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The problem
GW parameter estimation is 
slow

LIGO-Virgo Collaboration, PRL, 118, 22 (2017)

3

https://ui.adsabs.harvard.edu/abs/2017PhRvL.118v1101A/abstract


What is it that we are interested in

• GWs are ripples in space-time that  
travel at the speed of light 

• They are generated by time varying 
mass distributions 

• They have 2 polarisation states and 
affect the relative positions of test 
particles 

• We will focus on signals generated 
from compact binary coalescences

Very brief GW intro

LIGO-Virgo Collaboration, PRL, 116, 6 (2016)
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https://ui.adsabs.harvard.edu/abs/2016PhRvL.116f1102A/abstract


Example detections

 https://www.youtube.com/watch?v=gmmD72cFOU4&t=28s
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https://ui.adsabs.harvard.edu/abs/2016PhRvL.116f1102A/abstract
https://www.youtube.com/watch?v=gmmD72cFOU4
https://www.youtube.com/watch?v=gmmD72cFOU4&t=28s


Optimal but not fast

• Typical analyses (for O3) have taken 
between 6 hours and 5 days  

• This is for full PE and not to be 
compared with the rapid sky only 
tools [Singer & Price PRD, 93, 2 (2016)] 

• There are other overheads in 
getting analyses running 

• Important for multi-messenger 
astrophysics and computationally

Current latency
https://gracedb.ligo.org/superevents/public/O3/
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https://ui.adsabs.harvard.edu/abs/2016PhRvD..93b4013S/abstract
https://gracedb.ligo.org/superevents/public/O3/


Autoencoders
Through the eye of a needle 
with a bit of uncertainty
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Machine learning background
Assumed knowledge

• I will assume that you know what the following are 

• neuron 

• layer 

• fully connected or convolutional layer 

• activation function  

• etc.. 

• If lost, just think of a network/layer as a black box with inputs 
and outputs
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Basic autoencoder

• 2 networks in sequence 

• Encoder maps the input into a (reduced) 
abstract “latent” representation 

• The Decoder network converts the latent 
representation into an output 

• The loss function is minimised when the 
output best matches the input 

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

z
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https://ijdykeman.github.io/ml/2016/12/21/cvae.html


Variational autoencoder
Same as autoencoder, but…

• Encoder predicts the mean and covariance of a multi-
dimensional Gaussian in the latent space 

• We then randomly sample from that distribution   

• The Decoder network converts the (random) latent 
representation into an output 

• The loss function is minimised when the output best 
matches the input, and… 

• there’s an extra loss component that keeps the latent 
space Gaussian averaged over all inputs

https://ijdykeman.github.io/ml/2016/12/21/cvae.html 10

https://ijdykeman.github.io/ml/2016/12/21/cvae.html


Variational autoencoder
Same as autoencoder, but…

• So, here an image of a “3” gets mapped to a 
particular part of the latent space. 

• The inherent spread in latent space represents 
the acceptable variation in that ”3”. 

• A “6” lives elsewhere in the latent space, 
probably close to the “8”s, and “5”s since they 
share similar characteristics.

https://ijdykeman.github.io/ml/2016/12/21/cvae.html 11

https://ijdykeman.github.io/ml/2016/12/21/cvae.html


Variational autoencoder
Same as autoencoder, but…

• The KL loss keeps the ensemble of training data mapped to a zero-mean, unit-
variance Gaussian.  

• So you can then sample from it after training to generate new images   

https://ijdykeman.github.io/ml/2016/12/21/cvae.html 12

https://ijdykeman.github.io/ml/2016/12/21/cvae.html


Conditional Variational Autoencoder (CVAE)
Getting what you asked for

• Passing labels allows you specify properties of the output

https://ijdykeman.github.io/ml/2016/12/21/cvae.html 13

https://ijdykeman.github.io/ml/2016/12/21/cvae.html


Conditional Variational Autoencoder (CVAE)
Getting what you asked for

• You should think of the encoder network in terms of probability distributions. 

• For this basic CVAE the encoder is modelling the distribution 

• The decoder is modelling the function  

• and the loss function is (something like)

p(z|x, y)

L = h(f(z, y)� x)2ip(x,y,z) + EG (p(z|x, y)|G(0, 1))

f(y, z)

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

x is the image 
y is the label 
z is the latent space location
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https://ijdykeman.github.io/ml/2016/12/21/cvae.html


CVAE - Vitamin
Variational Inference …  

… tamin?

https://hagabbar.github.io

https://hagabbar.github.io


What are the quantities of interest

• The data we measure is a noisy 
timeseries (y) consisting of a 
deterministic signal plus noise 

• The signal is defined by the 
parameters (x) 

