distributions

• Back to the cross-entropy $H = \int dt$

$$\begin{split} H &\leq \int dx \int dy \, p(x) p(y|x) \text{ELBO}, \\ &\leq \int dx \int dy \, p(x) p(y|x) \int dz \, q(z|x,y) \log\left(\frac{r(x|z,y)r(z|y)}{q(z|x,y)}\right), \\ &\leq \int dx \int dy \, p(x) p(y|x) \left(\int dz \, q(z|x,y) \log\left(\frac{r(z|y)}{q(z|x,y)}\right) + \int dz \, q(z|x,y) \log r(x|y,z)\right), \\ &\leq \int dx \int dy \, \int dz \, p(x) p(y|x) q(z|x,y) \left(\log\left(\frac{r(z|y)}{q(z|x,y)}\right) + \log r(x|y,z)\right) \end{split}$$

$$dx \int dy \, p(x) p(y|x) \log r(x|y),$$

CVAE mathematics

How the networks model probability distributions

Now we can see how the diagram is motivated

$$H \leq -\frac{1}{N} \sum_{j} \left(\log \left(\frac{r(z_j | y_j)}{q(z_j | x_j, y_j)} \right) + \log q \right)$$

Train

CVAE mathematics

How the networks model probability distributions

• Using the network to generate samples from the posterior

$$r(x|y) = \int dz r(z|y) r(x|z,y).$$

• So x is drawn from

$$x \sim r(x|y,z)|_{z \sim r(z|y)}$$

Vitamin design

How we construct the individual networks

- Each probability distribution is modelled by a network that takes inputs and outputs the parameters governing a distribution
- Each is a deep convolutional network
- In our case we use 15-dim uncorrelated Gaussians for q(z|x,y) and r(x|y,z)
- We choose to use a 15-dim Gaussian mixture model for r(z|y)

<u>Gabbard et al, arXiv 1909.06296 (2019)</u>

TABLE III. The VItamin network hyper-parameters

Network Layer	$r_{ heta_1}(z y)$	$r_{ heta_2}(x y,z)$	$q_{\phi}(z x,y)$
Input y	$[256,3]^{a}$	[256, 3]	[256, 3]
Layer 1	$conv(5,3,33)^{b}$ $act^{c}=ReLU$	conv(5,3,33) act=ReLU	conv(5,3,3) act=ReL
Layer 2	conv(8,33,33) maxpool(2,2) ^d act=ReLU	conv(8,33,33) maxpool(2,2) act=ReLU	conv(8,33,3) maxpool(2 act=ReL
Layer 3	conv(11,33,33) act=ReLU	conv(11,33,33) act=ReLU	conv(11,33, act=ReL)
Input z, x	_	flatten ^e \rightarrow [4224] append ^f (z) \rightarrow [4234]	$flatten \rightarrow [42]$ $append(x) \rightarrow [$
Layer 4	conv(10,33,33) maxpool(2,2) act=ReLU	$ \begin{array}{c} \mathrm{FC}(4234,2048)^{\mathrm{g}} \\ \mathrm{dropout}(0.2)^{\mathrm{h}} \\ \mathrm{act} = \mathrm{ReLU} \end{array} $	FC(4231,20) dropout(0 act=ReL
Layer 5	conv(10,33,33) act=ReLU flatten \rightarrow [2112]	FC(2048,2048) $dropout(0.2)$ $act=ReLU$	FC(2048,20 dropout(0 act=ReL
Layer 6	FC(2112,2048) dropout=0.2 act=ReLU	FC(2048,14) act=(Sigmoid,-ReLU) ⁱ output= μ_{r_2} $\rightarrow [7,2]^j$	FC(2048,2 act=Non output= μ \rightarrow [10,2] ^k
Layer 7	FC(2048,2048) $dropout(0.2)$ $act=ReLU$	Represen	tative but
Layer 8	FC(2048,320) act=None output= μ_{r_1} $\rightarrow [10,16,2]^1$	NOW OU	Itdated

)

Vitamin results The training process

- Needs lots of training data in the form of examples of noisy signals (y) plus the true signal parameters (X)
- Need a GPU and still takes ~days
- We do not need any costly precomputed posteriors
- The total cost/loss is minimised at the expense of increased KL

