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Forward

• This work has already been presented to the Machine 
Learning group at the CERN LVC. 

• Hands up - I assumed that this constituted an internal LVC 
presentation. 

• Hence we have a paper draft on the DCC 

• https://dcc.ligo.org/LIGO-P1700378 

• This is the work of 2 undergraduate students (Fergus 
Hayes, Michael Williams) and PhD student Hunter Gabbard.



The main aim of the paper

• In early 2017 our work on deep networks was interrupted by 
evidence that machine learning can produce incredible 
results. 

• George & Huerta, arXiv:1701.00008 (2017) 

• We have since striven to empirically prove that deep networks 
can reproduce the results of matched-filtering. 

• We therefore show that this is the case for a simple but 
realistic binary black hole search. 

• Finally, why? Speed



Deep Learning - a way to think about it



The analysis overview

• Using BBH time-series in 
Gaussian noise (whitened). 

• 2 classes (signal+noise, noise) 

• 60K training data + (12K 
validation and testing) for each 
optimal SNR value (2-12) 

• Develop a deep network (trial 
and error)  

• Compare with matched filtering 
(crucial).



The CNN details

• We tried - data pre-processing, transfer learning, network depth, 
weight and bias initialisation, activation functions, batch size, batch 
normalisation, dropout, regularisation, dilation, max pooling, Padding, 
Stride, gradient descent, … 

• Also, input data parameter distributions.
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Parameter Layer
(Option) 1 2 3 4 5 6 7 8 9 10
Type C C C C C C C C H H
No. Neurons 8 16 16 32 64 64 128 128 64 2
Filter Size 32 16 16 16 8 8 4 4 n/a n/a
MaxPool Size 8 n/a n/a n/a 6 n/a n/a 4 n/a n/a
Drop out 0 0 0 0 0 0 0 0 0.5 0
Act. Func. Elu Elu Elu Elu Elu Elu Elu Elu Elu SMax

TABLE I. The optimal network structure was determined
through multiple tests and tunings of hyperparameters by
means of trial and error. The network consists of 8 convolu-
tional layers (C), followed by 2 hidden layers (H). Max-pooling
is performed on the first, fifth, and eighth layer, whereas
dropout is only performed on the two hidden layers. Each
layer uses an Elu activation function while the last layer uses
a Softmax (SMax) activation function in order to normalize
the output values to be between zero and one so as to give a
probability value for each class.
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we can construct the matched-filter SNR as283
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where s is the data containing noise and a potential signal284
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mass space covering our predefined range of masses and291

with a maximum mismatch of 3% using the PyCBC tools292

[10] . The template bank in this case contains 8000 indi-293

vidual templates.294

For the practical computation of the matched-filter295

analysis we take each of the data samples from the test-296

ing dataset and compute the time, phase and amplitude297

maximized ranking statistic ⇢ for each template in the298

bank. We then record the value of ⇢ maximized over299

each template. With values of statistics now assigned to300

each test data sample from both the matched-filtering301

and CNN approaches, and having knowledge of the true302

class associated with that sample, we may now construct303

receiver operator characteristic (ROC) curves.304

Results — A standard method for displaying the ac-305

curacy of a classifier is through a confusion matrix in306

which the number of samples of each true class identified307

as every possible class are listed in a square matrix. A308

fully diagonal matrix would imply no incorrectly classi-309

fied samples and a uniform matrix would imply no classi-310

fication power. In Figure 2 we show results for the CNN311

FIG. 2. Confusion matrices for testing datasets containing
signals with optimal SNR ⇢

opt

= 2, 4, 6, 8, 10, 12. Numbers
superimposed within matrix elements are the number of sam-
ples corresponding to samples that were of true class indi-
cated by the y-axis label but identified as the corresponding
x-axis label. For our 2 class system these are equivalent to
the numbers of true positive, true negative, false negative, or
false positive. The accuracy percentages for all injection SNR
values are listed as follows: 51.86% at ⇢

opt

= 2, 65.51% at
⇢
opt

= 4, 85.63% at ⇢
opt

= 6, 96.66% at ⇢
opt

= 8, 99.41% at
⇢
opt

= 10 and 99.99% at ⇢
opt

= 12.

approach from which we highlight the overall accuracy312

(the ratio of incorrectly identified samples to the total313

number of samples) of 97.88% at ⇢
opt

= 8.314

After tunning several hyperparameters and then set-315

tling on an ideal network format (Table I), we present the316

results of our classifier on a noise vs. signal+noise sam-317

ple set. We trained our network using a transfer learning318

approach whereby we initially trained our network on319

a sample set of 1,000 noise and 1,000 injection signals320

(each with 25 di↵erent noise realizations) with an inte-321

grated SNR value of 12. We then lowered the integrated322

SNR value by 2 and (using the same weights from our323

previous network) we trained our classifier again. This324

approach seemed to only have a marginal benefit on the325

overall performance of the classifier.326

In Figure 3 we compare our CNN results to that of327

matched filtering. Given the ranking statistic from a par-328

ticular analysis and defining a parametric threshold value329

on that statistic we are able to plot the fraction of noise330

samples incorrectly identified (false alarm or false posi-331



The CNN procedure

• The CNN is trained on waveforms with all parameters 
randomised (inclination, polarisation, sky, etc…) 

• masses are distributed randomly according to the metric 
(min mass 5M⊙, max total mass 100M⊙) 

• Each training signal is used 25 times in different realisations of 
noise. 