• We want to obtain the posterior 
on the signal parameters

Defining the data

p(x|y)
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FIG. 2. Corner plot showing one and two-dimensional marginalised posterior distributions on the GW parameters for one
example test dataset. Filled red contours represent the two-dimensional joint posteriors obtained from VItamin and solid blue
and green contours are the corresponding posteriors output from our benchmark analyses (using the Dynesty and ptemcee

samplers within Bilby). In each case, the contour boundaries enclose 68, 90 and 95% probability. One dimensional histograms
of the posterior distribution for each parameter from both methods are plotted along the diagonal. Black vertical and horizontal
lines denote the true parameter values of the simulated signal. At the top of the figure we include a Mollweide projection of the
sky location posteriors from all three analyses. All results presented in this letter correspond to a three-detector configuration
but for clarity we only plot the H1 whitened noisy time-series y and the noise-free whitened signal (in blue and cyan respectively)
to the right of the figure. The test signal was simulated with an optimal multi-detector signal-to-noise ratio of 17.2.
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and r✓(x|y) is the parametric distribution that we will use
neural networks to construct. The variable ✓ represents
the trainable neural network parameters.

The cross-entropy is minimised when p(x|y) = r✓(x|y)
and so by minimising

H = �Ep(y)

Z
dx p(x|y) log r✓(x|y)

�
, (5)

where Ep(y)[·] indicates the expectation value over the
distribution of measurements y, we therefore make the
parametric distribution as similar as possible to the tar-
get for all possible measurements y.

Converting the expectation value into an integral over
y weighted by p(y) and applying Bayes’ theorem we ob-
tain

H = �

Z
dx p(x)

Z
dy p(y|x) log r✓(x|y) (6)

where p(x) is the prior distribution on the physical pa-
rameters x, and p(y|x) is the likelihood of x (the proba-
bility of measuring the data y given the parameters x).

The CVAE network outlined in Fig. 1 makes use of
a conditional latent variable model and our parametric
model is constructed from the product of 2 separate dis-
tributions marginalised over the latent space as defined
in Eq. 3. We have used ✓1 and ✓2 to indicate that the
2 separate networks modelling these distributions will be
trained on these parameter sets respectively. The en-
coder r✓1(z|y) takes as input the data y and outputs pa-
rameters that describe a probability distribution within
the latent space. The decoder r✓2(x|z, y) takes as input
a single location z within the latent space together with
the data y and outputs sets of parameters describing a
probability distribution in the physical parameter space.

One could be forgiven for thinking that by setting up
networks that simply aim to minimise H over the ✓1 and
✓2 would be enough to solve this problem. However, as
shown in [25] this is an intractable problem and a net-
work cannot be trained directly to do this. Instead we
introduce a recognition function q�(z|x, y), modelled by
an additional neural network and governed by the train-
able network parameters �, that will be used to derive
an ELBO.

Let us first define the KL-divergence between the
recognition function and the distribution r✓(z|x, y) as

KL [q�(z|x, y)||r✓(z|x, y)] = (7)
Z

dz q�(z|x, y) log

✓
q�(z|x, y)

r✓(z|x, y)

◆
,

from which it can be shown that

log r✓(x|y) = ELBO+KL [q�(z|x, y)||r✓(z|x, y)] , (8)

where the ELBO is given by

ELBO =

Z
dz q�(z|x, y) log

✓
r✓2(x|y, z)r✓1(z|y)

q�(z|x, y)

◆
. (9)

TABLE II. The uniform prior boundaries and fixed parameter
values used on the BBH signal parameters for the benchmark
and the CVAE analyses.

Parameter name symbol min max units
mass 1 m1 35 80 solar masses
mass 2 m2

a 35 80 solar masses
luminosity distance dL 1 3 Gpc
time of coalescence t0 0.65 0.85 seconds
phase at coalescence �0 0 2⇡ radians
right ascension ↵ 0 2⇡ radians
declination � �⇡/2 ⇡/2 radians
inclination ◆ 0 ⇡ radians
polarisation  0 ⇡ radians
spins - 0 -
epoch 1126259642 GPS time
detector network LIGO H1,L1, & Virgo V1 -

a Additionally m2 is constrained such that m2 < m1.

