
GRG-2 Lecture 5
Static Spherically Symmetric Stars

Learning outcomes
• To be able to solve Einstein’s equations inside a 

massive object and derive the form of the metric. 
• To derive the Tolman-Oppenheimer-Volkoff equation 

from the 2nd Einstein equation 
• To compute properties of a uniform density neutron 

star



Brief recap of 
GRG-2 Lecture 4

Gravitational Redshift and Time Delay

Learning outcomes
• To be able to show how a photon’s wavelength and 

frequency are redshifted in a Schwarzschild metric 
• To show how a photon passing through a 

gravitational potential is delayed 



Chapter 4

Einstein’s Equations for Static

Spherically Symmetric Stars

In Chapter 3 we derived the Schwarzschild metric to describe the spacetime exterior

to a star of mass, M by setting the components of the Ricci tensor identically equal

to zero. We now turn our attention to the interior of a star, and derive within the

framework of General Relativity di↵erential equations to describe its structure.

In Newtonian theory one can derive the equation of hydrostatic equilibrium to de-

scribe the internal structure of a static, spherically symmetric star. We will, therefore,

seek a GR solution which is also static and spherically symmetric, and will investigate

how GR e↵ects change this internal structure.
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so if we want to solve inside the object then the 
difference here is that the Ricci tensor 

components are not zero - since there is mass



4.1 Components of the Einstein tensor

We begin by noting that the metric describing the stellar interior will again take the

form of equation (2.23), namely:-

ds2 = �e⌫dt2 + e�dr2 + r2
⇣
d✓2 + sin2 ✓ d�2

⌘
(4.1)

where ⌫ and � are functions of the radial coordinate, r. This means that we can make

use of the results which we already derived in Chapter 2 for the components of the

Ricci tensor for a static, spherically symmetric metric. These were
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R�� = R✓✓ sin
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and all other terms of the Ricci tensor are identically zero.

Moreover, since the metric of equation (4.1) is orthogonal, it follows that the con-

travariant components of the metric are

gtt = �e�⌫ (4.6)

grr = e�� (4.7)

g✓✓ =
1

r2
(4.8)

g�� =
1

r2 sin2 ✓
(4.9)

and all other components are zero.
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prior to solving for a vacuum 
external to the mass

previously, to derive 
Schwarzschild we set each 

of these expressions to 
zero and solve for ν and λ. 
It’s not zero in this case

if metric is orthogonal 
so is Ricci tensor
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and all other terms of the Ricci tensor are identically zero.

Moreover, since the metric of equation (4.1) is orthogonal, it follows that the con-

travariant components of the metric are

gtt = �e�⌫ (4.6)

grr = e�� (4.7)

g✓✓ =
1

r2
(4.8)

g�� =
1

r2 sin2 ✓
(4.9)

and all other components are zero.
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Due to the orthogonality of the Ricci and metric tensors, the curvature scalar, R, is

given by

R = gµ⌫Rµ⌫ = gttRtt + grrRrr + g✓✓R✓✓ + g��R�� (4.10)

Substituting from equations (4.2) – (4.9), and after some algebraic reduction, this gives

R = �e��

"✓
⌫ 00 +

1

2
v02 � 1

2
⌫ 0�0

◆
+

⌫ 0 � �0

r

#

+
2

r2

"

1� e��

 

1 +
(⌫ 0 � �0)r

2

!#

(4.11)

The Einstein tensor, in its fully covariant form, is given by

Gµ⌫ = Rµ⌫ �
1

2
gµ⌫R (4.12)

Substituting from equations (4.1) – (4.5) and equation (4.11) one finds that
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(4.15)

G�� = sin2 ✓G✓✓ (4.16)

and all other components are zero.

4.2 Components of the energy-momentum tensor

Recall from equation (1.32) that, for a perfect fluid, the components of the energy-

momentum tensor in its fully contravariant form are given by

T µ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.17)

and in fully covariant form

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.18)
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4.1 Components of the Einstein tensor
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and all other terms of the Ricci tensor are identically zero.

Moreover, since the metric of equation (4.1) is orthogonal, it follows that the con-

travariant components of the metric are
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“upstairs” indices are 
inverse of covariant 

“downstairs” indices for 
orthogonal metric

so what is the scalar curvature 
for the Schwarzschild metric?



Due to the orthogonality of the Ricci and metric tensors, the curvature scalar, R, is

given by
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The Einstein tensor, in its fully covariant form, is given by
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Substituting from equations (4.1) – (4.5) and equation (4.11) one finds that

Gtt =
e⌫

r2

h
1 + e�� (r�0 � 1)

i
(4.13)

Grr =
⌫ 0

r
� e�

r2

⇣
1� e��

⌘
(4.14)

G✓✓ = r2e��

"
⌫ 00

2
+

⌫ 02

4
� ⌫ 0�0

4
+

⌫ 0 � �0

2r

#

(4.15)

G�� = sin2 ✓G✓✓ (4.16)

and all other components are zero.

4.2 Components of the energy-momentum tensor

Recall from equation (1.32) that, for a perfect fluid, the components of the energy-

momentum tensor in its fully contravariant form are given by

T µ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.17)

and in fully covariant form

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.18)
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we now have the components 
of the Einstein tensor 

you should 
verify for 
yourself
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and all other components are zero.

4.2 Components of the energy-momentum tensor

Recall from equation (1.32) that, for a perfect fluid, the components of the energy-

momentum tensor in its fully contravariant form are given by

T µ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.17)

and in fully covariant form

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.18)

64where ⇢ and P are the mass-energy density and pressure respectively, and uµ and uµ

are the contravariant and covariant components respectively of the four velocity of a

fluid element. Since we are seeking a static solution, we have that ur = u✓ = u� = 0

and ur = u✓ = u� = 0. From equation (1.28), it then follows that

gtt
⇣
ut

⌘2
= �1 ) ut = e�⌫/2 (4.19)

and

ut = gtµu
µ = gttu

t = �e⌫/2 (4.20)

Substituting in equations (4.18) then yields the following non-zero components of the

energy-momentum tensor in its fully covariant form

Ttt = ⇢e⌫ (4.21)

Trr = Pe� (4.22)

T✓✓ = Pr2 (4.23)

T�� = Pr2 sin2 ✓ (4.24)

and all other components are zero.

4.3 Einstein’s equations

Recall from GRG-I that Einstein’s equations have solution, in fully covariant form

Gµ⌫ = 8⇡Tµ⌫ (4.25)

where the constant 8⇡ is derived by requiring that we recover the laws of Newtonian

gravity (with G = 1) in the limit of a weak gravitational field and non-relativistic

motion.
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parameter, i.e.
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↵v� = 0 (1.25)

or alternatively
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One can show (see Example Sheet I-5) that, along a geodesic

d
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and, in fact, if ⌧ is the proper time then
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dx�

d⌧
= �1 (1.28)

1.5.2 Geodesics of photons

For photons, the proper time ⌧ cannot be used to parametrise the worldlines, since d⌧ is zero.

