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GW data analysis

What we currently do and why it 
needs to be improved
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The detection era
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Current techniques - Searches

Results of the searches for binary neutron stars and neutron
star–black hole binaries are reported in Ref. [43]. These
matched-filter searches are complemented by generic
transient searches which are sensitive to BBH mergers
with total mass of about 30M⊙ or greater [61].
A bank of template waveforms is used to cover the

parameter space to be searched [54,62–65]. The gravita-
tional waveforms depend upon the masses m1;2 (using the
convention that m1 ≥ m2) and angular momenta S1;2 of the
binary components. We characterize the angular momen-
tum in terms of the dimensionless spin magnitude

a1;2 ¼
c

Gm2
1;2

jS1;2j; ð2Þ

and the component aligned with the direction of the orbital
angular momentum, L, of the binary [66,67],

χ1;2 ¼
c

Gm2
1;2

S1;2 · L̂: ð3Þ

We restrict this template bank to circular binaries for which
the spin of the systems is aligned (or antialigned) with the
orbital angular momentum of the binary. The resulting
templates can nonetheless recover systems with misaligned
spins, which will exhibit orbital precession, with good
sensitivity over much of the parameter space, particularly
for near equal-mass binaries [44].
At leading order, the phase evolution during inspiral

depends on the chirp mass of the system [68–70]

M ¼ ðm1m2Þ3=5

M1=5 : ð4Þ

At subsequent orders in the PN expansion, the phase
evolution depends predominantly upon the mass ratio [19]

q¼ m2

m1

≤ 1; ð5Þ

and the effective spin parameter [71–76]

χeff ¼
m1χ1 þm2χ2

M
; ð6Þ

where M ¼ m1 þm2 is the binary’s total mass. The
minimum black hole mass is taken to be 2M⊙, consistent
with the largest known masses of neutron stars [77]. There
is no known maximum black hole mass [78]; however, we
limit this template bank to binaries with a total mass less
thanM ≤ 100M⊙. For higher-mass binaries, the Advanced
LIGO detectors are sensitive to only the final few cycles of
inspiral plus merger, making the analysis more susceptible
to noise transients. The results of searches for more massive
BBH mergers will be reported in future publications. In
principle, black hole spins can lie anywhere in the range

from −1 (maximal and antialigned) to þ1 (maximal and
aligned). We limit the spin magnitude to less than 0.9895,
which is the region over which the EOBNR waveform
model [8,9] used in the search is able to generate valid
template waveforms [8]. The bank of templates used for the
analysis is shown in Fig. 2.
Both analyses separately correlate the data from each

detector with template waveforms that model the expected
signal. The analyses identify candidate events that are
detected at both the Hanford and Livingston observatories
consistent with the 10-ms intersite propagation time.
Additional signal consistency tests are performed to mit-
igate the effects of nonstationary transients in the data.
Events are assigned a detection-statistic value that ranks
their likelihood of being a gravitational-wave signal. For
PyCBC, the observed SNR in each detector is reweighted
using the signal consistency tests. These reweighted SNRs
are added in quadrature to obtain the detection statistic ρ̂c.
For GstLAL, lnL is the log-likelihood ratio for the signal
and noise models. The detection statistics are compared to
the estimated detector noise background to determine, for
each candidate event, the probability that detector noise
would give rise to at least one equally significant event.
Further details of the analysis methods are available in
Appendix A.
The results for the two different analyses are presented in

Fig. 3. The figure shows the observed distribution of
events, as well as the background distribution used to