It is so-named since the KL-divergence has a minimum of
zero and cannot be negative. Therefore, if we were to find
a q�(z|x, y) function (optimised on �) that minimised the
KL-divergence defined in Eq. 7 then we can state that

log r✓(x|y) � ELBO. (10)

After some further manipulation of Eq. 9 we find that

log r✓(x|y) �Eq�(z|x,y) [log r✓2(x|z, y)]

�KL [q�(z|x, y)||r✓1(z|y)] . (11)

We can now substitute this inequality into our cost func-
tion as defined by Eq. 6 to obtain

H  �

Z
dx p(x)

Z
dy p(y|x)

h
Eq�(z|x,y) [log r✓2(x|z, y)]

�KL [q�(z|x, y)||r✓1(z|y)]
i
, (12)

which can in practice be approximated as a stochastic
integral over draws of x from the prior, y from the likeli-
hood function p(y|x), and from the recognition function,
giving us Eq. 4, the actual function evaluated within the
training procedure. In standard sampling algorithms it is
required that the likelihood is calculated explicitly dur-
ing the exploration of the parameter space and hence an
analytic noise and signal model must be assumed. For
a CVAE implementation we are required only to sam-
ple from the likelihood distribution, i.e., generate simu-
lated noisy measurements given a set of signal parame-
ters. This gives us the option of avoiding the assumption
of detector noise Gaussianity in the future by training
the CVAE using ”real” non-Gaussian detector noise.

Network design

The CVAE network outlined in Fig. 1 is constructed
from the 3 separate neural networks modelling the en-

Gabbard et al, arXiv 1909.06296 (2019)

3-detector network

15 parameters
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https://ui.adsabs.harvard.edu/abs/2019arXiv190906296G/abstract


How the networks model probability distributions

• My aim in the next few slides is to 
show you how this diagram is 
completely motivated mathematically 

• We start with the definition of the 
cross entropy between the true 
posterior and the approximation

CVAE mathematics

CVAE derivation

Chris Messenger

Abstract

We go through the derivation of the CVAE loss function

1 Basic derivation

We start with a definition of our primary aim, the construction of a distribution r(x|y) that matches
the true posterior distribution p(x|y). Hence, if we are free to choose our distribution then we want
to minimise the cross-entropy

H(y) =

Z
dx p(x|y) log r(x|y). (1)

We note that in this case x are the parameters, y is the measured data, and we will use p(. . .)
to represent ”true” probabilities, and r(. . .) to represent approximations to the equivalent true
distributions.

At this stage we will also make the additional requirement that we would like our approximate
scheme to work for any and all data realisations. In this case we define what we will call our cost
function as

H =

⌧Z
dx p(x|y) log r(x|y)

�

y⇠p(y|x)
,

=

Z
dx

Z
dy p(x|y)p(y) log r(x|y),

=

Z
dx

Z
dy p(x)p(y|x) log r(x|y), (2)

where we are taking the expectation value of the cross entropy over the distribution of data reali-
sations.

We now define a specific choice regarding how we model the posterior distribution. In doing so
we introduce the latent space variable z such that

r(x|y) =
Z

dz r(z|y)r(x|z, y). (3)

We also introduce a 3rd distribution known as the ”recognition” function q(z|x, y) and make use
of it in the following way. Our intention is to construct this distribution so that it is equivalent to
the distribution r(z|x, y) and therefore we consider the KL-divergence

KL [q(z|x, y)||r(z|x, y)] =
Z

dz q(z|x, y) log
✓
q(z|x, y)
r(z|x, y)

◆
(4)

1

Gabbard et al, arXiv 1909.06296 (2019)
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CVAE mathematics
How the networks model probability distributions

• Generalising the loss by taking 
the expectation over all possible 
values of y  

• Introducing our latent variable 
and approximating the posterior 
allows us to have an expressive 
approximation

CVAE derivation

Chris Messenger

Abstract
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=

Z
dx

Z
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=

Z
dx

Z
dy p(x)p(y|x) log r(x|y), (2)
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We now define a specific choice regarding how we model the posterior distribution. In doing so
we introduce the latent space variable z such that

r(x|y) =
Z

dz r(z|y)r(x|z, y). (3)

We also introduce a 3rd distribution known as the ”recognition” function q(z|x, y) and make use
of it in the following way. Our intention is to construct this distribution so that it is equivalent to
the distribution r(z|x, y) and therefore we consider the KL-divergence

KL [q(z|x, y)||r(z|x, y)] =
Z

dz q(z|x, y) log
✓
q(z|x, y)
r(z|x, y)

◆
(4)

1
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✓
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CVAE mathematics
How the networks model probability distributions

• Introduce the recognition function, q, and derive the Evidence Lower Bound
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✓
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If we use Bayes theorem to rewrite r(z|x, y) then we obtain

KL [q(z|x, y)||r(z|x, y)] =
Z

dz q(z|x, y) log
✓
q(z|x, y)r(x|y)
r(x|z, y)r(z|y)

◆
,

=

Z
dz q(z|x, y) log r(x|y)�

Z
dz q(z|x, y) log

✓
r(x|z, y)r(z|y)

q(z|x, y)

◆
,

= log r(x|y)�
Z

dz q(z|x, y) log
✓
r(x|z, y)r(z|y)

q(z|x, y)

◆
. (5)

We call the integral on the RHS the Evidence Lower Bound (ELBO), since written as

log r(x|y) = KL [q(z|x, y)||r(z|x, y)] + ELBO,

log r(x|y) � ELBO (6)

we can see that since the KL-divergence is always positive then the inequality is valid. In fact, the
inequality becomes and equality if we find the distribution q(z|x, y) that matches r(z|x, y).