If we use an arbitrary a�ne parameter � the null geodesics will be described by

d2xµ
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dx↵

d�

dx�
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= 0 (1.29)

and since it is a null geodesic, necessarily
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= 0 (1.30)

1.6 The energy momentum tensor

The energy momentum tensor (also known as the stress energy tensor) describes the presence

and motion of gravitating matter. In GR-I and GR-II we discuss it for the particular case of

a ‘perfect fluid’, which is a mathematical idealisation but one which is a good approximate

description of the gravitating matter in many astrophysical situations.
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lower the index with the metric

see Eq 4.7 in 
part 4 of GRG-I

this is the geodesic for 
a material particle

4.1 Components of the Einstein tensor

We begin by noting that the metric describing the stellar interior will again take the

form of equation (2.23), namely:-

ds2 = �e⌫dt2 + e�dr2 + r2
⇣
d✓2 + sin2 ✓ d�2

⌘
(4.1)

where ⌫ and � are functions of the radial coordinate, r. This means that we can make

use of the results which we already derived in Chapter 2 for the components of the

Ricci tensor for a static, spherically symmetric metric. These were
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and all other terms of the Ricci tensor are identically zero.

Moreover, since the metric of equation (4.1) is orthogonal, it follows that the con-

travariant components of the metric are
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and all other components are zero.
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only the spatial components! 
Time keeps ticking along

where ⇢ and P are the mass-energy density and pressure respectively, and uµ and uµ

are the contravariant and covariant components respectively of the four velocity of a

fluid element. Since we are seeking a static solution, we have that ur = u✓ = u� = 0

and ur = u✓ = u� = 0. From equation (1.28), it then follows that

gtt
⇣
ut

⌘2
= �1 ) ut = e�⌫/2 (4.19)

and

ut = gtµu
µ = gttu

t = �e⌫/2 (4.20)

Substituting in equations (4.18) then yields the following non-zero components of the

energy-momentum tensor in its fully covariant form

Ttt = ⇢e⌫ (4.21)

Trr = Pe� (4.22)

T✓✓ = Pr2 (4.23)

T�� = Pr2 sin2 ✓ (4.24)

and all other components are zero.

4.3 Einstein’s equations

Recall from GRG-I that Einstein’s equations have solution, in fully covariant form

Gµ⌫ = 8⇡Tµ⌫ (4.25)

where the constant 8⇡ is derived by requiring that we recover the laws of Newtonian

gravity (with G = 1) in the limit of a weak gravitational field and non-relativistic

motion.
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remember 

the 4-velocity is the coordinate 
derivative wrt proper time



where ⇢ and P are the mass-energy density and pressure respectively, and uµ and uµ

are the contravariant and covariant components respectively of the four velocity of a
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4.3 Einstein’s equations

Recall from GRG-I that Einstein’s equations have solution, in fully covariant form
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gravity (with G = 1) in the limit of a weak gravitational field and non-relativistic

motion.
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Due to the orthogonality of the Ricci and metric tensors, the curvature scalar, R, is

given by

R = gµ⌫Rµ⌫ = gttRtt + grrRrr + g✓✓R✓✓ + g��R�� (4.10)

Substituting from equations (4.2) – (4.9), and after some algebraic reduction, this gives
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The Einstein tensor, in its fully covariant form, is given by
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2
gµ⌫R (4.12)

Substituting from equations (4.1) – (4.5) and equation (4.11) one finds that
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G�� = sin2 ✓G✓✓ (4.16)

and all other components are zero.

4.2 Components of the energy-momentum tensor

Recall from equation (1.32) that, for a perfect fluid, the components of the energy-

momentum tensor in its fully contravariant form are given by

T µ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.17)

and in fully covariant form

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ (4.18)
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where ⇢ and P are the mass-energy density and pressure respectively, and uµ and uµ

are the contravariant and covariant components respectively of the four velocity of a

fluid element. Since we are seeking a static solution, we have that ur = u✓ = u� = 0

and ur = u✓ = u� = 0. From equation (1.28), it then follows that
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Recall from GRG-I that Einstein’s equations have solution, in fully covariant form

Gµ⌫ = 8⇡Tµ⌫ (4.25)

where the constant 8⇡ is derived by requiring that we recover the laws of Newtonian

gravity (with G = 1) in the limit of a weak gravitational field and non-relativistic

motion.
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𝝀 are functions of r

we now have expressions for the 
energy-momentum tensor components 

for our static perfect fluid

you should 
verify for 
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4.3 Einstein’s equations

Recall from GRG-I that Einstein’s equations have solution, in fully covariant form
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gravity (with G = 1) in the limit of a weak gravitational field and non-relativistic

motion.
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The ‘��’ Einstein equation is indentically equal to the ‘✓✓’ equation, multiplied by

sin2 ✓.

4.4 Solution of the first Einstein equation

Cancelling e⌫ from either side of equation (4.26) and re-arranging, it is easy to show

that this equation may be re-written as

d

dr

h
r(1� e��)

i
= 8⇡⇢r2 (4.29)

To solve this equation it is convenient to introduce a new function, m(r), defined by

the di↵erential equation

dm

dr
= 4⇡⇢r2 (4.30)

from which it follows that

d

dr

h
r(1� e��)

i
= 2

dm

dr
(4.31)

Equation (4.30) has a Newtonian analogue: dm is equal to the mass contained within

a thin shell of radius r and thickness dr. Hence, in GR m(r) is usually referred to as

the mass function, although its simple Newtonian interpretation no longer holds in

GR, since one cannot describe the mass-energy in a frame-independent way solely in

terms of a single scalar function. Nevertheless, the introduction of the mass function

leads to some useful simplification.
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r(1� e��) = 2m+ C (4.32)

where C is a constant, which is equal to zero unless the star is singular at r = 0. We

will consider such a case later in the chapter on Black Holes. Thus

e�� = 1� 2m

r
(4.33)

This is, of course, reminiscent of the equation (2.38) which we derived for the Schwarzschild

metric exterior to the star. In that case, however, we identified the constant, M , as

the total mass of the star, from considering the Newtonian far-field limit in which the

Schwarzschild metric reduces to that of Minkowski spacetime. In the case of the inte-

rior metric, we must remember that m is not a constant but an (as yet unspecified)

function of the coordinate radius, r.

4.5 The Oppenheimer-Volko↵ equation

Re-arranging equation (4.27) we obtain, after some straightforward algebra

d⌫

dr
= e�


8⇡Pr +

1

r

⇣
1� e��

⌘�
(4.34)

Substituting from equation (4.33) this reduces to

d⌫

dr
=

✓
1� 2m

r

◆�1 
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2m

r2

�
= 2

"
4⇡Pr3 +m

r(r � 2m)

#

(4.35)

Rather than attempting to re-arrange the third Einstein equation (4.28), which is rather

messy in form, we can use the conservation of mass-energy to obtain a di↵erential

equation for the function ⌫.
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Integrating equations (4.31)
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the total mass of the star, from considering the Newtonian far-field limit in which the

Schwarzschild metric reduces to that of Minkowski spacetime. In the case of the inte-

rior metric, we must remember that m is not a constant but an (as yet unspecified)

function of the coordinate radius, r.
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Rather than attempting to re-arrange the third Einstein equation (4.28), which is rather

messy in form, we can use the conservation of mass-energy to obtain a di↵erential

equation for the function ⌫.
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tensor exterior to the star are identically zero. Hence the right hand side of equations

(2.26) – (2.29) are all zero. Thus

e��⌫Rtt +Rrr =
⌫ 0 + �0

r
= 0 (2.30)

which in turn implies that

⌫ + � = constant (2.31)

At large distances from the star we want the Schwarzschild metric to reduce to SR.

