
•  We want to understand the universe. 

•  The universe is complicated. 

•  Mathematical models describing the universe are 
frequently too complicated to solve analytically. 

•  We use numerical simulations to approximate solutions 
to mathematical models. 

•  We understand the universe a little better. 

Motivation 



•  Numerical simulations allow us to play around with a 
system and observe how different initial conditions and 
different physical processes affect the system. 

•  Understand the consequences of physical laws. 

•  Help interpret observations/experiments. 

•  Predict new requirements for observations/experiments. 

Motivation 



•  What happens if we change the initial conditions? 
– Distribution of particles (e.g. Maxwellian or power-law)? 
–  Initial distribution parameters (e.g. position, energy spectra, temporal)? 

•  What happens if we add/remove physical processes? 
– Particle transport and/or diffusion. 
– Particle collisions. 

•  What happens if we interact with waves? 
– Electromagnetic waves. 
– Plasma waves. 

Motivation 



OBSERVATION 

SIMULATION THEORY 

Basic Process 

NEVER FORGET 



•  Pseudo code is a great way to plan your program before you start at the 
computer. 

•  Description of your code is there to help YOU (and others). 

Initialise slide to 1 
Introduce the topic to be studied 
WHILE lecture not complete 

 Increment the slide number 
 Describe the concept on the slide 
 IF additional explanation is required 
  Draw on the whiteboard to assist the description 
 END IF 

END WHILE 

Program Description 



Initialise variables 
Get ready for the night out 
Arrange transport 
Meet friends at the pub 
WHILE not drunk or tired or bored 

 socialise 
 IF thirsty or want alcohol then drink 
 IF location has moved to club 
  IF music is good then dance 
 END IF 

END WHILE 
Return home 
Drink water 
Sleep 

Initialise core variables 
READ input spreadsheet of distributions 
Set important variables 
IF any variables are junk 

 set them to zero 
 flag the indices in the error array 

END IF 
FORALL distributions 

 calculate distribution moments 
END FORALL 
FORALL distributions 

 correlate moments 
 IF correlation is high then generate fit 

END FORALL 
Plot relevant graphs.  

Program Description Examples 



•  Have an initial description 
of what the program does 
including inputs and 
outputs. 

•  Include a sample call to 
the program. 

•   Add comments 
throughout the code to 
explain what the program 
is doing.  

Function y=square(x) 
% This program will find the 
%  square of any number 
% INPUTS: 
%  x – the number that will be 
%  squared 
% OUTPUTS: 
%  y – the value of x2 

% Sample Call: 
%  y = square(5); 

y = x^2 
%  This line finds the square of x 

Code Comments 



•  Test-particle 
•  Kinetic 
•  MHD 

Numerical Approaces 



•  Usually we deal with INITIAL VALUE PROBLEMS.  We 
know the initial value of our function at t=0.  We then 
integrate over t to find the function at t=tmax. 

•  Propagation Equation: 

•  Start with an initial condition: 
•  d/2 = stdev, x0=mean. 

Propagation Example 
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Propagation Example 



•  We represent our function u using the notation 
•  tmin ≤ tn ≤ tmax at xmin ≤ xj ≤ xmax 

•  Using a simple Euler method we represent derivatives as  

Finite Difference 
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•  We have  and we want to have 

•  We can use other more complicated schemes than the 
simple Euler scheme.  For instance the central difference 
method would look like:   

Finite Difference 
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Propagation Example 



•  What can causes this numerical instability? 
•  We can find out through the von Neumann Stability 

Analysis. 
•  If we assume that the system is stable in space and time 

we can find the solution or eigenmodes of the equations 
are of the form: 

•  where k is a real spatial wave number and     is complex.  
The system is unstable if            for some k where    is 
called the amplification factor. 

Numerical Stability 
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•  Substitute the value of u back into the equation for the 
finite difference approximation and we get  

•  Now divide through by the value of u and we are left with 

Numerical Stability 
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•  Rearrange the above equation and we obtain: 

•  Using the relation that                                  we obtain 

•  The modulus of this function is always > 1 for all k.   

Numerical Stability 
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•  The von Neumann method is not rigorous but generally 
gives a good approximation for your scheme. 

•  It can be VERY useful when dealing with your code as it 
allows you to asses the stability criteria and tweak your 
timestep to make sure your system is stable. 

•  Is the future bleak for our method?  Will it always be 
unstable? 

Numerical Stability 
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•  Of course not!      Recall 

•  We can perform a simple change to FTCS.  We replace 

•  We obtain an amplification factor such that: 

Lax Method 
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•  We now have a system where if               then we must 
have  

•  This is the Courant-Friedrichs-Lewy stability criterion or 
simply the Courant condition for short. 

•  What does this mean I hear you cry?   