So, just to be clear, if we are able to construct the distribution q(z|x, y) such that it exactly
matches the r(z|x, y) then by computing the ELBO we are evaluating the log of the estimated
posterior.

We are now in a position to combine this result with our original cost function H to give us

H 
Z

dx

Z
dy p(x)p(y|x)ELBO,


Z

dx

Z
dy p(x)p(y|x)

Z
dz q(z|x, y) log

✓
r(x|z, y)r(z|y)

q(z|x, y)

◆
,


Z

dx

Z
dy p(x)p(y|x)

✓Z
dz q(z|x, y) log

✓
r(z|y)

q(z|x, y)

◆
+

Z
dz q(z|x, y) log r(x|y, z)

◆
,


Z

dx

Z
dy

Z
dz p(x)p(y|x)q(z|x, y)

✓
log

✓
r(z|y)

q(z|x, y)

◆
+ log r(x|y, z)

◆
(7)

We notice that this is an expectation value of the bracketed terms over a joint distribution of x, y, z.
The practical way to calculate this is via Monte-Carlo integration where samples are drawn such
that x ⇠ p(x), y ⇠ p(y|x) and z ⇠ p(z|x, y) such that our final cost function is

H  � 1

N

X

j

✓
log

✓
r(zj |yj)

q(zj |xj , yj)

◆
+ log r(xj |yj , zj)

◆������
x⇠p(x),y⇠p(y|x),z⇠q(z|x,y)

. (8)

where the subscripted variables are randomly drawn variables from their respective distributions.
The question then remains, how do we construct the r and q distributions to minimise H? The
answer is machine learning where we can construct networks to represent each distribution in the
previous expression and then train them to minimise the cost function.
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2

p(a|b)p(b) = p(b|a)p(a)Bayes Theorem : 
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CVAE mathematics
How the networks model probability distributions

• Back to the cross-entropy

If we use Bayes theorem to rewrite r(z|x, y) then we obtain
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So, just to be clear, if we are able to construct the distribution q(z|x, y) such that it exactly
matches the r(z|x, y) then by computing the ELBO we are evaluating the log of the estimated
posterior.
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We notice that this is an expectation value of the bracketed terms over a joint distribution of x, y, z.
The practical way to calculate this is via Monte-Carlo integration where samples are drawn such
that x ⇠ p(x), y ⇠ p(y|x) and z ⇠ p(z|x, y) such that our final cost function is
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where the subscripted variables are randomly drawn variables from their respective distributions.
The question then remains, how do we construct the r and q distributions to minimise H? The
answer is machine learning where we can construct networks to represent each distribution in the
previous expression and then train them to minimise the cost function.
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CVAE derivation

Chris Messenger

Abstract

We go through the derivation of the CVAE loss function

1 Basic derivation

We start with a definition of our primary aim, the construction of a distribution r(x|y) that matches
the true posterior distribution p(x|y). Hence, if we are free to choose our distribution then we want
to minimise the cross-entropy

H(y) =

Z
dx p(x|y) log r(x|y). (1)

We note that in this case x are the parameters, y is the measured data, and we will use p(. . .)
to represent ”true” probabilities, and r(. . .) to represent approximations to the equivalent true
distributions.

At this stage we will also make the additional requirement that we would like our approximate
scheme to work for any and all data realisations. In this case we define what we will call our cost
function as

H =

⌧Z
dx p(x|y) log r(x|y)
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y⇠p(y|x)
,
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Z
dy p(x|y)p(y) log r(x|y),
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Z
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Z
dy p(x)p(y|x) log r(x|y), (2)

where we are taking the expectation value of the cross entropy over the distribution of data reali-
sations.

We now define a specific choice regarding how we model the posterior distribution. In doing so
we introduce the latent space variable z such that

r(x|y) =
Z

dz r(z|y)r(x|z, y). (3)

We also introduce a 3rd distribution known as the ”recognition” function q(z|x, y) and make use
of it in the following way. Our intention is to construct this distribution so that it is equivalent to
the distribution r(z|x, y) and therefore we consider the KL-divergence

KL [q(z|x, y)||r(z|x, y)] =
Z

dz q(z|x, y) log
✓
q(z|x, y)
r(z|x, y)

◆
(4)
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How the networks model probability distributions

• Now we can see how the diagram is motivated

CVAE mathematics

If we use Bayes theorem to rewrite r(z|x, y) then we obtain
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We call the integral on the RHS the Evidence Lower Bound (ELBO), since written as

log r(x|y) = KL [q(z|x, y)||r(z|x, y)] + ELBO,

log r(x|y) � ELBO (6)

we can see that since the KL-divergence is always positive then the inequality is valid. In fact, the
inequality becomes and equality if we find the distribution q(z|x, y) that matches r(z|x, y).