Hence, as

r ! 1 , e⌫ ! 1 and e� ! 1 (2.32)

Thus, as

r ! 1 , ⌫ ! 0 and � ! 0 (2.33)

which implies that

⌫ + � = 0 (2.34)

so that

e⌫ = e�� (2.35)

This allows us to eliminate ⌫ from equation (2.28), giving

e�� (1� �0r) = 1 (2.36)

i.e.

d

dr

⇣
re��

⌘
= 1 (2.37)

which we can integrate to give

e⌫ = e�� = 1 +
↵

r
(2.38)

where ↵ is a constant.
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To evaluate ↵, suppose we release a material ‘test’ particle (i.e. a particle of so little

rest mass that it does not disturb the spacetime metric) from rest. Thus, initially

dxj

d⌧
= 0 for j = 1, 2, 3 (2.39)

where ⌧ is proper time, and

dx0

d⌧
⌘ dt

d⌧
6= 0 (2.40)

Applying equation (1.28) and after some reduction we see that

dt

d⌧
= e�⌫/2 (2.41)

We now apply the first of the geodesic di↵erential equations (1.26). At the instant

when the particle is released this reduces to

d2r

d⌧ 2
+ �r

tt

 
dt

d⌧

!2

= 0 (2.42)

Substituting from equations (2.24) and (2.41) we obtain finally

d2r

d⌧ 2
=

↵

2r2
(2.43)

In the limit of a weak gravitational field this result must reduce to the prediction of

Newtonian gravity, which predicts

d2r

dt2
= �GM

r2
(2.44)

whereM is the mass of the star. If we adopt convenient units such that the gravitational

constant, G = 1 (see below), this means that

↵ = �2M (2.45)

We can now write down the invariant interval for the Schwarzschild metric:

ds2 = �
✓
1� 2M

r

◆
dt2 +

dr2
⇣
1� 2M

r

⌘ + r2d✓2 + r2 sin2 ✓d�2 (2.46)
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4.4 Solution of the first Einstein equation
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that this equation may be re-written as
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To solve this equation it is convenient to introduce a new function, m(r), defined by

the di↵erential equation
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dr
= 4⇡⇢r2 (4.30)

from which it follows that
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Equation (4.30) has a Newtonian analogue: dm is equal to the mass contained within

a thin shell of radius r and thickness dr. Hence, in GR m(r) is usually referred to as

the mass function, although its simple Newtonian interpretation no longer holds in

GR, since one cannot describe the mass-energy in a frame-independent way solely in

terms of a single scalar function. Nevertheless, the introduction of the mass function

leads to some useful simplification.
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Recall from GRG-I that

T ↵�
;� = 0 (4.36)

i.e.

h
(⇢+ P )u↵u� + Pg↵�

i

;�
= 0 (4.37)

We apply the product rule for covariant di↵erentation (see Example Sheet I.5, question

4) to obtain

(⇢+ P ),� u
↵u� + (⇢+ P )(u↵);�u

� + (⇢+ P )u↵(u�);� + P,�g
↵� + Pg↵� ;� = 0 (4.38)

Note that here we have used the fact that ⇢ and P are scalar functions, and the

covariant derivative of a scalar is simply its usual partial derivative. Moreover, in this

case partial derivatives with respect to r are, in fact, total derivatives. This is because ⇢

and P depend only on r, as we are considering a static, spherically symmetric solution.

Equation (4.38) is, in fact, four equations, since ↵ is a free index. Let us consider only

the ↵ ⌘ r term, so that

(⇢+ P ),� u
ru� + (⇢+ P )(ur);�u

� + (⇢+ P )ur(u�);� + P,�g
r� + Pgr� ;� = 0 (4.39)

The first and third terms on the left hand side of equation (4.39) vanish because ur = 0

for a static solution. The fifth term also vanishes because the covariant derivatives of

the metric tensor are always identically zero (see Example Sheet I.5, questions 5 and

6). In the second term only the t component is non-zero because ur = u✓ = u� = 0.

(Note that, even though ur = 0 it does not necessarily follow – and indeed we will see

later is not the case here – that its covariant derivative is zero). Finally, in the fourth

term only the r component is non-zero, because of the orthogonality of the metric.
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the metric tensor are always identically zero (see Example Sheet I.5, questions 5 and

6). In the second term only the t component is non-zero because ur = u✓ = u� = 0.

(Note that, even though ur = 0 it does not necessarily follow – and indeed we will see

later is not the case here – that its covariant derivative is zero). Finally, in the fourth

term only the r component is non-zero, because of the orthogonality of the metric.
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Recall from GRG-I that

T ↵�
;� = 0 (4.36)

i.e.

h
(⇢+ P )u↵u� + Pg↵�

i

;�
= 0 (4.37)
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� + (⇢+ P )u↵(u�);� + P,�g
↵� + Pg↵� ;� = 0 (4.38)

Note that here we have used the fact that ⇢ and P are scalar functions, and the

covariant derivative of a scalar is simply its usual partial derivative. Moreover, in this

case partial derivatives with respect to r are, in fact, total derivatives. This is because ⇢

and P depend only on r, as we are considering a static, spherically symmetric solution.

Equation (4.38) is, in fact, four equations, since ↵ is a free index. Let us consider only

the ↵ ⌘ r term, so that
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� + (⇢+ P )ur(u�);� + P,�g
r� + Pgr� ;� = 0 (4.39)

The first and third terms on the left hand side of equation (4.39) vanish because ur = 0

for a static solution. The fifth term also vanishes because the covariant derivatives of

the metric tensor are always identically zero (see Example Sheet I.5, questions 5 and

6). In the second term only the t component is non-zero because ur = u✓ = u� = 0.

