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Motivation

" In the long term - Independent (
local universe cosmological inference


" In the medium term - Hubble tension


" In the short term - Computational(
speed and flexibility


" Currently computationally limited - our baseline comparison is with gwcosmo


" Machine Learning (ML) can help hence we developed Cosmoflow


" We are not the only ones to try 
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Dark Sirens

" Compact binary coalescence (CBC) events 
without EM transient counterparts


" The GW event provides information on the 
luminosity distance 


" Galaxy catalogues represent the EM information 
on the redshift


" Average over galaxies within the GW error region


" Simple? What about selection eûects?
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The strategy

" We condition on detection ( ) to minimise uninformative training dataD
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p(H0 | h⃗, ÷D , I) ∝ p(H0 | I)

Ndet

/
i

ï p( ⃗»i |H0, Di, I)

p(Di |
⃗»i, I)p( ⃗»i |H′ 0, I) ð»i∼p(»i|hi,I)

Modelled using the 
normalising flow

Posterior samples 

from the ’th eventi

The prior used to 
obtain the posterior 

samples

The probability of 
detection (accounting 
for selection eûects)

The  posterior 
combined over events

H0

Footnote: We use  here for clarity but this can be replaced with a vector of cosmological and population parameters   H0 Ω



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)

5

Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-2/



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)

6

Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-2/



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)

7

Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-2/



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)

8

Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-2/



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)

9

Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-2/



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)

10

Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-2/



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)

11

Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-2/



Data generation

" Our aim is to generate samples from (

 , so:


" Sample from the  prior


"
Sample a redshift from 


" Sample  uniformly on the sky


" Sample a Luminosity  from the weighted Schechter function 


" Determine if the galaxy “would” be inside our galaxy catalogue (GLADE+)

p(H0,
⃗» |D, I)

H0

p(z |H0, I)

(1 + z)

³, ·

L ∝ L p(L |H0)
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Key points:


1.The Flow is learning the EM and 
detection conditioned GW prior


2. We generate GW events that come 
from the catalogue and beyond


3. Shifts diûculty to sampling and 
not modelling (very flexible)


4. Your results are only as good as 
your training data

Dálya et al, MNRAS  514, 2022
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Data generation
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L′ (m′ , d′ L)
H0

m′ 

mth(³, ·)

·′ 

³′ 

d′ L(z′ , H0)
" If it would HAVE been in the catalogue, then


" Resample galaxy from galaxy catalogue 

pixel using  and weighting


" Sample GW parameters from standard priors 
(masses get redshifted)


" Sample from  and keep ONLY if 
detected


" Otherwise start again - keeping the original 

L (1 + z)−1

p(D | ⃗», I)

H0

z′ 
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Data generation
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2.7. Data generation results

Figure 2.19: Mollweide projections showing the galaxy count distributions for three
di昀؀erent categories for the synthetic GW events from Fig. 2.16, for an NSIDE = 64. The
top panel displays the counts of galaxies within the catalogue (pixels removed for zero
counts for better readability), the middle panel shows the counts of galaxies outside the
catalogue, and the bottom panel presents the total counts combining both in and out-of-
catalogue galaxies. The color bar beneath the projections indicates the number of galaxy
counts, with the scale spanning from 40 to 160.
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Uniform in comoving volume 
+ extra in galactic plane 

Some edge 
eûects still 

present
Patches due 
to multiple 

surveys

Bias away from 

 due to 
antenna patterns

· = 0



Initial results - O3 42 BBH events
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Combined O3 result

" Data generation + Training in ~days


" Results obtained in <5 secs


" Significantly faster than original 
methods … but


" Not fair to compare to current 
GPU-powered analyses


" Currently re-formulating the 
problem to be more eûcient in high 
dimensions 

17

Stachurski et al, PRD 109, 2024



Summary

" GW standard sirens can provide insight into the Hubble tension


" Existing methods are becoming computationally costly


" We have shown that an ML Normalising Flow model can be trained to learn a 
galaxy catalogue driven GW prior


" This then leads to comparable results with deviations due to diûerent model 
assumptions, ML model noise, + unknown?