So, just to be clear, if we are able to construct the distribution q(z|x, y) such that it exactly
matches the r(z|x, y) then by computing the ELBO we are evaluating the log of the estimated
posterior.

We are now in a position to combine this result with our original cost function H to give us
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We notice that this is an expectation value of the bracketed terms over a joint distribution of x, y, z.
The practical way to calculate this is via Monte-Carlo integration where samples are drawn such
that x ⇠ p(x), y ⇠ p(y|x) and z ⇠ p(z|x, y) such that our final cost function is
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where the subscripted variables are randomly drawn variables from their respective distributions.
The question then remains, how do we construct the r and q distributions to minimise H? The
answer is machine learning where we can construct networks to represent each distribution in the
previous expression and then train them to minimise the cost function.
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How the networks model probability distributions

• Using the network to generate 
samples from the posterior 

• So x is drawn from 

CVAE mathematics

CVAE derivation

Chris Messenger

Abstract

We go through the derivation of the CVAE loss function

1 Basic derivation

We start with a definition of our primary aim, the construction of a distribution r(x|y) that matches
the true posterior distribution p(x|y). Hence, if we are free to choose our distribution then we want
to minimise the cross-entropy

H(y) =

Z
dx p(x|y) log r(x|y). (1)

We note that in this case x are the parameters, y is the measured data, and we will use p(. . .)
to represent ”true” probabilities, and r(. . .) to represent approximations to the equivalent true
distributions.

At this stage we will also make the additional requirement that we would like our approximate
scheme to work for any and all data realisations. In this case we define what we will call our cost
function as

H =

⌧Z
dx p(x|y) log r(x|y)
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dy p(x)p(y|x) log r(x|y), (2)

where we are taking the expectation value of the cross entropy over the distribution of data reali-
sations.

We now define a specific choice regarding how we model the posterior distribution. In doing so
we introduce the latent space variable z such that

r(x|y) =
Z

dz r(z|y)r(x|z, y). (3)

We also introduce a 3rd distribution known as the ”recognition” function q(z|x, y) and make use
of it in the following way. Our intention is to construct this distribution so that it is equivalent to
the distribution r(z|x, y) and therefore we consider the KL-divergence

KL [q(z|x, y)||r(z|x, y)] =
Z

dz q(z|x, y) log
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x ⇠ r(x|y, z)|z⇠r(z|y)
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How we construct the individual networks

• Each probability distribution is 
modelled by a network that takes 
inputs and outputs the parameters 
governing a distribution 

• Each is a deep convolutional network 

• In our case we use 15-dim 
uncorrelated Gaussians for q(z|x,y) 
and r(x|y,z) 

• We choose to use a 15-dim 
Gaussian mixture model for r(z|y)

Vitamin design

9

TABLE III. The VItamin network hyper-parameters

Layer
Network

r✓1(z|y) r✓2(x|y, z) q�(z|x, y)

Input y [256,3]a [256,3] [256,3]

Layer 1
conv(5,3,33)b conv(5,3,33) conv(5,3,33)
actc=ReLU act=ReLU act=ReLU

Layer 2
conv(8,33,33) conv(8,33,33) conv(8,33,33)
maxpool(2,2)d maxpool(2,2) maxpool(2,2)
act=ReLU act=ReLU act=ReLU

Layer 3
conv(11,33,33) conv(11,33,33) conv(11,33,33)
act=ReLU act=ReLU act=ReLU

Input z, x -
flattene![4224] flatten![4224]

appendf(z)![4234] append(x)![4231]

Layer 4
conv(10,33,33)
maxpool(2,2)
act=ReLU

FC(4234,2048)g

dropout(0.2)h

act=ReLU

FC(4231,2048)
dropout(0.2)
act=ReLU

Layer 5
conv(10,33,33)
act=ReLU

flatten![2112]

FC(2048,2048) FC(2048,2048)
dropout(0.2) dropout(0.2)
act=ReLU act=ReLU

Layer 6
FC(2112,2048)
dropout=0.2
act=ReLU

FC(2048,14)
act=(Sigmoid,-ReLU)i

output=µr2

![7,2]j

FC(2048,20)
act=None
output=µq

![10,2]k

Layer 7
FC(2048,2048)
dropout(0.2)
act=ReLU

Layer 8

FC(2048,320)
act=None
output=µr1

![10,16,2]l

a The shape of the data [one-dimensional dataset length, No. channels].
b one-dimensional convolutional filter with arguments (filter size, No. channels, No. filters).
c The activation function used.
d Max-pooling layer with arguments (pool size, stride length).
e Take the multi-channel output of the previous layer and reshape it into a one-dimensional vector.
f Append the argument to the current dataset.
g Fully connected layer with arguments (input size, output size).
h Drop-out layer with argument (drop-out fraction).
i Di↵erent activations are used for di↵erent parameters. For the scaled parameter means we use sigmoids and for log-variances we use
negative ReLU functions.