(Note that, even though ur = 0 it does not necessarily follow – and indeed we will see

later is not the case here – that its covariant derivative is zero). Finally, in the fourth

term only the r component is non-zero, because of the orthogonality of the metric.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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the radial velocity is zero and not 
changing wrt the time coordinate

�t
rt = �t

tr = 1
2⌫

0 �✓
r✓ = �✓

✓r = 1
r

�r
tt = 1

2⌫
0e⌫�� �✓

�� = � sin ✓ cos ✓

�r
rr = 1

2�
0 ��

r� = ��
�r = 1

r

�r
✓✓ = �re�� ��

✓� = ��
�✓ = cot ✓

�r
�� = �re�� sin2 ✓

All others zero (2.24)

2.3.3 Ricci tensor for S4

We can write the Ricci tensor (Eq. 1.36) as

R�⌫ = �⌧
�⌫�

�
⌧� � �⌧

���
�
⌧⌫ + ��

�⌫,� � ��
��,⌫ (2.25)

Substituting the results of equations (2.24) into equation (2.25) we find that

Rtt =
1

2
e⌫��

✓
⌫ 00 +

1

2
⌫ 02 � 1

2
⌫ 0�0 +

2

r
⌫ 0
◆

(2.26)

Rrr = �1

2

✓
⌫ 00 +

1

2
⌫ 02 � 1

2
⌫ 0�0 � 2

r
�0
◆

(2.27)

R✓✓ = 1� e��

1 +

r

2
(⌫ 0 � �0)

�
(2.28)

R�� = R✓✓ sin
2 ✓ (2.29)

and all other terms of the Ricci tensor are identically zero. (See Examples Sheet II.1)

2.4 Derivation of the Schwarzschild metric

We now seek to apply the general S4 metric to derive the spacetime exterior to a

spherically symmetric star; this is known as the Schwarzschild solution. If the star

is in an isolated region of space, then we can assume that all components of the Ricci

31

Eq. 2.24

where ⇢ and P are the mass-energy density and pressure respectively, and uµ and uµ

are the contravariant and covariant components respectively of the four velocity of a

fluid element. Since we are seeking a static solution, we have that ur = u✓ = u� = 0

and ur = u✓ = u� = 0. From equation (1.28), it then follows that

gtt
⇣
ut

⌘2
= �1 ) ut = e�⌫/2 (4.19)

and

ut = gtµu
µ = gttu

t = �e⌫/2 (4.20)

Substituting in equations (4.18) then yields the following non-zero components of the

energy-momentum tensor in its fully covariant form

Ttt = ⇢e⌫ (4.21)

Trr = Pe� (4.22)

T✓✓ = Pr2 (4.23)

T�� = Pr2 sin2 ✓ (4.24)

and all other components are zero.

4.3 Einstein’s equations

Recall from GRG-I that Einstein’s equations have solution, in fully covariant form

Gµ⌫ = 8⇡Tµ⌫ (4.25)

where the constant 8⇡ is derived by requiring that we recover the laws of Newtonian

gravity (with G = 1) in the limit of a weak gravitational field and non-relativistic

motion.
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;� = 0 (4.36)

i.e.
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(⇢+ P )u↵u� + Pg↵�
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;�
= 0 (4.37)
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� + (⇢+ P )u↵(u�);� + P,�g
↵� + Pg↵� ;� = 0 (4.38)

Note that here we have used the fact that ⇢ and P are scalar functions, and the

covariant derivative of a scalar is simply its usual partial derivative. Moreover, in this

case partial derivatives with respect to r are, in fact, total derivatives. This is because ⇢

and P depend only on r, as we are considering a static, spherically symmetric solution.

Equation (4.38) is, in fact, four equations, since ↵ is a free index. Let us consider only

the ↵ ⌘ r term, so that

(⇢+ P ),� u
ru� + (⇢+ P )(ur);�u

� + (⇢+ P )ur(u�);� + P,�g
r� + Pgr� ;� = 0 (4.39)

The first and third terms on the left hand side of equation (4.39) vanish because ur = 0

for a static solution. The fifth term also vanishes because the covariant derivatives of

the metric tensor are always identically zero (see Example Sheet I.5, questions 5 and

6). In the second term only the t component is non-zero because ur = u✓ = u� = 0.

(Note that, even though ur = 0 it does not necessarily follow – and indeed we will see

later is not the case here – that its covariant derivative is zero). Finally, in the fourth

term only the r component is non-zero, because of the orthogonality of the metric.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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Integrating equations (4.31)

r(1� e��) = 2m+ C (4.32)

where C is a constant, which is equal to zero unless the star is singular at r = 0. We

will consider such a case later in the chapter on Black Holes. Thus

e�� = 1� 2m

r
(4.33)

This is, of course, reminiscent of the equation (2.38) which we derived for the Schwarzschild

metric exterior to the star. In that case, however, we identified the constant, M , as

the total mass of the star, from considering the Newtonian far-field limit in which the

Schwarzschild metric reduces to that of Minkowski spacetime. In the case of the inte-

rior metric, we must remember that m is not a constant but an (as yet unspecified)

function of the coordinate radius, r.

4.5 The Oppenheimer-Volko↵ equation

Re-arranging equation (4.27) we obtain, after some straightforward algebra

d⌫

dr
= e�


8⇡Pr +

1

r

⇣
1� e��

⌘�
(4.34)

Substituting from equation (4.33) this reduces to

d⌫

dr
=

✓
1� 2m

r

◆�1 
8⇡Pr +

2m

r2

�
= 2

"
4⇡Pr3 +m

r(r � 2m)

#

(4.35)

Rather than attempting to re-arrange the third Einstein equation (4.28), which is rather

messy in form, we can use the conservation of mass-energy to obtain a di↵erential

equation for the function ⌫.
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4.6 Solving the Oppenheimer-Volko↵ equation

The Oppenheimer-Volko↵ equation involves three unknown functions: P (r), ⇢(r) and

m(r). We also have equation (4.30), which relates m(r) and ⇢(r). To solve for the

internal structure of the star requires a third equation linking the three functions,

however. This usually comes from the Equation of state, which is a relation between

the pressure and density, i.e.

P (r) = P (⇢(r)) (4.47)

For a fluid in local thermodynamic equilibrium, there always exists a relation between

the pressure, density and entropy , S, such that

P = P (⇢, S) (4.48)

Equation (4.47) is the particular case where the entropy can be considered constant.

This case is a valid approximation for most astrophysical situations (and, indeed, the

adoption of an equation of state is the usual method for solving the non-relativistic

equations of stellar structure).

How would these three equations for P , ⇢ and m be solved in practice? Equations

(4.30) and (4.45) are first order di↵erential equations; hence we must adopt boundary

conditions in order to solve them.

Suppose we take P = P0 and m = 0 (i.e. no singularity) at the centre of the star. We

can then integrate the equations outwards, taking small increments in radial coordinate

distance, r, until we reach P = 0, which defines the surface of the star – at, say, r = R

and m = M . We then identify M as the constant in the Schwarzschild metric for the

spacetime exterior to the star; this ensures that the metric coe�cients are continuous
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Thus, it follows that

e⌫

r2

h
1 + e�� (r�0 � 1)

i
= 8⇡⇢e⌫ (4.26)

⌫ 0

r
� e�

r2

⇣
1� e��

⌘
= 8⇡Pe� (4.27)

r2e��

"
⌫ 00

2
+

⌫ 02

4
� ⌫ 0�0

4
+

⌫ 0 � �0

2r

#

= 8⇡Pr2 (4.28)

The ‘��’ Einstein equation is indentically equal to the ‘✓✓’ equation, multiplied by

sin2 ✓.