FIG. 2. The four-dimensional search parameter space covered
by the template bank shown projected into the component-mass
plane, using the convention m1 > m2. The colors indicate mass
regions with different limits on the dimensionless spin parameters
χ1 and χ2. Symbols indicate the best matching templates for
GW150914, GW151226, and LVT151012. For GW150914 and
GW151226, the templates were the same in the PyCBC and
GstLAL searches, while for LVT151012 they differed. The
parameters of the best matching templates are consistent, up to
the discreteness of the template bank, with the detector frame
mass ranges provided by detailed parameter estimation in Sec. IV.
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Current techniques - Parameter Estimation

the mass of a stable neutron star is 3M⊙ [92,93]. The
masses inferred from GW150914 are an order of magnitude
larger than these values, which implies that these two
compact objects of GW150914 are BHs, unless exotic
alternatives, e.g., boson stars [94], do exist. If the compact
objects were not BHs, this would leave an imprint on the
waveform, e.g., Ref. [95]; however, in Ref. [96] we verify
that the observed signal is consistent with that predicted
assuming BHs in general relativity. These results establish
the presence of stellar-mass BBHs in the Universe. It also
proves that BBHs formed in nature can merge within a
Hubble time [97].
To convert the masses measured in the detector frame to

physical source-frame masses, we require the redshift of the
source. As discussed in the Introduction, GW observations
are directly sensitive to the luminosity distance to a source,
but not the redshift [98]. We find that GW150914 is at
DL ¼ 410þ160

−180 Mpc. Assuming a flat ΛCDM cosmology
with Hubble parameterH0 ¼ 67.9 kms−1Mpc−1 and matter
density parameter Ωm ¼ 0.306 [6], the inferred luminosity
distance corresponds to a redshift of z ¼ 0.09þ0.03

−0.04 .
The luminosity distance is strongly correlated to the

inclination of the orbital plane with respect to the line of
sight [4,20,99]. For precessing systems, the orientation of
the orbital plane is time dependent. We therefore describe
the source inclination by θJN, the angle between the total
angular momentum (which typically is approximately
constant throughout the inspiral) and the line of sight

[30,100], and we quote its value at a reference GW
frequency fref ¼ 20 Hz. The posterior PDF shows that
an orientation of the total orbital angular momentum of the
BBH strongly misaligned to the line of sight is disfavored;
the probability that 45° < θJN < 135° is 0.35.
The masses and spins of the BHs in a (circular) binary

are the only parameters needed to determine the final mass
and spin of the BH that is produced at the end of the merger.
Appropriate relations are embedded intrinsically in the
waveform models used in the analysis, but they do not
give direct access to the parameters of the remnant BH.
However, applying the fitting formula calibrated to
nonprecessing NR simulations provided in Ref. [101] to
the posterior for the component masses and spins [102],
we infer the mass and spin of the remnant BH to be
Msource

f ¼ 62þ4
−4M⊙, and af ¼ 0.67þ0.05

−0.07 , as shown in Fig. 3
and Table I. These results are fully consistent with those
obtained using an independent nonprecessing fit [57]. The
systematic uncertainties of the fit are much smaller than
the statistical uncertainties. The value of the final spin is a
consequence of conservation of angular momentum in
which the total angular momentum of the system (which
for a nearly equal mass binary, such as GW150914’s
source, is dominated by the orbital angular momentum)
is converted partially into the spin of the remnant black hole
and partially radiated away in GWs during the merger.
Therefore, the final spin is more precisely determined than
either of the spins of the binary’s BHs.

FIG. 2. Posterior PDFs for the source luminosity distance DL
and the binary inclination θJN . In the one-dimensional margin-
alized distributions we show the Overall (solid black), IMRPhe-
nom (blue), and EOBNR (red) PDFs; the dashed vertical lines
mark the 90% credible interval for the Overall PDF. The
two-dimensional plot shows the contours of the 50% and 90%
credible regions plotted over a color-coded PDF.

FIG. 3. PDFs for the source-frame mass and spin of the remnant
BH produced by the coalescence of the binary. In the one-
dimensional marginalized distributions we show the Overall
(solid black), IMRPhenom (blue), and EOBNR (red) PDFs;
the dashed vertical lines mark the 90% credible interval for the
Overall PDF. The two-dimensional plot shows the contours of the
50% and 90% credible regions plotted over a color-coded PDF.
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Current techniques - 
Challenges

• Non-Gaussian noise


- currently limits the optimality of 
searches 

• Speed of PE


- for rapid-PE 

- and for the expected detection 
rate in the future 

• Un-modelled signals 


- the most exciting prospect?
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Neural networks