j The r✓2 output has size [physical space dimension, No. parameters defining the distribution per dimension].
k The q� output has size [latent space dimension, No. parameters defining the distribution per dimension].
l The r✓1 output has size [latent space dimension, No. modes, No. parameters defining each component per dimension].

optimised set of hyperparameters are chosen. We have
found through random hyperparameter tuning that the
size of the latent space does not have a significant e↵ect
on training performance as long as the latent space di-
mensionality is greater than the total number of source
parameters inferred. Hence we have chosen a latent space
size of nz = 10 for the network.

Training procedure

Our cost function is composed of 3 probability distri-
butions modelled by neural networks with well defined
inputs and outputs where the mapping of those inputs

to outputs is governed by the parameter sets ✓1, ✓2 and
�. These parameters are the weights and biases of 3
neural networks acting as (variational) encoder, decoder,
and encoder respectively. To train such a network one
must connect the inputs and outputs appropriately to
compute the cost function H (Eq. 4) and back-propagate
cost function derivatives to update the network parame-
ters.
Training is performed via a series of steps illustrated

schematically in Fig. 1. A batch of data composed of
pairs of time-series y and their corresponding true GW
signal parameters x are passed as input and the following
steps are applied to each element of the batch.

1. The encoder q� takes both the time-series y and the

Gabbard et al, arXiv 1909.06296 (2019)

Representative but 
now outdated
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https://ui.adsabs.harvard.edu/abs/2019arXiv190906296G/abstract


The training process

• Needs lots of training data in the 
form of examples of noisy signals 
(y) plus the true signal parameters 
(x) 

• Need a GPU and still takes ~days 

• We do not need any costly pre-
computed posteriors 

• The total cost/loss is minimised at 
the expense of increased KL

Vitamin results
Updated version of Gabbard et al, arXiv 1909.06296 (2019)

annealing stage training

24

https://ui.adsabs.harvard.edu/abs/2019arXiv190906296G/abstract


The validation process

• We are able to test the statistical 
consistency of the outputs. 

• A p-p plot basically compares the 
Bayesian confidence with the 
frequentist interpretation 

• Doesn’t prove that the output 
posteriors are correct - just that 
they are probabilistically consistent

Vitamin results
11

FIG. 4. One-dimensional p-p plots for each parameter
and for each benchmark sampler and VItamin. The curves
were constructed using the 256 test datasets and the dashed
black diagonal line indicates the ideal result. The best and
worst-case p-values associated with each sampling method are
(0.972,0.211 VItamin), (0.832,0.043 Dynesty), (0.728,0.117
ptemcee), (0.840,0.189 CPNest), (0.489,0.002 emcee).

TABLE IV. Benchmark sampler configuration parameters.
Values were chosen based on a combination of their recom-
mended default parameters [18] and private communication
with the Bilby development team.

sampler parameters
Dynesty [15] live-points = 5000 tolerance = 0.1

ptemcee [17]
walkers = 250 temperatures = 8

steps = 5000 burn = 4000
CPNest [14] live-points = 5000 tolerance = 0.1
emcee [16] walkers = 250 steps = 14000 burn= 4000

3. We then draw a random x realisation from that
distribution.

A comprehensive representation in the form of sam-
ples drawn from the entire joint posterior distribution
can then be obtained by simply repeating this procedure
and hence sampling from our latent model r✓(x|y) (see
Eq. 3).

Additional tests

A standard test used within the GW parameter es-
timation community is the production of so-called p-p
plots which we show for our analysis and the benchmark

comparisons in Fig. 4. The plot is constructed by com-
puting a cumulative probability for each 1-dimensional
marginalised test posterior evaluated at the true simu-
lation parameter value (the fraction of posterior sam-
ples  the simulation value). We then plot the cumu-
lative distribution of these values [5]. Curves consistent
with the black dashed diagonal line indicate that the 1-
dimensional Bayesian probability distributions are con-
sistent with the frequentist interpretation - that the truth
will lie within an interval containing X% of the posterior
probability with a frequency of X% of the time. It is
clear to see that results obtained using VItamin show
deviations from the diagonal that are entirely consistent
with those observed in all benchmark samplers. The p-
value has also been calculated for each sampler and each
parameter under the null-hypothesis that they are con-
sistent with the diagonal. These results show that for at
least 1 parameter, emcee shows inconsistency with the
modal at the 1% level. Dynesty has a worst case that
is consistent only at the 4% level. All other samplers
(including VItamin) show consistency at > 10% in the
worst case.

