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Abstract

This cookbook is intended to assemble references to resources likely to be of interest to
theorists and modellers. It’s not a collection of standard recipes, but instead a repository of
brief introductions to facilities. It includes references to sources of authoritative information,
including those Starlink documents most likely to be of interest to theorists.

Although the topics are chosen for their relevance to theoretical work, a good proportion of the
information should be of interest to all of the astronomical computing community.
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1 Introduction

Theory work, unlike observational work, does not have a clear set of requirements for applica-
tions programs. There is no instrument data to reduce, no observations to plan, and all the
observational fuss of calibration, flat-fielding, dark frames, image centroids can be avoided. All
we need is a fast machine, and a compiler we can trust.

Well, not quite all. This cookbook is intended to be useful at and after the point when you
start to wrestle with the computing details of your scientific problem. It’s not a collection of
standard recipes, but instead a repository of brief introductions to facilities you may not know
existed, or didn’t know how to get started on. It includes references to sources of authoritative
information, including those Starlink documents most likely to be of interest to theorists. It
doesn’t try to teach you all of anything, but aims to give you enough information to decide if
the topic is useful, and if the included references are worth pursuing.

Although the topics are chosen for their relevance to theoretical work (and for the purposes
of this text, I’m taking the term to include all who develop their own modelling codes), a
good proportion of the information should be of interest to all of the astronomical computing
community.

1.1 Call for contributions

For such a wide ranging project, I cannot hope to have given an ideally just account of every topic.
Please send comments, corrections, and expansions either to me at norman@astro.gla.ac.uk
or to the Starlink software librarian at ussc@star.rl.ac.uk. I’ll maintain a web page for
the cookbook at <http://www.astro.gla.ac.uk/users/norman/star/sc13/>. Updates to the
cookbook and its example programs can be found there.

I am particularly interested in comments on the following topics:

• I’d like to include a section on Monte Carlo simulations, but don’t feel qualified to comment
myself. Can anyone give any pointers?

• The cookbook is reasonably well-stocked with material on computation, but rather thin
on more detailed astrophysical topics (Section 4 ). It does have a section on Stellar Atmo-
sphere models (Section 4.1 ); what else should be here?

• Do I need a section on parallelization, beyond the very brief (indeed evasive!) mention in
Section 2.5.2 ?
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2 Computing

Everyone should start with the SUG, which should be available at your site, and is on the web
at <http://star-www.rl.ac.uk/star/docs/sug.htx/sug.html>.

2.1 Unix guides

Before you can do anything, you need to make friends with the machine. The slogan to remember
here is ‘unix is user-friendly, it’s just picky about who its friends are’. Keep calm, breath deeply,
and make friends with a guru.

Your first source of information might be SUN/145, Starlink’s Unix introduction. This covers the
basics of logging on, moving around, issuing commands, creating files, and starting programming.
It also includes references to other Starlink documents which can provide more detailed help on
various aspects.

There are very good online introductions to Unix at <http://unixhelp.ed.ac.uk/> and <http:/

/star-www.maps.susx.ac.uk/help/4ltrwrd/unixman.html>

There are numerous books on Unix. Two which seem to be at the right level are Unix Shells
by Example [quigley] and Unix in a Nutshell [nutshell]. Both cover the Bourne shell (sh) and
the C shell (csh), plus other utilities such as sed and awk (see Section 2.4.6.1 ). By the way, let
me put in a plug for bash as a usable shell, as it includes all the best bits of the Bourne and C
shells. The only disadvantage of bash is that Starlink has, to some extent, standardised on csh,
so that setup scripts, for example, are designed to work with csh alone; this is not often a real
problem, since these scripts are generally simple enough that you can duplicate their effects ‘by
hand’.

You will occasionally see references to unix manual pages followed by a number. This indicates
which section of the manual the documentation can be found in (section 1 is normal user com-
mands, section 3 is standard library calls, section 5 is file formats, and so on). If you see a
reference to sed(1), for example, you’d read the manual page online with the command man
sed. A useful variant of the man command is apropos, for example apropos find. This searches
the list of man-pages, and lists all those commands which include a particular word in their short
description.

2.2 Editors

One of the aspects of working on Unix which you’ll have to deal with pretty early in your
contact with it, is which editor to use. An editor is the tool you use to create your documents
or programs. It’s the tool you’ll use more than any other.

