Solar radio emission below the ionospheric cutoff: theory and phenomenology

Stuart D. Bale University of California, Berkeley

outline

- 1) Terrestrial ionosphere
- 2) reflection of radio waves and frequency range
- 3) solar wind density profile and corresponding frequency range
- 4) emission mechanisms
- 5) phenomenology
 - a) type II and type III bursts, terrestrial electron foreshock, Jupiter
 - b) fundamental and harmonic emission
 - c) no polarization
 - d) beam pattern
- 6) plasma emission theory
 - a) electron beams
 - I) origin, advection, observations
 - b) Langmuir waves growth, beam saturation, Sturrock's dilemma
 - c) mode conversion
 - I) linear mode conversion
 - II) three wave coupling random phase approximation

The terrestrial ionosphere

Man-made interference

WIND/WAVES November 17, 1994

e/m waves near f_{pe} in cold plasma

Summary of electromagnetic electron waves

conditions	dispersion relation	name
$\vec{B}_0 = 0$	$\omega^2 = \omega_p^2 + k^2 c^2$	light wave
$\vec{k} \perp \vec{B}_0, \ \vec{E}_1 \ \vec{B}_0$	$\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2}$	O wave
$\vec{k} \perp \vec{B_0}, \ \vec{E_1} \perp \vec{B_0}$	$\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2} \frac{\omega^2 - \omega_p^2}{\omega^2 - \omega_h^2}$	X wave
$ec{k} \ ec{B}_0$ (right circ. pol.)	$\frac{c^2 k^2}{\omega^2} = 1 - \frac{\omega_p^2/\omega^2}{1 - (\omega_c/\omega)}$	R wave (whistler mode)
$ec{k} \ ec{B_0}$ (left circ. pol.)	$\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2/\omega^2}{1 + (\omega_c/\omega)}$	L wave

We also need Langmuir waves and ion sound waves

$$\omega^2 = \omega_{pe}^2 + 3/2 k^2 v_{th}^2$$
 and $\omega = k c_s$

Source regions: Parker's solar wind model

- Hydrostatic solution (similar to Bondi accretion)
- Predicts a supersonic atmosphere 'wind'
- Similar to 'de Laval nozzle' or a jet engine
- Requires energy input at the base. kT_{ph} is not nearly enough! Requires nonthermal energy
- 'Alfven point' in magnetized plasma determines extent of corona - corotation

Solar wind acceleration profiles

Figure 8: Radial dependence of solar wind outflow speeds. UVCS Doppler dimming determinations for protons (red; Kohl *et al.*, 2006) and O^{+5} ions (green; Cranmer *et al.*, 2008) are shown for polar coronal holes, and are compared with theoretical models of the polar and equatorial solar wind at solar minimum (black curves; Cranmer *et al.*, 2007) and the speeds of "blobs" measured by LASCO above equatorial streamers (open circles; Sheeley Jr *et al.*, 1997).

(Cranmer, 2009)

'Interplanetary radio bursts' - the inner heliosphere

Emission mechanisms vs altitude: plasma emission dominates

Primarily 'type II' and 'type III' interplanetary radio bursts

IP Radio Bursts - Phenomenology

In-situ Type III measurements

Adapted from [Ergun et al., 1998]

The basic scenario is right:

- Electron injection associated with flare
- Advection creates 'beam'
- Langmuir wave growth
- Mode conversion to *unpolarized* e/m

Bale et al., 1996, Evidence of three wavecoupling in the upstream solar wind

Occurrence of Type III radio bursts over a Solar Cycle

(b) Smoothed over 31 days

Peak intensity at around ~1 MHz

SFU

IP Radio Bursts - 'Type II' Radio Bursts

- Associated with 'fast' coronal mass ejections
- Electrons energized to 1-10 keV by CME-driven shock
- Radiation by plasma emission (f_{pe} and/or $2f_{pe}$)

IP Radio Bursts - 'Type II' Radio Bursts

Radiation by plasma emission (fpe and/or 2fpe)
Frequency drift rate is a measure of shock speed
Fine structure implies multiple source regions