Updated version of Gabbard et al, arXiv 1909.06296 (2019)

Vitamin results The validation process

- We are able to test the statistical consistency of the outputs.
- A p-p plot basically compares the Bayesian confidence with the frequentist interpretation
- Doesn't prove that the output posteriors are correct - just that they are probabilistically consistent

<u>Gabbard et al, arXiv 1909.06296 (2019)</u>

Vitamin posteriors Compared with existing approaches

• We run a number of (very) costly analyses with existing sampling approaches for comparison

- Results do not agree perfectly and there is still work to do to fine tune the networks
- Note that existing samplers also disagree in some circumstances

Updated version of Gabbard et al, arXiv 1909.06296 (2019)

Vitamin speed

There is no contest (unless you count training)

- The primary difference is that the CVAE is pre-trained so that all cost is up-front
- We get a ~6 order of magnitude speed up in our test cases
- Can now generate 10⁴ posterior samples in <1 sec
- Training still takes O(days) but needs to only be done once*

TABLE I. Durations required to produce samples from each of the different posterior sampling approaches.

	run time (seconds)			rotio	$ au_{ m VItamin}$
sampler	\min	max	median	1400	$\overline{ au_X}$
Dynesty $^{\mathrm{a}}$ [15]	11795	29838	19400 ^b	5.2	$\times 10^{-6}$
mcee [16]	18838	69272	32070	3.1	$\times 10^{-6}$
ptemcee $[17]$	17124	37446	24372	4.1	$\times 10^{-6}$
CPNest [14]	9943	53315	26202	3.8	$\times 10^{-6}$
VItamin ^c]	$1 \times 10^{\circ}$	-1		1

- ^a The benchmark samplers all produced $\mathcal{O}(10000)$ samples dependent on the default sampling parameters used.
- ^b We note that there are a growing number of specialised techniques [31–33] designed to speed up traditional sampling algorithms that could be used to reduce the runtimes quoted here by $\mathcal{O}(1-2)$ orders of magnitude.
- ^c For the VItamin sampler 10000 samples are produced as representative of a typical posterior. The run time is independent of the signal content in the data and is therefore constant for all test cases.

Summary Its all good but there's still a lot more to be done

Summary

- ML can provide a direct replacement for existing Bayesian parameter estimation • This will enable realtime multi messenger astronomy
- There is also the scope for pre-merger detections
- There are still many challenges, e.g., real detector noise, longer duration signals, etc...
- This type of analysis is applicable to general Bayesian inference problems
- Other solutions are available, e.g., Normalising Flows [Kobyzev et al, arXiv 1908.09257 (2019)]

Thank you for your attention

Extra slides

Non-Gaussian Noise Train on real GW (noise) data

- Real GW data is not exactly Gaussian
- We are in the process of training our models using real historical GW detector noise
- This will allow us to also make the network conditional on the noise properties (PSD)
- Training on rare transient detector noise events will be challenging

LVC Collaboration, PRL, 119, 161101 (2017)

Refinement Resampling VItamin samples

- An idea borrowed from colleagues at Monash [Payne et al, PRD 100, 12, 2019]
- We take the approximate Vitamin points and then compute

$$r(x|y) = \langle r(x|z,y) \rangle|_{z \sim r(z|y)}$$

• We then use importance/rejection sampling to resample to achieve refined results

Nessai https://github.com/mj-will/nessai Using ML to enhance existing methods

- One of the bottlenecks in classical nested sampling is generating points that
 - are sampled from the prior, and
 - also within a given likelihood contour
- Normalising flows translate simple distributions to more complicated ones and have been shown to accelerate Nested sampling [Williams et al arXiv 2102.11056 (2021)].

Parameter space

Normalising Flows Another way of doing this

- Another Likelihood-free approach that can also obtain Bayesian posteriors is Normalising Flows [Green et al, PRD 102, 10 (2020)]
- These are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact

$$p_X(x) = p_Z(f(x)) \left| \det \left(rac{\partial f(x)}{\partial x^T}
ight)
ight|$$

https://blog.evjang.com/2018/01/nf2.html