They’re not that hard to understand 
(honestly)
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The MNIST dataset LeCun et al. (1999)
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A single neuron

w1

w2

w3

w4

w5

w6

w7

input layer

the specific values of the 
weights and bias are not 

determined until training is 
performed

w1x1 + w2x2 + . . .+ wnxn + b
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Activation functions
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A simple network - A layer

• Fully connected layer- all inputs 
to all neurons 

• Overall result is a big matrix 
operation 

• still processed through a non-
linear activation function, e.g.,  
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A simple network - Multiple layers
multi-layer 
perceptron

hidden layers

output layer

�13

classification

input layer



Training/Learning

A brain is useless without input
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Loss functions

least squares

binary cross-entropy

�
n +H�bbX
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Gradient descent

• Very large number of 
parameters


• Compute local gradient and 
move “downhill” in proportion


• Tricks to avoid local minima


- Work in “batches” - stochastic 
gradient descent 

- Learning rate 

- Use momentum 

• in reality you can have millions 
of weights and biases

�16

Machine “learning” here 
is simply minimising a 

loss function



Back propagation

0

0

1

0.3

0.2

0.5

�(w1x1 + w2x2 + . . .+ wnxn + b)

compute the nudges 
needed for each 

input summed over 
each outputpropagate backwards
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Convolutional neurons
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3.3. Machine learning

The following section describes the application of machine learning to the problem of clas-
sifying images in the Gravity Spy system and how the classifications contributed by volun-
teers are used to update models of both machine learning image classification and volunteer 
capabilities.

3.3.1. Image classifier. Deep learning is a branch of machine learning which utilizes algo-
rithms that attempt to model high level abstractions in data by using multiple processing 
layers, composed of multiple linear and non-linear transformations. The Gravity Spy system 
uses a deep model with convolutional neural network (CNN) layers, which has shown great 
performance and is considered the state-of-the-art in image classification [50].

Another reason for exploiting deep learning is its scalability; compared to traditional machine 
learning methods such as support vector machines (SVMs), deep learning can handle and take 
advantage of copious amounts of data. Figure 6 illustrates the machine learning process used.

Many studies (e.g. [51, 52]) have shown that using multiple sources of information can 
improve the overall performance of classification. In this project, the multiple glitch durations 
that are also shown to Zooniverse volunteers are utilized. These durations are merged into a 
square form so that kernels can slide over all different durations and learn the glitch patterns. 
Two convolution layers are utilized first. The kernels slide over the input matrix, multiplying 
their corresponding weights to the input matrix and outputting a new matrix. The output of 
each kernel is known as a feature map .

Feature maps are usually subsampled using a max (or mean) operation. Here, max-pooling 
is used for down sampling—a square matrix slides over the feature map and gives the maxi-
mum value among the elements inside it. A layer of activation functions is used to determine 
the output of a given neuron. The Gravity Spy model uses a popular activation function known 
as rectified linear unit (ReLU) which is defined as ( )xmax 0 , . Then, a fully connected layer is 
applied. Each node in the fully connected layer is connected to all nodes of the previous layer.

The final layer is a softmax layer with 20 outputs. Softmax is a fully connected layer with 
the same number of nodes as the number of classes, and is widely used as the final layer in 
multi-class classification tasks. The output of the softmax layer, when image ‘i’ is given as the 
input to the classifier, is defined as

 =
∑

=
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e

e
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c
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Figure 6. Deep CNN used for glitch image classification. The network has been 
introduced on top of the four merged glitch durations. Dimensions of the kernels and 
feature maps are in units of pixels.

M Zevin et alClass. Quantum Grav. 34 (2017) 064003
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Finding GW signals

Using CNNs to find BBH signals in 
GW detector noise

�19
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The problem 

• Design a network that takes in 
noisy GW data and classifies it 
as noise or signal+noise


• Can the network achieve the 
same sensitivity as matched 
filtering?