" The 1-D case has been extended to 15-D but the issue of eûcient 
combination of event posteriors is ongoing

18



Extra slides
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Flow diagram
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2.3. CosmoFlow: Data Generation

Figure 2.3: Flow chart representing the simulation process used for GW event para-
meter generation conditional on cosmological and population parameters. Here the GW
correspond to the spin magnitudes, angular orientations and geocentric time of arrival
parameters.

event. This approach ensures that the generated cosmological data ultimately matches
the chosen prior distribution of cosmological parameters. A detailed 昀؀owchart illustrating
the data generation process is presented in Fig. 2.3. The data generation process can be
split into three sections.

- 60 -

2.3. CosmoFlow: Data Generation

Figure 2.3: Flow chart representing the simulation process used for GW event para-
meter generation conditional on cosmological and population parameters. Here the GW
correspond to the spin magnitudes, angular orientations and geocentric time of arrival
parameters.

event. This approach ensures that the generated cosmological data ultimately matches
the chosen prior distribution of cosmological parameters. A detailed 昀؀owchart illustrating
the data generation process is presented in Fig. 2.3. The data generation process can be
split into three sections.

- 60 -



Data generation
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Stachurski, thesis 20242.7. Data generation results

Figure 2.16: Multiple histograms show the distributions of 3 million synthetic GW
source parameters associated with galaxy characteristics and cosmological parameters.
These include the SNR ( ), redshift, the Hubble constant ( ), luminosity distance ( L),
primary and secondary masses redshifted masses ( and ), sky location
coordinates ( ), spin magnitudes ( ), tilt angles ( , , ), phase angles ( , ),
geocentric time of arrival ( geo) and both apparent and absolute magnitudes. The color
coding helps di昀؀erentiate the total dataset in blue, with subsets categorized as in-catalogue
(in green) and out-of-catalogue (in orange), thereby providing a clear visual distinction
among the groups. This particular data set is for a O3 run sensitivity with H1, L1 and
V1 detector setup.
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Magnitude threshold (GLADE+)
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2.4. Selecting Host Galaxies

Figure 2.6: Mollweide projection of the magnitude threshold map of GLADE+ catalogue
using the K-band. The resolution is set to NSIDE = 32. The shaded grey area represents
the galactic band of the Milky Way, where the values of th for a better 昀؀gure
readability.

Owing to its extensive sky coverage, GLADE+ stands out as one of the best catalogues for
following up on GW events. This advantage, however, comes with the trade-o昀؀ of having
somewhat limited depth in redshift measurements. Other catalogues, such as the Dark
Energy Survey (DES) Year 1 [9] and the DESI Legacy Imaging Survey [112], are expected
to be complete up to redshift . Nevertheless, we choose to employ the same all-sky
galaxy catalogue for all our events, following the analysis in Ref. [16]. Future work will
explore combining data from di昀؀erent catalogues to perform data generation over various
galaxy surveys, allowing for more in-depth information about redshifts.

Most of the redshifts in the GLADE+ catalogue are photometric and are estimated using
a machine learning model described in Ref. [113]. The photometric redshifts are determ-
ined by analyzing the magnitudes across various color bands to discern the extent of
redshifting of the source. To obtain the redshift information, Ref. [113] employs an arti-
昀؀cial NN, named ANNz, designed to estimate photometric redshifts from apparent mag-
nitudes across di昀؀erent color bands. After training, the model achieves a relative error
of ph , where ph represents the photometric redshift [114]. The catalogue
also includes corrections for peculiar velocities, obtained using a Bayesian technique as
described in Ref. [115].

- 65 -

Dálya et al, MNRAS  514, 2022



Training loss
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3.2. Training the Normalising Flow

Figure 3.2: (Left): Loss versus epochs for both the training and validation data. (Right):
The Kullback-Leibler (KL) divergence between a 1D Gaussian distribution and each di-
mension of the latent space is plotted against epochs. The curves have been smoothed
using a running mean 昀؀lter for improved visualisation, with the original curves shown in
the background in a transparent style. The KL divergence values are measured in nats.

