Solar radio emission below the ionospheric cutoff: measurements

Stuart D. Bale University of California, Berkeley

outline

1) frequency range

a) need to be in space!

2) spacecraft measurements

a) Wind, STEREO

I) superheterodyne receivers

II) spacecraft electromagnetic compatibility - the picket fence

III) antenna pattern and direction-finding

b) Solar Probe Plus and Solar Orbiter

I) Radio Frequency Spectrometer on SPP

A) Polyphase Filterbank (PFB)

The terrestrial ionosphere

Space-borne solar/IP radio instruments

STEREO/WAVES - stabilized

- Gain is limited by stray capacitance

Sensitivity and electromagnetic cleanliness

STEREO/WAVES instrument

High Frequency Receiver (HFR) – superheterodyne receiver, 12bits

STEREO/WAVES - stabilized

- Antenna pattern is modified by spacecraft structure and poor groundplane

- Antenna pattern can be measured in lab

Radio direction-finding

Radio direction-finding

'Slow drift' radio bursts

Drift rates give 'shock' speeds of 30-50 km/s - subAlfvenic!

'Slow drift' radio bursts

- Direction-finding with STEREO-A and Wind
- Ecliptic plane
- ST-A/Wind at 72°
- These angles can be triangulated to estimate source position

STEREO B -- Wind LOS Positions

'Slow drift' radio bursts

- Triangulated source positions
- MHD model of heliosphere
- Regions of low Alfven speed (streamers) meet weak CMEs

LF radio bursts may be a good probe of plasma structure in the inner heliosphere

Future - Solar Orbiter, Solar Probe Plus

- ESA Cosmic Vision, M-class
- Inner heliosphere 0.29 AU perihelion
- Particles and fields measurements
- 2018 launch

Radio and Plasma Waves = RPW (PI Maksimovic)

- Selected with 3 antenna booms
- 5m x 1.5 cm sensor on a 1m boom
- 3-axis stable spacecraft
- good and stable Sun symmetry

NASA Solar Probe Plus (SPP)

SPP Level 1 Science Objectives

L1 Science Objectives	Sample Processes	Needed Measurements	Instruments
 Trace the flow of energy that heats and accelerates the solar corona and solar wind. Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind. Explore mechanisms that accelerate and transport energetic particles. 	 heating mechanisms of the corona and the solar wind; environmental control of plasma and fields; connection of the solar corona to the inner heliosphere. particle energization and transport across the corona 	 electric & magnetic fields and waves, Poynting flux, absolute plasma density & electron temperature, spacecraft floating potential & density fluctuations, & radio emissions energetic electrons, protons and heavy ions velocity, density, and temperature of solar wind e-, H+, He++ solar wind structures and shocks 	 FIELDS Magnetic Fields Electric Fields Electric/Mag Wave/Radio ISIS Energetic electrons Energetic protons and heavy ions (10s of keV to ~100 MeV) SWEAP Plasma e-, H+, He++ SW velocity & temperature WISPR White light measurements of solar wind structures

SPP/FIELDS Science Objectives

2. "Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind"

FIELDS will measure:

- 1. Magnetic field polarity and flux tube structure
- 2. 3. Reconnection current sheets
- Statistics of (Parker) nano-/micro-flares
- 4. Streamer belt reconnection
- Streamer belt latitudinal extent 5.

Parker micro-flares will appear like a 'type III radio storm' against the galactic background

2018 Baseline Mission Design Launch Details

- Launch Period
 - > 20 days (Jul 31 Aug 19, 2018)
- Launch Trajectory
 - > Use an Earth parking orbit
- Daily Launch Window
 - > The one with the short coast duration
- Daily Window Duration
 - > 30 minutes or longer (TBR until launch system is finalized)

Launch Period	Open	Middle	Close
Launch Date	7/31/2018	8/9/2018	8/19/2018
Launch Time* (UTC)	9:52:15	9:35:10	9:05:58
Launch Time* (EDT)	5:52:15	5:35:10	5:05:58
Parking Orbit Coast* (min)	17.3	16.6	16.1

* Estimate based on simulated launch trajectory. Actual launch time and coasting depend on selected launch system.