7

Physics - Shock Structure and Dynamics

Physics - Electron Energization

e/m waves near f_{pe} in cold plasma

Summary of electromagnetic electron waves

conditions	dispersion relation	name
$\vec{B}_0 = 0$	$\omega^2 = \omega_p^2 + k^2 c^2$	light wave
$\vec{k} \perp \vec{B}_0, \ \vec{E}_1 \ \vec{B}_0$	$\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2}$	O wave
$\vec{k} \perp \vec{B_0}, \ \vec{E_1} \perp \vec{B_0}$	$\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2}{\omega^2} \frac{\omega^2 - \omega_p^2}{\omega^2 - \omega_h^2}$	X wave
$ec{k} \ ec{B}_0$ (right circ. pol.)	$\frac{c^2 k^2}{\omega^2} = 1 - \frac{\omega_p^2/\omega^2}{1 - (\omega_c/\omega)}$	R wave (whistler mode)
$ec{k} \ ec{B_0}$ (left circ. pol.)	$\frac{c^2k^2}{\omega^2} = 1 - \frac{\omega_p^2/\omega^2}{1 + (\omega_c/\omega)}$	L wave

We also need Langmuir waves and ion sound waves

$$\omega^2 = \omega_{pe}^2 + 3/2 k^2 v_{th}^2$$
 and $\omega = k c_s$

Physics - Plasma Radio Emission

2

Electrostatic Decay: Theory

- Langmuir waves generated by electron beams at Landau resonance $k_b = \frac{\omega_p}{\nu_b}$
- Langmuir waves can decay into backward propagating Langmuir waves: $L \rightarrow L' + S$.
- By assuming the linear dispersion relations $\omega_L = \omega_p + \frac{3v_e^2k^2}{2\omega_p} \text{ and } \omega_S = v_s k \text{ the wave numbers are:}$ $k_L = k_b,$ $k_{L'} = -k_b + k_0,$ $k_S = 2k_b - k_0,$ where $k_0 = 2\omega_p v_s/3v_e^2$

Evidence of electrostatic decay

60

19.6

(f)

- STEREO events on 2011 January 22.
- Panels: waveforms of E_{par}, wavelet transforms, and power spectra.
- Left: before ES decay.
- Right: during ES decay.
- Observed and expected frequency differences agree (360±80Hz versus 300±90Hz).

[Graham and Cairns, JGR, 2012]

Langmuir eigenmodes in density cavities (Ergun et al.)

Eigenmode Solutions for Langmuir Electric field

Linear mode conversion

- Langmuir waves generated at Landau resonance
- Scattering in solar wind density fluctuation
- WKB propagation conservation of energy flux
- Langmuir-> z-mode (e/m)
- Z-mode tunnels into o-mode (for small ω_c/ω_p)

Figure 1. A time series of density fluctuations reconstructed from an averaged spectrum [*Neugebauer*, 1976]. The two brackets at the left show the difference between the plasma frequency and the resonant frequency for electron beams of 2 and 10 keV.

Figure 11. The dispersion relation of electron plasma waves, as index of refraction $(N = kc/\omega)$ against ω/ω_{pe} . The dot-dash line is the warm plasma, magnetized Langmuir mode, which meets the electromagnetic zmode at small N. Waves with beam speeds discussed in this paper have a resonant refractive index marked by the heavy bar. As they propagate into density enhancements, they must move leftward on the curve, and hence down to very small wavenumber.

Linear mode conversion: evidence

122103-5 Kim, Cairns, and Johnson

Three-wave RPA processes $\omega_{L1} + \omega_{L2} = \omega_T$ $k_{L1} + k_{L2} = k_T \ll k_L$ $k_{L1} + k_{L2} = k_T \ll k_L$

Some outstanding issues

- Type III electron beam generation: flare physics, reconnection
- Type III beam regeneration and propagation (Sturrock, Kontar)
- Mode conversion problem: linear vs nonlinear (including 4 wave)
- Are Langmuir eigenmodes important?
- Fundamental vs harmonic emission in type II and III
- Is foreshock structure important to type II emission?