• We do not consider PE


• We do not consider non-
Gaussianities

of the detectors, the waveforms of GW150914,
GW151226, and LVT151012 are also shown. The expected
signal-to-noise ratio (SNR) ρ of a signal, hðtÞ, can be
expressed as

ρ2 ¼
Z

∞

0

ð2j ~hðfÞj
ffiffiffi
f

p
Þ2

S nðfÞ
d lnðfÞ; ð1Þ

where ~hðfÞ is the Fourier transform of the signal. Writing it
in this form motivates the normalization of the waveform
plotted in Fig. 1, as the area between the signal and noise
curves is indicative of the SNR of the events.
The gravitational-wave signal from a BBH merger takes

the form of a chirp, increasing in frequency and amplitude
as the black holes spiral inwards. The amplitude of the
signal is maximum at the merger, after which it decays
rapidly as the final black hole rings down to equilibrium. In
the frequency domain, the amplitude decreases with fre-
quency during inspiral, as the signal spends a greater
number of cycles at lower frequencies. This is followed
by a slower falloff during merger and then a steep decrease
during the ringdown. The amplitude of GW150914 is
significantly larger than the other two events, and at the
time of the merger, the gravitational-wave signal lies well
above the noise. GW151226 has a lower amplitude but
sweeps across the whole detector’s sensitive band up to
nearly 800 Hz. The corresponding time series of the three
waveforms are plotted in the right panel of Fig. 1 to better
visualize the difference in duration within the Advanced
LIGO band: GW150914 lasts only a few cycles, while
LVT151012 and GW151226 have lower amplitudes but last
longer.
The analysis presented in this paper includes the total set

of O1 data from September 12, 2015 to January 19, 2016,

which contain a total coincident analysis time of 51.5 days
accumulated when both detectors were operating in their
normal state. As discussed in Ref. [13] with regard to the
first 16 days of O1 data, the output data of both detectors
typically contain nonstationary and non-Gaussian features,
in the form of transient noise artifacts of varying durations.
Longer duration artifacts, such as nonstationary behavior in
the interferometer noise, are not very detrimental to CBC
searches as they occur on a time scale that is much longer
than any CBC waveform. However, shorter duration
artifacts can pollute the noise background distribution of
CBC searches. Many of these artifacts have distinct
signatures [49] visible in the auxiliary data channels from
the large number of sensors used to monitor instrumental or
environmental disturbances at each observatory site [50].
When a significant noise source is identified, contaminated
data are removed from the analysis data set. After applying
this data quality process, detailed in Ref. [51], the remain-
ing coincident analysis time in O1 is 48.6 days. The
analyses search only stretches of data longer than a
minimum duration, to ensure that the detectors are operat-
ing stably. The choice is different in the two analyses and
reduces the available data to 46.1 days for the PyCBC
analysis and 48.3 days for the GstLAL analysis.

III. SEARCH RESULTS

Two different, largely independent, analyses have been
implemented to search for stellar-mass BBH signals in the
data of O1: PyCBC [2–4] and GstLAL [5–7]. Both these
analyses employ matched filtering [52–60] with waveforms
given by models based on general relativity [8,9] to search
for gravitational waves from binary neutron stars, BBHs,
and neutron star–black hole binaries. In this paper, we
focus on the results of the matched-filter search for BBHs.

FIG. 1. Left panel: Amplitude spectral density of the total strain noise of the H1 and L1 detectors,
ffiffiffiffiffiffiffiffiffi
S ðfÞ

p
, in units of strain per

ffiffiffiffiffiffi
Hz

p
,

and the recovered signals of GW150914, GW151226, and LVT151012 plotted so that the relative amplitudes can be related to the SNR
of the signal (as described in the text). Right panel: Time evolution of the recovered signals from when they enter the detectors’ sensitive
band at 30 Hz. Both figures show the 90% credible regions of the LIGO Hanford signal reconstructions from a coherent Bayesian
analysis using a nonprecessing spin waveform model [48].

B. P. ABBOTT et al. PHYS. REV. X 6, 041015 (2016)
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Gabbard et al PRL 120, 141103 (2018)
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The process

• time-series (not frequency-
series, spectrogram or 
complex spectrogram)


• single detector


• randomised parameters


• same signal - different noise


• transfer learning?


• more data - more sensitivity?