Launch date: July 31, 2018 Launch time: 09:52:15 UTC 05:52:15 EDT To Sun Launch from KSC Time step: 5 min Parking orbit coast: 17.3 min APPLIED PHYSICS LABORATORY Solar Probe Plus Critical Design Review 06-10

16-19 March 2015

ISSI Microphysics of Cosmic Plasmas

2018 Baseline Mission Design Mission Trajectory

Venus-Venus-Venus-Venus-Venus-Venus-Gravity-Assist (V⁷GA) Trajectory

- Repeated 7 Venus gravity assists to lower orbit to reach the Sun
- Switching between resonant and non-resonant Venus encounters to minimize mission duration
- Orbit phasing matched between flybys so that no deep space maneuvers are required
- Multiple solar encounters at various distances
- Solar distances not beyond Earth for a solar powered spacecraft

Solar Probe Plus Critical Design Review

ISSI Microphysics of Cosmic Plasmas

2018 Baseline Mission Design Mission Profile

- Solar Distance
 - > 0.04587 AU (9.86 R_s) − 1.018 AU
- Earth Distance
 - > 0 AU 1.881 AU
- Heliocentric Velocity
 - ≻ 11.2 km/s 190.8 km/s
- Venus Flyby Altitude
 - > 316 km (V7) 4026 km (V6)
- Post Launch Solar Eclipse
 - 3 events, during 3rd, 4th, and 7th Venus flyby, duration < 12 minutes
- Sun-Earth- Probe (SEP) Angle
 - > 0.008° − 98.3°
- Sun-Probe-Earth (SPE) Angle
 - > 0.16° − 179.9°

Solar Probe Plus Critical Design Review ISSI Microphysics of Cosmic Plasmas

16-19 March 2015

Spacecraft Overview

- NASA selected instrument suites
- 685kg max launch wet mass
- Reference Dimensions:
 - ➢ S/C height: 3m
 - > TPS max diameter:2.3m
 - ➢ S/C bus diameter: 1m
- C-C Thermal protection system
- Hexagonal prism s/c bus configuration
- Actively cooled solar array
 - > 388W electrical power at encounter
 - ➢ Solar array total area: 1.55m²
 - Radiator area under TPS: 4m²
- 0.6m HGA, 34W TWTA Ka-band science DL
- Science downlink rate: 167kbps at 1AU

Investigation Overview

ISSI Microphysics of Cosmic Plasmas

FIELDS Electric Field Measurements

V1-V4 electric sensors

Block Diagram

FIELDS System

Two Sides

- Each has Spacecraft I/F
- Each has Magnetometer
- Each has Antenna Elect."
- Each has Power Supply^{sc Bulkheads}

FIELDS1 also has

- Radio Freq Spect. (RFS)
- Digital Fields Board (DFB)
- SCM Calib Control
- Absolute Time Sequencer
- TDS I/F

FIELDS2 also has

- Time Domain Sampler (TDS)
- DCB I/F
- SWEAP I/F

(see Malaspina DFB poster on Thursday)

Preamp Functional Diagram

• Relay-selected bias resistances

Data Controller Board (DCB)

RFS_Blk_Diagram_05JAN15 D. Seitz

- 2 channel, 40 MSPS, baseband digital receiver
- Polyphase Filter Bank provides >120dB narrowband rejection

FIELDS RFS Analog EM

Polyphase Filter Banks Test signal: PFB vs. regular FFT:

(4096 pts, 8 taps, BH and sinc with a=0.00027)

Polyphase Filter Banks Test signal: PFB vs. regular FFT:

(4096 pts, 8 taps, BH and sinc with a=0.00027)

Summary

- Radio measurements < 10 MHz must be made from space
- Spinner and 3-axis stablized spacecraft can be used for 'direction-finding' analysis
- Spacecraft and instrument (power supply) noise can dominate
- Solar Orbiter and Solar Probe Plus in 2018