The KL-divergence has been used to define the cost
function of the CVAE analysis, but in general it is used as
measure of the similarity between distributions. In Fig. 5
we use this quantity to compare the output posterior es-
timates between samplers for the same input test data.
To do this we run each independent sampler (including
VItamin) on the same test data to produce samples from
the corresponding posterior. We then compute the KL-
divergence between the output distributions from each
sampler with every other sampler [39]. For distributions
that are identical, the KL-divergence should equal zero
but since we are representing our posterior distributions
using finite numbers of samples, identical distributions
result in KL-divergence values O(X). In Fig. 5 we show
the distributions of these KL-divergences for the 256 test
GW samples. In each panel we plot the distribution of
KL-divergences obtained when comparing one of the 4
benchmark samplers with all other benchmark samplers
(excluding VItamin). We also plot the distribution of
KL-divergences obtained when comparing the same sam-
pler with VItamin alone. In all 4 cases the VItamin re-
sults show distributions completely consistent with the
deviations observed between benchmark samplers.

⇤ Corresponding author: h.gabbard.1@research.gla.ac.uk
[1] B. P. Abbott et al. (LIGO Scientific Collaboration and

Virgo Collaboration), Phys. Rev. X 6, 041015 (2016).
[2] B. P. Abbott et al. (LIGO Scientific Collaboration and

Virgo Collaboration), Phys. Rev. Lett. 119, 161101
(2017).

[3] B. P. Abbott et al., Living Reviews in Relativity 21, 3
(2018), arXiv:1304.0670 [gr-qc].
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Compared with existing approaches

• We run a number of (very) costly 
analyses with existing sampling 
approaches for comparison 

• Results do not agree perfectly and 
there is still work to do to fine tune 
the networks 

• Note that existing samplers also 
disagree in some circumstances

Vitamin posteriors Mass Sky

Updated version of Gabbard et al, arXiv 1909.06296 (2019)
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There is no contest (unless you count training)

• The primary difference is that the 
CVAE is pre-trained so that all 
cost is up-front 

• We get a ~6 order of magnitude 
speed up in our test cases 

• Can now generate 104 posterior 
samples in <1 sec 

• Training still takes O(days) but 
needs to only be done once*

Vitamin speed 5

TABLE I. Durations required to produce samples from each
of the di↵erent posterior sampling approaches.

sampler
run time (seconds) ratio

⌧VItamin

⌧Xmin max median
Dynesty

a [15] 11795 29838 19400 b 5.2⇥ 10�6

emcee [16] 18838 69272 32070 3.1⇥ 10�6

ptemcee [17] 17124 37446 24372 4.1⇥ 10�6

CPNest [14] 9943 53315 26202 3.8⇥ 10�6

VItamin
c 1⇥ 10�1 1

a The benchmark samplers all produced O(10000) samples
dependent on the default sampling parameters used.

b We note that there are a growing number of specialised
techniques [31–33] designed to speed up traditional sampling
algorithms that could be used to reduce the runtimes quoted
here by O(1� 2) orders of magnitude.

c For the VItamin sampler 10000 samples are produced as
representative of a typical posterior. The run time is
independent of the signal content in the data and is therefore
constant for all test cases.

the test cases). The second test computes the distri-
bution of KL-divergences between posteriors conditioned
on the same test data y from pairs of samplers. In
all cases this measure of “distribution similarity” be-
tween VItamin and any particular benchmark sampler
is entirely consistent with the distribution between that
benchmark sampler and any other.

The dominating computational cost of running
VItamin lies in the training time, which takes O(1) day
to complete. We stress that once trained, there is no need
to retrain the network unless the user wishes to use di↵er-
ent priors p(x) or assume di↵erent noise characteristics.
The speed at which posterior samples are generated for
all samplers used, including VItamin, is shown in Table I.
Run-time for the benchmark samplers is defined as the
time to complete their analyses when configured using
the parameter choices defined in Table IV. For VItamin,
this time is defined as the total time to produce 104 sam-
ples. For our test case of BBH signals VItamin produces
samples from the posterior at a rate which is ⇠ 6 orders
of magnitude faster than our benchmark analyses using
current inference techniques.

In this letter we have demonstrated that we are able to
reproduce, to a high degree of accuracy, Bayesian poste-
rior probability distributions generated through machine
learning. This is accomplished using a CVAE trained on
simulated GW signals and does not require the input of
precomputed posterior estimates. We have demonstrated
that our neural network model, which when trained, can
reproduce complete and accurate posterior estimates in
a fraction of a second, achieves the same quality of re-
sults as the trusted benchmark analyses used within the
LIGO-Virgo Collaboration.