3

FIG. 1. A whitened noise-free timeseries of a BBH signal
with component masses m1 = 41.86M� and m2 = 6.65M�
with optimal SNR ⇢opt = 8 (cyan). The dark blue time-
series shows the same gravitational-wave signal with additive
whitened Gaussian noise of unit variance. This latter time-
series is representative of the datasets used to train, validate,
and test the deep neural network.

nal+noise (S) or noise-only (N) for the i’th training sam-
ple. The loss function is minimised when input data
samples are assigned the correct class with the highest
confidence.

In order to optimise a network, multiple hyper-
parameters must be tuned. We define hyper-parameters
as parameters we are free to choose. Such parameters in-
clude the number and type of network layers, the number
of neurons within each layer, size of the neuron weight
vectors, max-pooling parameters, type of activation func-
tions, preprocessing of input data, learning rate, and the
application (or otherwise) of specific deep learning tech-
niques. We begin the process with the simplest network
that provides a discernible level of e↵ective classification.
In most cases this consists of an input, convolutional,
hidden, and logistic output layer. The optimal network
structure was determined through multiple tests and tun-
ings of hyperparameters by means of trial and error.

During the training stage an optimization function
(back-propagation) works by computing the gradient of
the loss function (Eq. 2), then attempting to minimize
that loss function. The errors are then propagated back
through the network while also updating the weight
and bias terms accordingly. Back propagation is done
over multiple iterations called epochs. We use adap-
tive moment estimation with incorporated Nesterov mo-
mentum [48] with a learning rate of 0.002, �1 = 0.9,
�2 = 0.999, ✏ = 10�8 and a momentum schedule of 0.004.
We outline the structure of the final neural network ar-
chitecture in Table I.

The final ranking statistic that we extract from the

Parameter Layer
(Option) 1 2 3 4 5 6 7 8 9
Type C C C C C C H H H
No. Neurons 8 8 16 16 32 32 64 64 2
Filter Size 64 32 32 16 16 16 n/a n/a n/a
MaxPool Size n/a 8 n/a 6 n/a 4 n/a n/a n/a
Drop out 0 0 0 0 0 0 0.5 0.5 0
Act. Func. Elu Elu Elu Elu Elu Elu Elu Elu SMax

TABLE I. The optimised network consisting of 6 convolu-
tional layers (C), followed by 3 hidden layers (H). Max-pooling
is performed on the first, fifth, and eighth layer, whereas
dropout is only performed on the two hidden layers. Each
layer uses an exponential linear unit (Elu) activation func-
tion (with range [�1,1]) while the last layer uses a Softmax
(SMax) activation function in order to normalize the output
values to be between zero and one so as to give a probability
value for each class.

CNN analysis is taken from the output layer, composed of
2 neurons, where each neuron will produce a probability
value between 0 and 1 with their sum being unity. Each
neuron gives the inferred probability that the input data
belongs to the noise or signal+noise class respectively.
Applying matched-filtering.— In order to establish the

power of the deep learning approach we must compare
our results to the standard matched-filtering process
used in the detection of compact binary coalescence sig-
nals [49, 50]. The ranking statistic used in this case is
the matched-filter SNR numerically maximized over ar-
rival time, phase and distance. By first defining the noise
weighted inner product as a function of a time shift �t
between the arrival time of the signal and the template,

(a | b)[�t] = 4

Z 1

fmin

ã(f)b̃⇤(f)

Sn(f)
e2⇡if�t df, (3)

we can construct the matched-filter SNR as

⇢2[�t] =
(s | h)2[�t] + i(s | h)2[�t]

(h | h)
(4)

where s is the data containing noise and a potential
signal, and h is the noise-free gravitational-wave tem-
plate [44]. For a given template this quantity is e�-
ciently computed using the fast Fourier transform (FFT)
and the SNR timeseries maximised over �t. The subse-
quent step is to further numerically maximize this quan-
tity over a collection of component mass combinations. In
this analysis a comprehensive template bank is generated
in the m1,m2 mass space covering our predefined range
of masses. We use a maximum mismatch of 3% and a
lower frequency cuto↵ of 20 Hz using the PyCBC geomet-
ric non-spinning template bank generation tool [10, 51].
This template bank contained 8056 individual templates.
When generating an SNR timeseries for an input

dataset we select fmin according to the conservative case
(lowest fmin) in which the signal merger occurs at the
0.95 fraction of 1 s timeseries. We therefore select only