• The output statistic is the class probability given by the final 
SoftMax layer. 

• The results are those output from the test data.



The matched-filtering comparison

• A template bank is constructed using PyCBC with a max 
mismatch of 3% 

• The phase, amplitude, time and mass maximised 
measured SNR is recovered using the bank. 

• We apply this bank to the same test data as used in the 
CNN analysis.



The main results - ROC curves
5

FIG. 3. The ROC curves for test datasets containing signals
with optimal SNR ⇢

opt

= 2, 4, 6, 8, 10, 12. In each panel we
plot the detection probability as a function of the false alarm
probability estimated from the output of the CNN (purple)
and matched-filtering (cyan) approaches. We also plot the
ROC curves corresponding to a single template matched-filter
analysis (orange) maximized over phase, amplitude and time
shift.

tive probability) as signals versus the fraction of signal332

samples correctly identified (true alarm or true positive333

probability). These curves are defined as ROC curves334

and a ranking statistic is deemed superior to another if335

at a given false alarm probability it achieves a higher de-336

tection probability. Our results show that within our un-337

certainties the CNN approach matches the sensitivity of338

matched filtering for all test datasets across the full range339

of false alarm probabilities explored in this analysis[45].340

We also plot as a reference, the ROC curve corresponding341

to a matched filter analysis for which the true masses and342

arrival time of the signal is known. In this case there is343

only a single template and the sensitivity is consequently344

improved.345

In Figure 3 we compare our results to that of matched346

filtering, where we use two alternative match filtering347

methods. The first is produced by using the nominal tem-348

plate bank described in the Sample Simulation Methods349

section, whereas the second uses the optimal template for350

each injection, whereby optimal is defined as the template351

used to generate that injection. As seen in figure 3 all352

three methods have equivalent performance proficiency353

at ⇠ iSNR > 9, whereas there is a marginal dip in per-354

formance in the nominal matched filtering method and355

our deep learning classifier. It should be noted that our356

classifier exceeds the performance proficiency of that of357

the nominal matched filtering method between iSNR 2358

and iSNR 4.359

We can make an additional direct comparison between360

approaches by fixing a false alarm probability and plot-361

ting the corresponding detection probability versus the362

FIG. 4. E�ciency curves comparing the performance of the
CNN and matched-filter approaches for a selection of false
alarm probabilities. The detection probability is plotted as a
function of the optimal SNR for the CNN (purple) and the
matched-filtering (cyan) analyses. Each collection of curves
is labeled with the corresponding false alarm probability and
in each case for reference we also plot curves for the single
template matched-filter case (orange).

optimal SNR of the signals in each test dataset. We363

show these e�ciency curves in Figure 4 at 3 di↵erent false364

alarm probabilities 10�1, 10�2, 10�3 for both the CNN365

and matched-filtering approaches. Since these e�ciency366

curves are derived from the data used to generate the367

ROC curves shown in Figure 3 it is not surprising that368

the CNN and matched-filtering approaches produce in-369

distinguishable results (within our uncertainties) at all370

choices of false alarm probability.371

We compare the results of all three methods at vari-372

ous injection iSNR values in figure 3. It is not surprising373

to see that the matched filtering method using the op-374

timal template consistently performs better than both375

the nominal match filtering method and our deep learn-376

ing classifier. However, what is considerable is the com-377

parison between the nominal matched filtering and the378

deep learning classifier detection probability curves. It379

can clearly be seen that our classifier exceeds the perfor-380

mance of the nominal matched filtering method at iSNR381

2, 4 and 6. This is a promising result and certainly merits382

further investigation.383

Conclusions —We have demonstrated that deep learn-384

ing, when applied to a raw gravitational-wave timeseries385

data, is able to reproduce the results of a matched-386

filtering analysis in Gaussian noise. We employ a deep387

convolutional neural network with carefully chosen hy-388

perparameters and produce an output that returns a389

ranking statistic equivalent to the probability that data390

contains a signal. Matched filter analyses are often de-391

scribed as the optimal approach for signal detection in392
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The conclusions

• Deep learning approaches are incredibly powerful. 

• We have shown that in a realistic scenario they can achieve matched 
filtering sensitivities. 

• There are many outstanding questions 

• What about non-Gaussianities? 

• Multiple detectors? (this is straight forward) 

• Can it deal with longer waveforms? 

• What about other signals, CW, Burst?



Thank you for your attention