After initialising the parameters, the subsequent phase involves training the NF. In ML,
a widely recognized method to show how a model performs during training is to observe
the values of the loss function, expressed in Eq. (2.11), at each epoch. Ideally, one aims for
a general trend of decreasing values as the model progresses through the predetermined
number of iterations, although 昀؀uctuations and occasional increases are common, as evid-
enced by the loss plot in Fig. 2.11. The 昀؀ow model was trained for 1000 epochs using the
glasflow package. The training process, accelerated by an NVIDIA RTX G-Force 2080
GPU, took approximately four hours. Given the speci昀؀c nature of the NF model, which
aims to transform a simple latent distribution into a more complex target distribution,
an additional metric can be employed to assess the training performance. The primary
objective of NFs is to scale and translate the input dataset to approximate a normal
distribution. At various stages of the training process, we can draw samples from the
latent space to evaluate the model9s performance. By performing a kernel density estiam-
tion (KDE) on these samples and expecting them to approximate a normal distribution,
we can assess the closeness of our sampled distribution to an ideal normal distribution.
This comparison can be quantitatively measured using the KL divergence, as de昀؀ned by
the equation

KL (3.3)

- 108 -



Sample marginalisation
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4.3. Results

Figure 4.5: The plot compares the posterior distributions of the Hubble constant
derived from di昀؀erent methodologies. The red curves represent normalised likelihoods of

for each GW sample, proportional to . The blue line shows the CosmoFlow
posterior, while the black and green dashed lines represent the gwcosmo posteriors with
and without the GLADE+ catalogue, respectively. All analyses assume uniform priors on

. The JS divergences are 25 millinats (CosmoFlow vs. gwcosmo with catalog) and 34
millinats (CosmoFlow vs. gwcosmo without catalogue).

in chronological order, the posterior distributions over for both CosmoFlow and gwcosmo
are shown in Fig. 4.6. The results show a good comparison between CosmoFlow and
gwcosmo with EM catalogue information, with similarity ranging from from 0.03 millinats
to 26.27 millinats with GW190706_222641.

The results also reveal some catalogue features, as explained in Sec. 4.3.1, although not
perfectly captured by CosmoFlow compared to gwcosmo. Galaxy catalogue features seem to
be captured by CosmoFlow for some events, such as GW150914_095045, GW170814_103043,
GW190521_030229, but not so clearly in other events where catalogue features are more
evident in gwcosmo, such as GW190412_053044. This discrepancy raises questions about
the validity of the dataset generated using the in-catalogue procedure. This issue warrants
speci昀؀c investigation, as multiple factors could contribute to the discrepancy. Potential
causes include imperfectly described GW-selection e昀؀ects, as modeled by the MLP de-
scribed in Chapter 2, or the EM selection e昀؀ects, particularly in how the galaxy catalogue

- 137 -



Higher dimensions

25

5.4. Results

Figure 5.9: Posterior distributions for 12 cosmological and population parameters de-
rived from the 42 BBH events in the GWTC-3 catalogue. Blue lines represent results
from gwcosmo, while orange lines correspond to CosmoFlow. Above each 1D marginalised
distribution, the JS divergence between the two analyses is displayed in units of millinats.
The legend also includes the approximate sampling times for each analysis. Contour levels
indicate the regions containing 50% and 90% of the total posterior distribution.

these discrepancies remain unclear. Ongoing and future work will focus on analysing the
contributions of individual events with the aim of identifying the sources of inconsistency
more precisely. It is suspected that these di昀؀erences might stem from the restriction of
the redshift space via max (described in Sec. 2.6.2), or possibly from the need for more
extensive and eff�cient training of the conditional NF to better capture the parameter
space.

- 168 -



What is a Normalising Flow?

" A generative ML model that learns a conditional 
distribution


"  is a Normal distribution in a latent space


"  is the conditional data distribution


"  is a bijective function

pz(z)

px(x |Ë)

x = f(z, × |Ë)
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Loss(×) = KL(px(x) |qx(x)) = const. − 'px
log pz( f −1(x, × |Ë)) + log det

df −1(x, × |Ë)

px

https://engineering.papercup.com/posts/normalizing-flows-part-1/


