Reshaping gravitational wave data analysis with machine learning

Chris Messenger University of Glasgow

Outline

- GW data analysis
- Neural networks
- Training/Learning
- Finding GW signals
- Getting started
- · GANs
- Conclusions

https://xkcd.com/1838/

GW data analysis

What we currently do and why it needs to be improved

LIGO-Virgo Collaboration, PRL 119, 161101 (2017)

The detection era

Current techniques - Searches

Current techniques - Parameter Estimation

LIGO-Virgo Collaboration PRL 116, 241102 (2016)

Current techniques -Challenges

- Non-Gaussian noise
 - currently limits the optimality of searches
- Speed of PE
 - for rapid-PE
 - and for the expected detection rate in the future
- Un-modelled signals
 - the most exciting prospect?

1080Lines

Light_Modulation

1400Ripples

Scattered_Light

Zevin et al CQG, 34, 6, 064003 (2017)

Neural networks

They're not that hard to understand (honestly)

The MNIST dataset

LeCun et al. (1999)

 $\overline{\gamma}$ З З ร q Ŧ a \leq Э Э \circ ΰ D Ũ X 1.5 ų Q イ スし \mathcal{O} Э 3み ζ q μ ¥ \cap З З う -7 ス っ ۔ ما ລ A. Z q Ð D Δ વ Ð O D \circ 3 S О О \bigcirc g б q \mathcal{Q} 3 პ **0** З Õ Ъ G 95a a Ð 0 8 Ð q ລ Ъ ລ \supset a

A single neuron

$w_1x_1 + w_2x_2 + \ldots + w_nx_n + b$

the specific values of the weights and bias are not determined until training is performed

input layer

Activation functions

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

A simple network - A layer

- Fully connected layer- all inputs to all neurons
- Overall result is a big matrix operation

 $\begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} & w_{13} & \dots & w_{1n} \\ w_{21} & w_{22} & w_{23} & \dots & w_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ w_{d1} & w_{d2} & w_{d3} & \dots & w_{dn} \end{bmatrix} \\ + \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix}$

• still processed through a nonlinear activation function, e.g.,

A simple network - Multiple layers

Training/Learning

A brain is useless without input

Loss functions

Gradient descent

- Very large number of parameters
- Compute local gradient and move "downhill" in proportion
- Tricks to avoid local minima
 - Work in "batches" stochastic gradient descent
 - Learning rate
 - Use momentum
- in reality you can have millions of weights and biases

Machine "learning" here is simply minimising a loss function

Back propagation

Convolutional neurons

Zevin et al CQG, 34, 6, 064003 (2017) 18

Finding GW signals

Using CNNs to find BBH signals in GW detector noise

Gabbard *et al* PRL 120, 141103 (2018)

The problem

- Design a network that takes in noisy GW data and classifies it as noise or signal+noise
- Can the network achieve the same sensitivity as matched filtering?
- We do not consider PE
- We do not consider non-Gaussianities

The process

- time-series (not frequencyseries, spectrogram or complex spectrogram)
- single detector
- randomised parameters
- same signal different noise
- transfer learning?
- more data more sensitivity?

Parameter	Layer								
(Option)	1	2	3	4	5	6	7	8	9
Туре	С	С	С	С	С	С	Η	Η	Η
No. Neurons	8	8	16	16	32	32	64	64	2
Filter Size	64	32	32	16	16	16	n/a	n/a	n/a
MaxPool Size	n/a	8	n/a	6	n/a	4	n/a	n/a	n/a
Drop out	0	0	0	0	0	0	0.5	0.5	0
Act. Func.	Elu	Elu	Elu	Elu	Elu	Elu	Elu	Elu	SMax

Results

Gabbard et al PRL 120, 141103 (2018)

Other work

George & Huerta arXiv:1701.00008 (2017)

Rebei et al arXiv:1807.09787 (2018)

Williams & Messenger in prep (2018)

Getting started

You can do this too

Practicalities - Actually getting started

- Find a problem to solve (classification, parameter estimation, generation, ...)
- Find a simple network architecture that does better than chance
- Build from there adding complexity in small increments and testing the performance
- Simultaneously build up your training data size

Practicalities - General tips

- Lots of software available (Keras, Tensorflow, Theano, PyTorch, ...)
- You are (kind of) wasting your time if you don't have an Nvidia GPU
- Be careful in generating your datasets
- More training data usually means better performance

Practicalities - Training, validation and testing

- Your entire dataset is usually divided into 3 groups
 - Training
 - Data used to train the network
 - Validation
 - Data used to check that the network isn't over-fitting
 - Test
 - Data used to quantify the performance of the network

Practicalities - Bells and whistles

- Max pooling
- Dropout
- Batch normalisation
- Data augmentation
- Transfer learning
- and many more ...

Generative Adversarial Networks (GANs)

Getting better through competition

Fighting networks

Why might GANs be useful?

- In general they are very good at generating new data (hence "generative")
- They don't need much training data
- To be honest, for GWs, we're not sure yet
- Useful for generating fake signals bursts, NR
- Also useful for distinguishing real from fake maybe a search algorithm

McGinn, Heng & Messenger in prep (2018)

Interior design

Radford, Metz, Chintala, arXiv:1511.06434 (2015)

Conclusions

Where do we go from here?

Obvious things

- BBH searches could be done quite simply (now)
- Parameter estimation is possible - but only get point estimate - still very fast
- Push harder for longer
 waveforms BNS with LSTM?
- Detector characterisation requires labelled data (or include in the noise model)
- Start thinking about unsupervised approaches

The future

• Speed

- Detection and PE of systems prior to merger EM warning
- Un-modelled
 - Generalised GW transient search
 hinged on time and waveform
 consistent signals
- Non-Gaussian noise
 - Trained on the real data

Thanks