4.4 Solution of the first Einstein equation

Cancelling e⌫ from either side of equation (4.26) and re-arranging, it is easy to show

that this equation may be re-written as

d

dr

h
r(1� e��)

i
= 8⇡⇢r2 (4.29)

To solve this equation it is convenient to introduce a new function, m(r), defined by

the di↵erential equation

dm

dr
= 4⇡⇢r2 (4.30)

from which it follows that

d

dr

h
r(1� e��)

i
= 2

dm

dr
(4.31)

Equation (4.30) has a Newtonian analogue: dm is equal to the mass contained within

a thin shell of radius r and thickness dr. Hence, in GR m(r) is usually referred to as

the mass function, although its simple Newtonian interpretation no longer holds in

GR, since one cannot describe the mass-energy in a frame-independent way solely in

terms of a single scalar function. Nevertheless, the introduction of the mass function

leads to some useful simplification.
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4.6 Solving the Oppenheimer-Volko↵ equation

The Oppenheimer-Volko↵ equation involves three unknown functions: P (r), ⇢(r) and

m(r). We also have equation (4.30), which relates m(r) and ⇢(r). To solve for the

internal structure of the star requires a third equation linking the three functions,

however. This usually comes from the Equation of state, which is a relation between

the pressure and density, i.e.

P (r) = P (⇢(r)) (4.47)

For a fluid in local thermodynamic equilibrium, there always exists a relation between

the pressure, density and entropy , S, such that

P = P (⇢, S) (4.48)

Equation (4.47) is the particular case where the entropy can be considered constant.

This case is a valid approximation for most astrophysical situations (and, indeed, the

adoption of an equation of state is the usual method for solving the non-relativistic

equations of stellar structure).

How would these three equations for P , ⇢ and m be solved in practice? Equations

(4.30) and (4.45) are first order di↵erential equations; hence we must adopt boundary

conditions in order to solve them.

Suppose we take P = P0 and m = 0 (i.e. no singularity) at the centre of the star. We

can then integrate the equations outwards, taking small increments in radial coordinate

distance, r, until we reach P = 0, which defines the surface of the star – at, say, r = R

and m = M . We then identify M as the constant in the Schwarzschild metric for the

spacetime exterior to the star; this ensures that the metric coe�cients are continuous

70across the surface of the star.

Having thus integrated to obtainm, P and ⇢ as functions of r, we can use e.g. equations

(4.33) and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the

interior metric.

We will consider the exact solution of the Oppenheimer-Volko↵ equation for a particular

case in the next section. Before we do so, however, we can see from equation (4.45) that

– for normal matter with ⇢, P and m � 0, the e↵ect of GR must always be to steepen

the pressure gradient inside the star, compared with the pressure gradient required to

maintain a static solution in a purely Newtonian treatment.

4.7 Exact solution for a constant density star

Suppose we assume that ⇢ = ⇢0 = constant. This assumption is certainly not ap-

propriate for a star like the Sun (since, for one thing, it implies an infinite sound

speed, cS / dP/d⇢) but theoretical modelling of the internal structure of neutron stars

suggests that it is a reasonably good approximation in their case.

Under this assumption we can integrate equation (4.30) immediately to give

m(r) =
4

3
⇡⇢0r

3 (4.49)

Substituting into the Oppenheimer-Volko↵ equation, it is easy to see that this gives us

dP

dr
= �4

3
⇡r

(⇢0 + P )(⇢0 + 3P )
⇣
1� 8⇡⇢0r2

3

⌘ (4.50)

which we can re-arrange as

dP

(⇢0 + P )(⇢0 + 3P )
= � 4⇡rdr

3
⇣
1� 8⇡⇢0r2

3

⌘ (4.51)
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Thus, it follows that

e⌫

r2

h
1 + e�� (r�0 � 1)

i
= 8⇡⇢e⌫ (4.26)

⌫ 0

r
� e�

r2

⇣
1� e��

⌘
= 8⇡Pe� (4.27)

r2e��

"
⌫ 00

2
+

⌫ 02

4
� ⌫ 0�0

4
+

⌫ 0 � �0

2r

#

= 8⇡Pr2 (4.28)

The ‘��’ Einstein equation is indentically equal to the ‘✓✓’ equation, multiplied by

sin2 ✓.

4.4 Solution of the first Einstein equation

Cancelling e⌫ from either side of equation (4.26) and re-arranging, it is easy to show

that this equation may be re-written as

d

dr

h
r(1� e��)

i
= 8⇡⇢r2 (4.29)

To solve this equation it is convenient to introduce a new function, m(r), defined by

the di↵erential equation

dm

dr
= 4⇡⇢r2 (4.30)

from which it follows that

d

dr

h
r(1� e��)

i
= 2

dm

dr
(4.31)

Equation (4.30) has a Newtonian analogue: dm is equal to the mass contained within

a thin shell of radius r and thickness dr. Hence, in GR m(r) is usually referred to as

the mass function, although its simple Newtonian interpretation no longer holds in

GR, since one cannot describe the mass-energy in a frame-independent way solely in

terms of a single scalar function. Nevertheless, the introduction of the mass function

leads to some useful simplification.

66

Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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across the surface of the star.

Having thus integrated to obtainm, P and ⇢ as functions of r, we can use e.g. equations

(4.33) and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the

interior metric.

We will consider the exact solution of the Oppenheimer-Volko↵ equation for a particular

case in the next section. Before we do so, however, we can see from equation (4.45) that

– for normal matter with ⇢, P and m � 0, the e↵ect of GR must always be to steepen

the pressure gradient inside the star, compared with the pressure gradient required to

maintain a static solution in a purely Newtonian treatment.

4.7 Exact solution for a constant density star

Suppose we assume that ⇢ = ⇢0 = constant. This assumption is certainly not ap-

propriate for a star like the Sun (since, for one thing, it implies an infinite sound

speed, cS / dP/d⇢) but theoretical modelling of the internal structure of neutron stars

suggests that it is a reasonably good approximation in their case.

Under this assumption we can integrate equation (4.30) immediately to give

m(r) =
4

3
⇡⇢0r

3 (4.49)

Substituting into the Oppenheimer-Volko↵ equation, it is easy to see that this gives us

dP

dr
= �4

3
⇡r

(⇢0 + P )(⇢0 + 3P )
⇣
1� 8⇡⇢0r2

3

⌘ (4.50)

which we can re-arrange as

dP

(⇢0 + P )(⇢0 + 3P )
= � 4⇡rdr

3
⇣
1� 8⇡⇢0r2

3

⌘ (4.51)
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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Integrating equations (4.31)

r(1� e��) = 2m+ C (4.32)

where C is a constant, which is equal to zero unless the star is singular at r = 0. We

will consider such a case later in the chapter on Black Holes. Thus

e�� = 1� 2m

r
(4.33)

This is, of course, reminiscent of the equation (2.38) which we derived for the Schwarzschild

metric exterior to the star. In that case, however, we identified the constant, M , as

the total mass of the star, from considering the Newtonian far-field limit in which the

Schwarzschild metric reduces to that of Minkowski spacetime. In the case of the inte-

rior metric, we must remember that m is not a constant but an (as yet unspecified)

function of the coordinate radius, r.