Courant Condition 
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•  If you are travelling at a velocity v then you will go a 
distance vΔt in time Δt.  If Δt is larger then you will travel 
a larger distance.  You cannot travel farther in one step 
than the distance of a grid point Δx.  Otherwise past 
information is not enough to evaluate your position. 

Courant Condition 

20 



•  Unfortunately I have bent the truth.  I have used the 
following condition for some of the previous simulations. 

•  When we have the condition that                 we get what 
is know as amplitude dissipation. 

•  This is because we have effectively added a diffusion 
term to the system (see Numerical Recipes 20.1).  

LAX instability 
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•  There is more than just amplitude error that we have to 
contend with.  There is also a phase error that can cause 
problems. 

•  If                 then we can get a phase error in LAX.  

•  We can rewrite the previous equation for the 
amplification factor in a different way. 

LAX instability 
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•  What can we do about this? 
•  We can use a more simple model that physically deals 

with the problem better, the simple Euler upwind scheme 
we started with but including a little twist. 

•  When v is positive then uj+1 is affected but not uj-1 

•  When v is negative then uj-1 is affected but not uj+1 

Upwind Model 
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•  Applying the same stability analysis to the upwind 
scheme we obtain the following amplification factor for 
constant v: 

•  This satisfies the stability criteria of             when we 
have the Courant condition (again). 

Upwind Stability 
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Staggered Leapfrog 

•  Previously we were using methods that were first 
order accurate in time.  What about a method that is 
second order accurate in time, the staggered 
leapfrog 

•  The staggered leaprog method is more stable but 
does not use the information at the last point in space 
and time. 
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•  The staggered leapfrog has a quadratic equation for the 
amplification factor that can be solved to give the 
following equation: 

•  We actually have                for any value of   

•  There is no amplitude dissipation! 

Staggered Leapfrog 
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Leapfrog Problems 

•  The staggered leapfrog is not the be-all and end-all of 
finite differencing mechanisms.  It has problems with 
large gradients as points can become decoupled from 
each other. 

•  We can solve this 
problem using another 
advanced technique.  
See Numerical Recipes 
20.1. 
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•  What if our velocity was not a constant? 

•  We can use our stability analysis to make sure that our 
system is stable (to ensure that                ). 

•  This is VERY IMPORTANT when dealing with real world 
problems. 

•  Consider a person riding their bike to work….  

Using Stability Analysis 
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vΔt ≤ Δx
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•  We must keep 
•  For a constant Δt, it will have to be small to deal with the 

hill but that will be tedious to deal with the flat ground. 
•  If we evaluate                 we can decease Δt when we get 

to the hill and we can increase it afterwards.    

Using Stability Analysis 
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t 

flat ground 
hill 

flat ground 
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•  We can use Implicit methods that go backwards in time 
to go forward.  Uses a tri-diagonal matrix of the method 
to find         . 

•  Implicit schemes are more complicated to code but are 
generally stable in time for any time step. 

•    
•  Other techniques can be used such as the Crank-

Nicolson scheme that are a hybrid between explicit and 
implicit schemes. 

Other Methods 

€ 

u j
n+1



•  Plasma emission is the generally accepted mechanism 
for non-thermal particles producing solar radio bursts 
Ginzburg & Zhelezniakov (1958). 
     

        Coherent Process 

Radio Bursts 

Electron 
Beam 

Langmuir 
Waves 

Radio 
Waves 



Emission Process 



•  Most of the energy of the system is contained in the 
electrons. 

•  Some electron energy is deposited into the Langmuir 
waves. 

•  Some Langmuir wave energy is deposited into the radio 
waves. 

•  We can concentrate on the easier task of simulating the 
wave-particle interactions to understand the dynamics of 
the non-thermal particles. 

Emission Process 



•  Popular approach is the quasilinear approach that uses 
the WKB approximation (waves as particles). 

•  f(v,t) is the electron distribution function. 
•  W(v,t) is the Langmuir wave spectral energy density. 

Wave-particle Interaction 
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•  Past work (e.g. Ryutov & Sagdeev, 1970,  Vedenov & 
Ryutov, 1972, Mel’nik et al 1998, Kontar 2001) used the 
asymptotic solution for these equations assuming certain 
initial condition for f and W. 

Wave-particle Interaction 
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Quasilinear Interaction 
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•  The bump-in-tail instability forms when an electron beam 
is injected at the Sun and streams away from the 
acceleration region. 

Quasilinear Interaction 



Wave-Particle Instability 



More Complicated Example 

One	
  dimensional	
  quasilinear	
  equa/ons	
  describing	
  the	
  kine/cs	
  of	
  
energe/c	
  electrons	
  and	
  Langmuir	
  waves	
  (e.g.	
  Reid	
  and	
  Kontar	
  2015).	
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Spontaneous Emissions 

Radial Propagation 
and Expansion 



•  The characteristic time that is involved for the quasilinear 
interaction is related to the ratio of the beam density and 
the background density. 