It’s very much a personal decision, which editor you use, and when you’re feeling understim-
ulated, you can discuss the matter with your officemates (don’t get blood on the machines,
though, and remember to wash and dry your thumbscrews carefully after use -- you’ll need
them again when you discuss programming languages -- see Section 2.4 ).

SUN/170, Editors on Unix, is an overview of some of the available options, listing their good
and bad points. In addition to this, Brian McIlwrath wrote an overview of available text editors
in the September 1998 (issue 21) edition of the Starlink Bulletin1.

1http://star-www.rl.ac.uk/bulletin/98sep/node15.html
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Emacs is many people’s favourite (and mine). You can do just about anything in emacs -- it’s
a hugely productive environment -- but you may get cricks in your fingers from the odd key
combinations. Emacs itself can help you up the long learning curve: there’s a very good tutorial
built-in to emacs, and available by typing C-h C-t (that’s control-H, control-T), plus extensive
documentation behind C-h C-i. Leave emacs with C-x C-c (obvious, really).

Vi is another favourite. It is indeed very powerful, but rather more of an acquired taste. An
advantage of vi is that it’s small, and therefore quick to start up -- this makes it useful if you
want to make a quick change to a file, or make similar changes to a number of files, and it
makes it useful as a editor for Pine, or any other mail program. An even bigger advantage
of vi, however, is that it’s available on every Unix system since the Ark, so if you can use vi,
you can work on whichever Unix system you find yourself. The main disadvantage is that it is
exceedingly unintuitive. There’s quite a lot of help available for vi (it needs it, after all), but
not, oddly enough, in the manual page, which describes in elaborate detail how to start up vi,
but not what to do once you succeed. You’ll find a good introduction to vi in Chapter 6 of the
Solaris 2.6 Advanced Users’ Guide, and in Chapter 2 of the old SunOS 4 Documentation Tools
manual, and probably in the corresponding manual for any other Unix you use (don’t worry
about these being out of date, by the way, vi doesn’t change much...). Online introductions to,
and references for, vi include the the unixhelp manual2, vi1013, and even the vi-lovers home
page4!

If you want to leave vi without saving what you’ve (accidentally?) typed, you can do so by
typing :q! (if it beeps at you, or if those characters simply appear in the typing buffer on
screen, try pressing escape once or twice first). By the way, it’s pronounced ‘vee-eye’, not ‘vye’:
pronounce it the wrong way and you’ll lose all your credibility (of course, if you know the correct
way to pronounce it, you’ll lose all credibility with a different set of folk -- your choice).

For VMS fans, there’s jed, which is a simple and fairly sane editor which includes an emulation
of the EDT editor of old. It’s available on Starlink systems, and documented in SUN/168.

Finally, there’s pico, the editor used internally by the pine mailer. You can’t go wrong with
this one, but I’d imagine it could be a little painful if you’re writing much code with it. Along
the same lines, the textedit editor which comes with OpenWindows really isn’t up to much.
It looks pretty, but has zero support for programming. You’ll be using an editor a lot, so it’s
worth investing time to learn to use a powerful one to its full extent.

2.3 Numerical analysis

Anyone writing numerical code needs some awareness of numerical analysis, to avoid burning
up CPU time with a hideously inappropriate and inaccurate algorithm.

By far the most accessible introduction to numerical methods is Numerical Recipes5 [nr], which
comes in different editions, containing code in C, Fortran and Fortran 90. Use the second edition:
the first has a significant number of bugs.

A large part of the book’s popularity stems from the fact that its authors are scientists rather
than numerical analysts, so that they are more concerned with producing reliable results than

2http://unixhelp.ed.ac.uk/vi/ref.html
3http://www.devshed.com/Server Side/Administration/Vi101/Vi101/page1.html
4http://www.thomer.com/thomer/vi/vi.html
5http://www.nr.com



4 SC/13.2

with a point of view which sometimes appears to see efficiency, unshakable robustness and
algorithmic elegance as ends in themselves. For further discussion, and some caveats, see Section
2.3.1.