4.5 The Oppenheimer-Volko↵ equation

Re-arranging equation (4.27) we obtain, after some straightforward algebra

d⌫

dr
= e�


8⇡Pr +

1

r

⇣
1� e��

⌘�
(4.34)

Substituting from equation (4.33) this reduces to

d⌫

dr
=

✓
1� 2m

r

◆�1 
8⇡Pr +

2m

r2

�
= 2

"
4⇡Pr3 +m

r(r � 2m)

#

(4.35)

Rather than attempting to re-arrange the third Einstein equation (4.28), which is rather

messy in form, we can use the conservation of mass-energy to obtain a di↵erential

equation for the function ⌫.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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Integrating equations (4.31)

r(1� e��) = 2m+ C (4.32)

where C is a constant, which is equal to zero unless the star is singular at r = 0. We

will consider such a case later in the chapter on Black Holes. Thus

e�� = 1� 2m

r
(4.33)

This is, of course, reminiscent of the equation (2.38) which we derived for the Schwarzschild

metric exterior to the star. In that case, however, we identified the constant, M , as

the total mass of the star, from considering the Newtonian far-field limit in which the

Schwarzschild metric reduces to that of Minkowski spacetime. In the case of the inte-

rior metric, we must remember that m is not a constant but an (as yet unspecified)

function of the coordinate radius, r.

4.5 The Oppenheimer-Volko↵ equation

Re-arranging equation (4.27) we obtain, after some straightforward algebra

d⌫

dr
= e�


8⇡Pr +

1

r

⇣
1� e��

⌘�
(4.34)

Substituting from equation (4.33) this reduces to

d⌫

dr
=

✓
1� 2m

r

◆�1 
8⇡Pr +

2m

r2

�
= 2

"
4⇡Pr3 +m

r(r � 2m)

#

(4.35)

Rather than attempting to re-arrange the third Einstein equation (4.28), which is rather

messy in form, we can use the conservation of mass-energy to obtain a di↵erential

equation for the function ⌫.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.

69

always positive by 
definition hence 

2m<r always 

Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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across the surface of the star.

Having thus integrated to obtainm, P and ⇢ as functions of r, we can use e.g. equations

(4.33) and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the

interior metric.

We will consider the exact solution of the Oppenheimer-Volko↵ equation for a particular

case in the next section. Before we do so, however, we can see from equation (4.45) that

– for normal matter with ⇢, P and m � 0, the e↵ect of GR must always be to steepen

the pressure gradient inside the star, compared with the pressure gradient required to

maintain a static solution in a purely Newtonian treatment.

4.7 Exact solution for a constant density star

Suppose we assume that ⇢ = ⇢0 = constant. This assumption is certainly not ap-

propriate for a star like the Sun (since, for one thing, it implies an infinite sound

speed, cS / dP/d⇢) but theoretical modelling of the internal structure of neutron stars

suggests that it is a reasonably good approximation in their case.

Under this assumption we can integrate equation (4.30) immediately to give

m(r) =
4

3
⇡⇢0r

3 (4.49)

Substituting into the Oppenheimer-Volko↵ equation, it is easy to see that this gives us

dP

dr
= �4

3
⇡r

(⇢0 + P )(⇢0 + 3P )
⇣
1� 8⇡⇢0r2

3

⌘ (4.50)

which we can re-arrange as

dP

(⇢0 + P )(⇢0 + 3P )
= � 4⇡rdr

3
⇣
1� 8⇡⇢0r2

3

⌘ (4.51)
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Thus, it follows that

e⌫

r2

h
1 + e�� (r�0 � 1)

i
= 8⇡⇢e⌫ (4.26)

⌫ 0

r
� e�

r2

⇣
1� e��

⌘
= 8⇡Pe� (4.27)

r2e��

"
⌫ 00

2
+

⌫ 02

4
� ⌫ 0�0

4
+

⌫ 0 � �0

2r

#

= 8⇡Pr2 (4.28)

The ‘��’ Einstein equation is indentically equal to the ‘✓✓’ equation, multiplied by

sin2 ✓.

4.4 Solution of the first Einstein equation

Cancelling e⌫ from either side of equation (4.26) and re-arranging, it is easy to show

that this equation may be re-written as

d

dr

h
r(1� e��)

i
= 8⇡⇢r2 (4.29)

To solve this equation it is convenient to introduce a new function, m(r), defined by

the di↵erential equation

dm

dr
= 4⇡⇢r2 (4.30)

from which it follows that

d

dr

h
r(1� e��)

i
= 2

dm

dr
(4.31)

Equation (4.30) has a Newtonian analogue: dm is equal to the mass contained within

a thin shell of radius r and thickness dr. Hence, in GR m(r) is usually referred to as

the mass function, although its simple Newtonian interpretation no longer holds in

GR, since one cannot describe the mass-energy in a frame-independent way solely in

terms of a single scalar function. Nevertheless, the introduction of the mass function

leads to some useful simplification.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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We can simplify the left hand side using the method of partial fractions, which leads

to

1

2⇢0

"
3dP

(⇢0 + 3P )
� dP

(⇢0 + P )

#

= �4⇡

3

rdr
⇣
1� 8⇡⇢0r2

3

⌘ (4.52)

We can now integrate both sides, yielding

ln (⇢0 + 3P )� ln (⇢0 + P ) =
1

2
ln

 

1� 8⇡⇢0r2

3

!

+ constant (4.53)

or

⇢0 + 3P

⇢0 + P
= A

 

1� 8⇡⇢0r2

3

!1/2

(4.54)

When r = 0 we take P = P0 (i.e. the central pressure), so that we can express the

constant A in terms of the density and central pressure

A =
⇢0 + 3P0

⇢0 + P0
(4.55)

Hence we may write

⇢0 + 3P

⇢0 + P
=

⇢0 + 3P0

⇢0 + P0

 

1� 8⇡⇢0r2

3

!1/2

(4.56)

Using equation (4.49) we see that we may re-write equation (4.56) as

⇢0 + 3P

⇢0 + P
=

⇢0 + 3P0

⇢0 + P0

✓
1� 2m

r

◆1/2

(4.57)

At the surface of the star, P = 0 and the left hand side of equation (4.56) reduces to

unity, so that

⇢0 + 3P0

⇢0 + P0

✓
1� 2M

R

◆1/2

= 1 (4.58)

where M is the Schwarszchild mass and R is the coordinate radius of the star.

By re-arranging equation (4.57) we can obtain an expression for P as a function of

r, in terms of ⇢, m(r) – which is in turn given by equation (4.49) – and the central
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across the surface of the star.

Having thus integrated to obtainm, P and ⇢ as functions of r, we can use e.g. equations

(4.33) and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the

interior metric.

We will consider the exact solution of the Oppenheimer-Volko↵ equation for a particular

case in the next section. Before we do so, however, we can see from equation (4.45) that

– for normal matter with ⇢, P and m � 0, the e↵ect of GR must always be to steepen

the pressure gradient inside the star, compared with the pressure gradient required to

maintain a static solution in a purely Newtonian treatment.

4.7 Exact solution for a constant density star

Suppose we assume that ⇢ = ⇢0 = constant. This assumption is certainly not ap-

propriate for a star like the Sun (since, for one thing, it implies an infinite sound

speed, cS / dP/d⇢) but theoretical modelling of the internal structure of neutron stars

suggests that it is a reasonably good approximation in their case.