�21
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Other work

9

Filtering can be significantly decreased by combining
classifications on multiple detector inputs and by computing
the overlap of the template predicted by Deep Filtering
with the input to confirm each detection. The sensitivity of
this classifier as a function of SNR is shown in Fig. 7. The
deeper classifier obtained slightly better sensitivity as shown
in Fig. 8
For comparison, we trained standard implementations of all
commonly used machine learning classifiers— Random For-
est, Support Vector Machine, k-Nearest Neighbors, Hidden
Markov Model, Shallow Neural Networks, Naive Bayes, and
Logistic Regression — along with the DNNs on a simpler
training set of 8000 elements for fixed total mass and peak sig-
nal amplitude. Unlike DNNs, none of these algorithms were
able to directly handle raw noisy data even for this simple
problem as shown in Fig. 12.
Our predictor was able to successfully measure the compo-
nent masses given noisy GWs, that were not used for train-
ing, with an error of the same order as the spacing between
templates for SNR � 13. The deeper predictor consistently
outperformed matched-filtering. At very large SNR, over 50,
we could train both the predictors to have relative error less
than 5%, whereas the error with matched-filtering using the
same templates was always greater than 11% with the given
template bank. This means that, unlike matched-filtering, our
algorithm is able to automatically perform interpolation be-
tween the known templates to predict intermediate values.
The variation in relative error against SNR for each architec-
ture of the DNNs is shown in Fig. 9 and Fig. 10. The largest
relative errors were concentrated at lower masses, because a
small variation in predicted masses led to larger relative errors
in this region.

We can estimate the distribution of errors and uncertain-
ties empirically at each region of the parameter-space. We
observed that the errors closely follow Gaussian normal dis-
tributions for each input for SNR (� 9), allowing easier char-
acterization of uncertainties. Once we obtain initial estimates
for the parameters via Deep Filtering, traditional tech-
niques may be rapidly applied using only a few templates near
these predictions to cross-validate our detection and param-
eter estimates and to measure uncertainties. There are also
emerging techniques to estimate quantify in the predictions of
CNNs [92], which may be applied to this method.
After testing common machine learning techniques including
Linear Regression, k-Nearest Neighbors, Shallow Neural Net-
works, Gaussian Process Regression, and Random Forest on
the simpler problem with fixed total mass, we observed that,
unlike DNNs, they could not predict even a single parame-
ter (mass-ratio at fixed total mass) accurately, as evident from
Fig. 12, when trained directly on time-series data.
Having trained our DNNs to detect and characterize quasi-
circular, non-spinning BBH signals, we assessed their capa-
bilities to identify new classes of GW signals, beyond our
original training and testing sets. We used two distinct types
of signals that were not considered during the training stage,
namely: (i) moderately eccentric NR simulations (approxi-
mate eccentricity of 0.1 when entering aLIGO band), that we
recently generated with the open-source, Einstein Toolkit [84]

FIG. 9. Error in parameter estimation with smaller net. This
shows the mean percentage error of estimated masses on our testing
sets at each SNR using the predictor DNN with 3 convolution layers.
The DNN was trained only once over the range of SNR and was then
tested at different SNR, without re-training. Note that a mean relative
error less than 20% was obtained for SNR � 8 . At high SNR, the
mean error saturates at around 11%. See Fig. 10 for the results with
the deeper version of the predictor.