Quasilinear time 
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•  A problem posed by Sturrock 1964 with the bump-in-tail 
instability is that all the energy from the particles will be 
deposited into the Langmuir waves over a very short 
distance. 

•  Consider: ne = 108 cm−3, ωpe = 109 s−1, nb = 104 cm−3 

•  Quasilinear time is 10-6 s, much faster than any collisional 
damping rate of the waves by 10-2 s. 

Sturrock’s Dilemma 



•  We will lose ALL of the electron energy to Langmuir 
waves within a very small distance – metres! 

•  This is a large problem as we observe electron beams at 
the Earth, over distances of 1 AU.   

•  We need a way for the wave-particle interaction to be 
LESS efficient. 

Sturrock’s Dilemma 



•  One method to solve the dilemma is the beam-plasma 
structure.  This was suggested analytically by 
Zheleznyakov & Zaitsev (1970) and further developed by 
Zaitsev et al. (1972). 

•  It was numerically worked on initially by Takakura & 
Shibahashi (1976); Magelssen & Smith (1977); Grognard 
(1985) but there have been many other authors that have 
worked on this subject.  

•  What is a beam-plasma structure? 

Beam-Plasma Structure 



•  Consider the growth rate of Langmuir waves is related to  

•  The electron beam has a width in space.  Langmuir 
waves are generated at the front of the beam and 
absorbed at the back of the beam. 

•  Beam-plasma structure moves at the velocity of the 
electrons despite the Langmuir wave group velocity 
being low. 

Beam-Plasma Structure 
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Beam-Plasma Structure 

ELECTRON BEAM 
DISTRIBUTION 

LANGMUIR WAVE 
DISTRIBUTION 



Beam-Plasma Structure 

ELECTRON BEAM 
DISTRIBUTION 

LANGMUIR WAVE 
DISTRIBUTION 



•  The background density gradient is also important in 
reducing the amount of Langmuir waves that are 
generated by the electron beam. 

•  Refraction. 

•  Nice paper by Eduard (Kontar 2001) that demonstrates 
this…. 

Density Gradients 



Negative Density Gradients 



Positive Density Gradients 



•  Another important physical process that can be simulated 
is Coulomb collisions between the electrons in the beam 
and the ions in the background plasma. 

•  Proportional to the background plasma density. 

Coulomb Collisions 
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Coulomb Collisions 



•  Collisions affect the non-thermal particles when they are 
in the low corona or the chromosphere. 

•  We can treat the particles as collisionless when they are 
in the solar wind – background density is too low so the 
mean-free-path becomes very high. 

Coulomb Collisions 



Bi-directional T3s 

Li et al 2012 



Starting Frequency 
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htypeIII = dα + hacc
Reid et al 2011 



Temporal Profile 

Ratcliffe et al 2014 

Collisional 

Inhomogeneity 
Time Profile 

Time profile of the radio waves dominated by the inhomogeneity of the Solar Wind 



Stopping Frequency 

The production of Langmuir waves is related to the number of electrons.  By 
increasing the expansion of the magnetic field you increase the stopping 
frequency.  Similarly, less intense or dense beams have less stopping frequency. 

Reid & Kontar 2015 



•  Excited velocity 
deduced from the 
simulations is not 
constant but 
decreases as a 
function of distance 
from the Sun. 

Exciter Velocity 

Ratcliffe et al 2014 



Density Fluctuations 

Chen et al 2014 



Wave Fluctuations 

Vidojevic et al 2011 



Wave Fluxtuations 

Reid & Kontar 2010 



Wave Fluctuations 

Reid et al 2010 



Temperature Fluctuations 

Li et al 2011 



•  The background plasma damps the Langmuir waves that 
have phase velocity close to the thermal velocity. 

•  In the solar wind the background plasma is NOT a 
Maxwellian but a kappa distribution. 

•  The kappa tail causes more damping of the plasma. 

Landau Damping 



Kappa Background 

Li et al 2014 



Electron Spectra 

Kontar & Reid 2009 



Electron Spectra 



2D Electron Distribution 

Ziebell et al 2014 



2D Langmuir Waves 

Ziebell et al 2014 



2D Ion-Sound Waves 

Ziebell et al 2014 



•  What about when we have more than one dimension in 
space?  What will happen? 

•  NOTE:  1D – n points.    3D – n3 points. 
•     1D – 10 points.   3D – 1000 points. 
•     1D – 1000 points.  3D – 1000000000 points 

•  Best to start small and slowly increase number of points. 

Multi-dimensions 

70 



•  Numerical simulations are a powerful tool to understand 
the world around us. 

•  Large effort for numerical simulations to understand solar 
accelerated electrons and their radio signatures. 

•  Still much more to be understood.  We need you! 

Conclusions 