Under this assumption we can integrate equation (4.30) immediately to give

m(r) =
4

3
⇡⇢0r

3 (4.49)

Substituting into the Oppenheimer-Volko↵ equation, it is easy to see that this gives us

dP

dr
= �4

3
⇡r

(⇢0 + P )(⇢0 + 3P )
⇣
1� 8⇡⇢0r2

3

⌘ (4.50)

which we can re-arrange as

dP

(⇢0 + P )(⇢0 + 3P )
= � 4⇡rdr

3
⇣
1� 8⇡⇢0r2

3

⌘ (4.51)
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We can simplify the left hand side using the method of partial fractions, which leads

to

1

2⇢0

"
3dP

(⇢0 + 3P )
� dP

(⇢0 + P )

#

= �4⇡

3

rdr
⇣
1� 8⇡⇢0r2

3

⌘ (4.52)

We can now integrate both sides, yielding

ln (⇢0 + 3P )� ln (⇢0 + P ) =
1

2
ln

 

1� 8⇡⇢0r2

3

!

+ constant (4.53)

or

⇢0 + 3P

⇢0 + P
= A

 

1� 8⇡⇢0r2

3

!1/2

(4.54)

When r = 0 we take P = P0 (i.e. the central pressure), so that we can express the

constant A in terms of the density and central pressure

A =
⇢0 + 3P0

⇢0 + P0
(4.55)

Hence we may write

⇢0 + 3P

⇢0 + P
=

⇢0 + 3P0

⇢0 + P0

 

1� 8⇡⇢0r2

3

!1/2

(4.56)

Using equation (4.49) we see that we may re-write equation (4.56) as

⇢0 + 3P

⇢0 + P
=

⇢0 + 3P0

⇢0 + P0

✓
1� 2m

r

◆1/2

(4.57)

At the surface of the star, P = 0 and the left hand side of equation (4.56) reduces to

unity, so that

⇢0 + 3P0

⇢0 + P0

✓
1� 2M

R

◆1/2

= 1 (4.58)

where M is the Schwarszchild mass and R is the coordinate radius of the star.

By re-arranging equation (4.57) we can obtain an expression for P as a function of

r, in terms of ⇢, m(r) – which is in turn given by equation (4.49) – and the central
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across the surface of the star.

Having thus integrated to obtainm, P and ⇢ as functions of r, we can use e.g. equations

(4.33) and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the

interior metric.

We will consider the exact solution of the Oppenheimer-Volko↵ equation for a particular

case in the next section. Before we do so, however, we can see from equation (4.45) that

– for normal matter with ⇢, P and m � 0, the e↵ect of GR must always be to steepen

the pressure gradient inside the star, compared with the pressure gradient required to

maintain a static solution in a purely Newtonian treatment.

4.7 Exact solution for a constant density star

Suppose we assume that ⇢ = ⇢0 = constant. This assumption is certainly not ap-

propriate for a star like the Sun (since, for one thing, it implies an infinite sound

speed, cS / dP/d⇢) but theoretical modelling of the internal structure of neutron stars

suggests that it is a reasonably good approximation in their case.

Under this assumption we can integrate equation (4.30) immediately to give

m(r) =
4

3
⇡⇢0r

3 (4.49)

Substituting into the Oppenheimer-Volko↵ equation, it is easy to see that this gives us

dP

dr
= �4

3
⇡r

(⇢0 + P )(⇢0 + 3P )
⇣
1� 8⇡⇢0r2

3

⌘ (4.50)

which we can re-arrange as

dP

(⇢0 + P )(⇢0 + 3P )
= � 4⇡rdr

3
⇣
1� 8⇡⇢0r2

3

⌘ (4.51)
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pressure, P0. Moreover, from equation (4.58) we can also obtain an expression for the

central pressure, P0, in terms of the Schwarzschild mass and radius of the star, namely

P0 =
⇢0


1�

⇣
1� 2M

R

⌘1/2�

3
⇣
1� 2M

R

⌘1/2
� 1

(4.59)

Having obtained expressions for P (r) and m(r), and given that we are assuming ⇢ is

constant, we can plug our expressions for these three functions into equations (4.33)

and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the interior

metric. This is left as an exercise. (See Examples sheet II.2).

4.8 Buchdahl’s theorem and limits on the radius of static stars

We can see from equation (4.59) that

P0 ! 1 when 3
✓
1� 2M

R

◆1/2

! 1, i.e. when
M

R
! 4

9
(4.60)

Hence, this tells us that there can be no static stars of uniform density which have

radius, R < 9M/4, since these would require pressures greater than infinite!

Note that, if we require the exterior metric to be ‘well-behaved’, then we could already

exclude static stars of radius R < 2M . We can see this by considering the exterior

metric at the surface of the star (i.e. for r = R) which takes the Schwarzschild form

ds2 = �
✓
1� 2M

R

◆
dt2 +

dr2
⇣
1� 2M

R

⌘ +R2d✓2 +R2 sin2 ✓d�2 (4.61)

From this equation it follows that when R < 2M the metric ‘misbehaves’ because:

• intervals for which dr 6= 0 and dt = d✓ = d� = 0 (which should be spacelike for

a well-behaved spacetime) give ds2 < 0, i.e. the interval is timelike.
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We can simplify the left hand side using the method of partial fractions, which leads

to

1

2⇢0

"
3dP

(⇢0 + 3P )
� dP

(⇢0 + P )

#

= �4⇡

3

rdr
⇣
1� 8⇡⇢0r2

3

⌘ (4.52)

We can now integrate both sides, yielding

ln (⇢0 + 3P )� ln (⇢0 + P ) =
1

2
ln

 

1� 8⇡⇢0r2

3

!

+ constant (4.53)

or

⇢0 + 3P

⇢0 + P
= A

 

1� 8⇡⇢0r2

3

!1/2

(4.54)

When r = 0 we take P = P0 (i.e. the central pressure), so that we can express the

constant A in terms of the density and central pressure

A =
⇢0 + 3P0

⇢0 + P0
(4.55)

Hence we may write

⇢0 + 3P

⇢0 + P
=

⇢0 + 3P0

⇢0 + P0

 

1� 8⇡⇢0r2

3

!1/2

(4.56)

Using equation (4.49) we see that we may re-write equation (4.56) as

⇢0 + 3P

⇢0 + P
=

⇢0 + 3P0

⇢0 + P0

✓
1� 2m

r

◆1/2

(4.57)

At the surface of the star, P = 0 and the left hand side of equation (4.56) reduces to

unity, so that

⇢0 + 3P0

⇢0 + P0

✓
1� 2M

R

◆1/2

= 1 (4.58)

where M is the Schwarszchild mass and R is the coordinate radius of the star.