FIG. 10. Error in parameter estimation with deeper net. This
shows the mean percentage error of estimated masses on our testing
sets at each SNR using the deeper CNN with 4 convolution layers.
Note that a mean relative error less than 15% was obtained for SNR
� 7 . At high SNR, the mean error saturates at around 7%. Note
that we were able to optimize the predictor to have less than 3%
error for very high SNR (� 50), which demonstrates the ability of
Deep Filtering to learn patterns connecting the templates and
effectively interpolate to intermediate points in parameter space.

using the Blue Waters petascale supercomputer; and (ii) NR
waveforms from the SXS catalog [93] that describe spin-
precessing, quasi-circular BBHs—each BH having spin � 0.5
oriented in random directions [93]. Sample waveforms of
these GW classes as shown in Fig. 13. Since these NR simula-
tions scale trivially with mass, we enlarged the data by rescal-
ing the signals to have different total masses. Thereafter, we

George & Huerta arXiv:1701.00008 (2017) Williams & Messenger in prep (2018)

Rebei et al arXiv:1807.09787 (2018)
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FIG. 3. Point-to-point SNR di↵erence between waveforms that include all (`, |m|) modes and waveforms that only include the
(`, |m|) = (2, 2) mode, normalized with respect to the (` = 2, |m| = 2) global SNR maximum—see Eq. 7. The waveforms
are constructed using the (✓, �) combinations that maximize the contribution of waveform modes in either case, indicated by
red diamonds in the top panels of Figure 1. The SNR distributions are presented as a function of the source’s sky location
(↵, �) mapped into a Mollweide projection: (#,') ! (⇡/2 � ↵,� � ⇡). We have set the polarization angle  = ⇡/4 in these
calculations.

A detailed description of the construction of our neu-
ral networks can be found in [3, 4]. To quantify the
sensitivity with which deep learning can extract eccen-
tric, higher-order waveform multipole signals, we selected
from our catalog of NR waveforms those that have the
most complex topology. Thereafter, we embedded these
NR waveforms in simulated LIGO noise, and quantified
the optimal matched-filter SNR at which these signals
may be detected with our deep learning algorithms. The
results of this analysis, assuming simulated noise from
LIGO’s Zero Detuned High Power configuration [63], are
presented in Figure 4. We notice that independently of
the (q, e) of the systems, we achieve 100% sensitivity for
all these BBH systems when SNR � 10 with a false alarm
rate that we tuned to be 1%, i.e., 1 per 100 seconds of
noise in our test dataset was misclassified as signals. It
is remarkable that this result is the same in the context
of quasi-circular BBH signals that we reported in [3].

We have extended this analysis using real LIGO noise
that we obtained from the LIGO Open Science Center.
To carry out this analysis, we used the neural network
model described in [4]. To assess the power of this algo-
rithm to identify an entirely new class of GW signals in
a realistic detection scenario, we injected the most com-
plex eccentric NR signals we produced in our datasets
in real LIGO noise corresponding to GW150914. In Fig-
ure 4, we show that Deep Filtering can detect GWs sig-
nals that include higher-order waveform modes with the
same sensitivity it can detect GWs used to train the neu-
ral network model, i.e., non-spinning, quasi-circular BBH

FIG. 4. Top left panel: H(t), see Eq. (2), whitened with sim-
ulated LIGO noise for three NR waveforms with M = 80M�
and (✓⇤, �⇤

, ↵, �,  ) combinations that maximize the contri-
bution of (`, |m|) modes. Top right panel: Deep Filtering

reaches 100% Sensitivity to identify all these signals in sim-
ulated Gaussian noise for optimal matched-filter SNR � 10.
Bottom left panel: as above but now using real LIGO noise to
whiten two NR waveforms that represent highly asymmetric
mass-ratio, eccentric BBH signals. Bottom right panel: Deep
Filtering attains 100% Sensitivity when these signals have
optimal matched-filter SNR � 10.
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and delivered over 45 000 glitch classifications. This activity in turn led to hundreds of conver-
sation threads on the website talk forum and fostered excitement and intrigue for the nascent 
field of gravitational-wave astrophysics. The work culminated in the discovery of multiple 
new and substantial glitch categories from LIGO first observing run, including glitches which 
would later receive the names ‘Paired Doves’ [57] and ‘Helix’ [58]. Example images of these 
glitch morphologies are shown in figure 8. In particular, the discovery of the ‘Paired Doves’ 
class proved significant in LIGO detector characterization endeavors, as this glitch resembles 
signals from compact binary inspirals and is therefore detrimental to the search for such astro-
physical signals in LIGO data. The project activity during the Beta versions is testament to 
the ability of citizen science projects to engage and involve the public in scientific advance-
ment. A deeper analysis of these morphologies with regard to LIGO detector characterization 
and further techniques to optimize the integration of citizen science output to large-scale data 
analysis will be presented in future publications.