The significance of our results is most evident in the
orders of magnitude increase in speed over existing al-
gorithms. We have demonstrated the approach using

BBH signals but with additional work to increase sam-
ple rate and signal duration, the method can also be
extended for application to signals from BNS mergers
(e.g., GW170817 [2], and GW190425 [34]) and NSBH sys-
tems where improved low-latency alerts will be especially
pertinent. By using our approach, parameter estima-
tion speed will no longer be limiting factor3 in observing
the prompt EM emission expected on shorter time scales
than is achievable with existing LIGO-Virgo Collabora-
tion (LVC) analysis tools such as Bayestar [7].
The predicted number of future detections of BNS

mergers (⇠ 180 [3]) will severely strain the GW com-
munity’s current computational resources using existing
Bayesian methods. We anticipate that future iterations
of our approach will provide full-parameter estimation on
all classes of compact binary coalescence (CBC) signals in
O(1) second on single graphics processing units (GPUs).
Our trained network is also modular, and can be shared
and used easily by any user to produce results. The spe-
cific analysis described in this letter assumes a uniform
prior on the signal parameters. However, this is a choice
and the network can be trained with any prior the user
demands, or users can cheaply resample accordingly from
the output of the network trained on the uniform prior.
We also note that our method will be invaluable for pop-
ulation studies since populations may now be generated
and analysed in a fully-Bayesian manner on a vastly re-
duced time scale.
For BBH signals, GW data is usually sampled at 1—4

kHz dependent upon the mass of binary. We have chosen
to use the noticeably low sampling rate of 256Hz in order
to decrease the computational time required to develop
our approach and the computational burden of comput-
ing our 256 benchmark analyses for each of 4 benchmark
samplers. We have been able to extend our analysis to 1
kHz sampling frequencies at the cost of an ⇠ 1.5 fold in-
crease in training time and a similar increase on the GPU
memory requirement. We note that with the exception
of requiring one-dimensional convolutional layers and an
increase in the amount of training data to e�ciently deal
with a multi-detector analysis, the network complexity
has not increased with the dimensionality of the phys-
ical parameter space nor with the sampling rate of the
input data. We therefore do not anticipate that extend-
ing the parameter space to lower masses and including
component spin parameters will be problematic.
In reality, GW detectors are a↵ected by non-Gaussian

noise artefacts and time-dependent variation in the de-

3 A complete low-latency pipeline includes a number of steps. The
process of GW data acquisition is followed by the transfer of data.
There is then the corresponding candidate event identification,
parameter estimation analysis, and the subsequent communica-
tion of results to the EM astronomy community after which there
are physical aspects such as slewing observing instruments to the
correct pointing.

Gabbard et al, arXiv 1909.06296 (2019)
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Summary
Its all good but there’s still a lot 
more to be done
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Summary

• ML can provide a direct replacement for existing Bayesian parameter estimation 

• This will enable realtime multi messenger astronomy  

• There is also the scope for pre-merger detections 

• There are still many challenges, e.g., real detector noise, longer duration signals, 
etc… 

• This type of analysis is applicable to general Bayesian inference problems 

• Other solutions are available, e.g., Normalising Flows [Kobyzev et al, arXiv 1908.09257 (2019)]  
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Thank you for your attention
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Extra slides
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Train on real GW (noise) data

• Real GW data is not exactly 
Gaussian 

• We are in the process of training 
our models using real historical GW 
detector noise 

• This will allow us to also make the 
network conditional on the noise 
properties (PSD) 

• Training on rare transient detector 
noise events will be challenging

Non-Gaussian Noise
LVC Collaboration, PRL, 119, 161101 (2017)
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Resampling VItamin samples

• An idea borrowed from colleagues at 
Monash [Payne et al, PRD 100, 12, 2019] 

• We take the approximate Vitamin 
points and then compute 

• We then use importance/rejection 
sampling to resample to achieve 
refined results

Refinement
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Resampled

r(x|y) = hr(x|z, y)i|z⇠r(z|y)
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Using ML to enhance existing methods

• One of the bottlenecks in classical 
nested sampling is generating points 
that 

• are sampled from the prior, and 

• also within a given likelihood 
contour 

• Normalising flows translate simple 
distributions to more complicated 
ones and have been shown to 
accelerate Nested sampling [Williams et al 
arXiv 2102.11056 (2021)]. 

Nessai https://github.com/mj-will/nessai
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Another way of doing this

• Another Likelihood-free approach 
that can also obtain Bayesian 
posteriors is Normalising Flows 
[Green et al, PRD 102, 10 (2020)] 

• These are generative models 
which produce tractable 
distributions where both sampling 
and density evaluation can be 
efficient and exact 

Normalising Flows

https://blog.evjang.com/2018/01/nf2.html
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