By re-arranging equation (4.57) we can obtain an expression for P as a function of

r, in terms of ⇢, m(r) – which is in turn given by equation (4.49) – and the central
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We can simplify the left hand side using the method of partial fractions, which leads

to

1

2⇢0

"
3dP

(⇢0 + 3P )
� dP

(⇢0 + P )

#

= �4⇡

3

rdr
⇣
1� 8⇡⇢0r2

3

⌘ (4.52)

We can now integrate both sides, yielding

ln (⇢0 + 3P )� ln (⇢0 + P ) =
1

2
ln

 

1� 8⇡⇢0r2

3

!

+ constant (4.53)
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across the surface of the star.

Having thus integrated to obtainm, P and ⇢ as functions of r, we can use e.g. equations

(4.33) and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the

interior metric.

We will consider the exact solution of the Oppenheimer-Volko↵ equation for a particular

case in the next section. Before we do so, however, we can see from equation (4.45) that

– for normal matter with ⇢, P and m � 0, the e↵ect of GR must always be to steepen

the pressure gradient inside the star, compared with the pressure gradient required to

maintain a static solution in a purely Newtonian treatment.

4.7 Exact solution for a constant density star

Suppose we assume that ⇢ = ⇢0 = constant. This assumption is certainly not ap-

propriate for a star like the Sun (since, for one thing, it implies an infinite sound

speed, cS / dP/d⇢) but theoretical modelling of the internal structure of neutron stars

suggests that it is a reasonably good approximation in their case.

Under this assumption we can integrate equation (4.30) immediately to give

m(r) =
4

3
⇡⇢0r

3 (4.49)

Substituting into the Oppenheimer-Volko↵ equation, it is easy to see that this gives us

dP

dr
= �4

3
⇡r

(⇢0 + P )(⇢0 + 3P )
⇣
1� 8⇡⇢0r2

3

⌘ (4.50)

which we can re-arrange as

dP

(⇢0 + P )(⇢0 + 3P )
= � 4⇡rdr

3
⇣
1� 8⇡⇢0r2

3

⌘ (4.51)
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We can simplify the left hand side using the method of partial fractions, which leads
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Integrating equations (4.31)

r(1� e��) = 2m+ C (4.32)

where C is a constant, which is equal to zero unless the star is singular at r = 0. We

will consider such a case later in the chapter on Black Holes. Thus

e�� = 1� 2m

r
(4.33)

This is, of course, reminiscent of the equation (2.38) which we derived for the Schwarzschild

metric exterior to the star. In that case, however, we identified the constant, M , as

the total mass of the star, from considering the Newtonian far-field limit in which the

Schwarzschild metric reduces to that of Minkowski spacetime. In the case of the inte-

rior metric, we must remember that m is not a constant but an (as yet unspecified)

function of the coordinate radius, r.

4.5 The Oppenheimer-Volko↵ equation

Re-arranging equation (4.27) we obtain, after some straightforward algebra

d⌫

dr
= e�


8⇡Pr +

1

r

⇣
1� e��

⌘�
(4.34)

Substituting from equation (4.33) this reduces to

d⌫

dr
=

✓
1� 2m

r

◆�1 
8⇡Pr +

2m

r2

�
= 2

"
4⇡Pr3 +m

r(r � 2m)

#

(4.35)

Rather than attempting to re-arrange the third Einstein equation (4.28), which is rather

messy in form, we can use the conservation of mass-energy to obtain a di↵erential

equation for the function ⌫.
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Hence, equation (4.39) simplifies to

(⇢+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur
;t = ur

,t + �r
tju

j (4.41)

The first term is zero and only the j ⌘ t contravariant component of the four velocity

is non-zero, so that

ur
;t = �r

ttu
t =

1

2
⌫ 0e⌫��e�⌫/2 =

1

2
e��⌫ 0e⌫/2 (4.42)

Substituting in equation (4.40) finally yields the di↵erential equation

1

2
(⇢+ P )e��d⌫

dr
+ e��dP

dr
= 0 (4.43)

or

d⌫

dr
= � 2

(⇢+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ⌫ 0 from equation (4.35), giving

dP

dr
= �(⇢+ P )(4⇡Pr3 +m)

r(r � 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volko↵ equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volko↵ equation, taking

P << ⇢, which in turn implies that 4⇡Pr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= �⇢m

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.

69

gtt metric component will 
depend on 𝝆0 and P

we can now get the 
central pressure



pressure, P0. Moreover, from equation (4.58) we can also obtain an expression for the

central pressure, P0, in terms of the Schwarzschild mass and radius of the star, namely

P0 =
⇢0


1�

⇣
1� 2M

R

⌘1/2�

3
⇣
1� 2M

R

⌘1/2
� 1

(4.59)

Having obtained expressions for P (r) and m(r), and given that we are assuming ⇢ is

constant, we can plug our expressions for these three functions into equations (4.33)

and (4.44) to obtain ⌫(r) and �(r), which specifies completely the form of the interior

metric. This is left as an exercise. (See Examples sheet II.2).

4.8 Buchdahl’s theorem and limits on the radius of static stars

We can see from equation (4.59) that

P0 ! 1 when 3
✓
1� 2M

R

◆1/2

! 1, i.e. when
M

R
! 4

9
(4.60)

Hence, this tells us that there can be no static stars of uniform density which have

radius, R < 9M/4, since these would require pressures greater than infinite!

Note that, if we require the exterior metric to be ‘well-behaved’, then we could already

exclude static stars of radius R < 2M . We can see this by considering the exterior

metric at the surface of the star (i.e. for r = R) which takes the Schwarzschild form

ds2 = �
✓
1� 2M

R

◆
dt2 +

dr2
⇣
1� 2M

R

⌘ +R2d✓2 +R2 sin2 ✓d�2 (4.61)

From this equation it follows that when R < 2M the metric ‘misbehaves’ because:

• intervals for which dr 6= 0 and dt = d✓ = d� = 0 (which should be spacelike for

a well-behaved spacetime) give ds2 < 0, i.e. the interval is timelike.
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• intervals for which dt 6= 0 and dr = d✓ = d� = 0 (which should be timelike for

a well-behaved spacetime) give ds2 > 0, i.e. the interval is spacelike.

(In Chapter 6 we will consider the implications of allowing these misbehaving solutions

when we investigate black holes).

Hence, equation (4.59) means that we can also rule out the existence of a static star of

uniform density for R < 9M/4. A theorem due to Buchdahl (1959), which we do not

prove here, extends this result to stars of non-uniform density: no static, spherically

symmetric solutions exist for R < 9M/4.

We note, finally, that this result is not merely of academic interest. Suppose, for

example, we take a neutron star of mass equal to 2 solar masses. Expressed in units

of length then

MNS ' 3 km (4.62)

Hence, Buchdahl’s theorem implies that static neutron stars cannot exist with radii

less than about 7km. Since neutron stars are actually thought to have radii of about

10km, then we see that these stars approach rather closely the GR limit implied by

Buchdahl’s theorem.

Of course many neutron stars are rapidly spinning pulsars, which means that their in-

ternal structure is not static. To determine a limit on the allowed radius of a spinning

pulsar, one must go beyond the simple assumption of a static solution to Einstein’s

equations. We will not attempt such an extension in this course, although (time per-

mitting) we will consider the metric of a rotating black hole in Chapter 6.
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