5. Conclusions and future prospects

As LIGO searches for gravitational waves, the Gravity Spy project will endeavor to improve 
the understanding of the LIGO detectors and reduce the impact of harmful noise, all while 
engaging the general public in gravitational-wave physics. Gravity Spy also plans to incorpo-
rate data from the multiple interferometers joining the advanced network in upcoming years 
(e.g. [5, 6]) to further assist in noise characterization. The full launch of the Gravity Spy 
project on October 12 2016 incorporated the machine learning analysis and crowdsource clas-
sifier into the system, providing each user with a tailored progression through the multiple 
workflows and pairing machine learning confidence scores with user classifications to optim-
ize the retirement of images and classification accuracy. The project shows clear utility in 
aiding gravitational wave detector characterization and creates an avenue to analyze the socio-
computational interaction.

Each day during LIGO’s upcoming observing runs, the Gravity Spy system will generate 
Omega Scans of triggers that have passed low-latency data quality cuts and fit within the SNR 

Figure 8. Two new O1 glitch classes uncovered during Gravity Spy beta testing: ‘Paired 
Doves’ (left) and ‘Helix’ (right). ‘Paired Doves’ [57] resemble chirps, but alternate 
between increasing frequency and decreasing frequency. These glitches are related to 
the ringing of a 0.4 Hz resonance of the pendulum mode in the Hanford beamsplitter, 
and couple to auxiliary channels monitoring the beamsplitter suspension system.‘Helix’ 
[58] are possibly related to glitches in the auxiliary lasers (called photon calibrators) 
that are used to push the LIGO mirrors and calibrate the detectors.
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Getting started

You can do this too 
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Practicalities - Actually getting started

• Find a problem to solve (classification, parameter 
estimation, generation, …) 

• Find a simple network architecture that does better than 
chance 

• Build from there adding complexity in small increments 
and testing the performance 

• Simultaneously build up your training data size 
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Practicalities - General tips

• Lots of software available (Keras, Tensorflow, Theano, 
PyTorch, …) 

• You are (kind of) wasting your time if you don’t have an 
Nvidia GPU 

• Be careful in generating your datasets 

• More training data usually means better performance
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Practicalities - Training, validation and testing

• Your entire dataset is usually divided into 3 groups 

• Training 

• Data used to train the network  

• Validation 

• Data used to check that the network isn’t over-fitting 

• Test 

• Data used to quantify the performance of the network
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Practicalities - Bells and whistles

• Max pooling 

• Dropout 

• Batch normalisation 

• Data augmentation 

• Transfer learning 

• and many more …
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Generative Adversarial 
Networks (GANs)

Getting better through competition
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Fighting networks

doesn’t have to 
be random input
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Why might GANs be useful?

• In general they are very good at generating new data 
(hence “generative”) 

• They don’t need much training data 

• To be honest, for GWs, we’re not sure yet 

• Useful for generating fake signals - bursts, NR 

• Also useful for distinguishing real from fake - maybe a 
search algorithm 
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Simple burst example

McGinn, Heng & Messenger in prep (2018)
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Interior design

Radford, Metz, Chintala, arXiv:1511.06434 (2015)
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Conclusions

Where do we go from here?
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Obvious things 

• BBH searches could be done 
quite simply (now)


• Parameter estimation is 
possible - but only get point 
estimate - still very fast


• Push harder for longer 
waveforms - BNS with LSTM?


• Detector characterisation - 
requires labelled data (or 
include in the noise model)


• Start thinking about 
unsupervised approaches
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The future

• Speed


- Detection and PE of systems 
prior to merger - EM warning 

• Un-modelled


- Generalised GW transient search 
- hinged on time and waveform 
consistent signals 

• Non-Gaussian noise


- Trained on the real data
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Thanks
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