My advice is to use Numerical Recipes for your numerical programming until it runs out of
steam on your particular problem. Follow the references in there, or look at the booklist6 in the
on-line Numerical Analysis FAQ. Also (perhaps unexpectedly), I suggest you take a look at the
Usenet newsgroup comp.lang.fortran, even if you don’t actually use Fortran. This is one of
those happy few Usenet newsgroups with a high signal-to-noise ratio, and listening in on this
can be profitable when the conversation turns to general numerical analysis. A similar resource
is the JISCmail comp-fortran-907 list.

To support more specialised numerical computing, refer to the libraries section below, Section
4.2.

2.3.1 Numerical Recipes

Numerical Recipes8 [nr] does not claim to be a numerical analysis textbook, and it makes a
point of noting that its authors are (astro-)physicists and engineers rather than analysts, and
so share the motivations and impatience of the book’s intended audience. The declared premise
of the NR authors is that you will come to grief one way or the other if you use numerical
routines you do not understand. They attempt to give you enough mathematical detail that
you understand the routines they present, in enough depth that you can diagnose problems when
they occur, and make more sophisticated choices about replacements when the NR routines run
out of steam. Problems will occur because the routines are not written to be bullet-proof, and if
you use them thoughtlessly you can break them without much difficulty. Also, the routines will
likely prove inadequate if you have a very demanding application which needs a more efficient
or more specialised routine than the ones available here.

That is, the NR library is not filled with magic bullets, and if you try to use its contents as
such, the only thing you’ll shoot is your foot. However, NAG and SLATEC don’t supply magic
bullets either (though ‘any sufficiently advanced library is indistinguishable from magic to the
unsophisticated programmer’, as Arthur C Clarke didn’t quite say). You might use the NR
routines successfully for years, but if and when they fail you, you’ll use the more sophisticated
substitute all the better because you’ll understand why the simpler original was inadequate.

It is a consequence of the book’s aims that the routines will not necessarily be the most intricately
and obscurely efficient. Efficiency matters a lot if you are running some huge hydro code taking
months of Cray time, but I would claim that if your code takes less than a week of wall-time to
run, then the efficiency gains from using opaque library routines is simply not worth the cost
in debugging time. No matter how robustly the library routine is written, you will be able to
abuse it -- you will manage to break it somehow -- and when that happens your only recourse is
to work through pages of Fortran IV trying to find the overflowing total, or the case you hadn’t
realised was marginal.

If you need very high efficiency, then take a course on numerical analysis and spend time un-
derstanding the subtleties of the library routines. Otherwise, read NR carefully (there are

6http://www.mathcom.com/corpdir/techinfo.mdir/scifaq/q165.html
7http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html
8http://www.nr.com
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sometimes important caveats in the text), customise the routines to your problem, cross check
the results you obtain, and keep alert. If you have an aversion to documentation, use NAG or
another library: using the NR routines as a black box is a numerical recipe for disaster.

Despite NR’s popularity, it has its critics. These are typically that the NR routines do not use
the most efficient modern algorithms, and that they sometimes go wrong in borderline situations.
While this may be true (and will be more true of the first edition than the second), it is largely a
consequence of NR’s declared intention of being accessible and intelligible. Without making the
point explicit, as far as I can see, the NR authors privilege intelligibility over high efficiency, and
practicality over unabusable robustness; I don’t believe it’s entirely fair, therefore, to criticise
them for not being ultra-efficient and bulletproof. There is a collection of criticisms of the books
by W Van Snyder at JPL, at <http://math.jpl.nasa.gov/nr/>, along with some suggestions for
alternatives; there is a rebuttal from the NR authors at <http://www.nr.com/bug-rebutt.html>.

From the NR home pages, you can browse and print out chapters from the books, but you can’t
download the source code. Do remember that the NR code is copyrighted and not free; this
may affect your ability to redistribute code which uses it.

2.3.2 Floating point representation

As with numerical analysis, the intricacies of how floating-point numbers are represented, and
the quirks of their representation on different platforms, are a maelstrom into which you can
fall, dazed, confused and unproductive. However (and again as with numerical analysis), if your
codes become elaborate enough, then you are going to have to take the plunge.

Even if you have no plans to venture into the deep, there is a minimum awareness of the problems
which can help you write more robust code.

What follows here is rather detailed, but it does, I believe, represent the majority of what you
might need to know about floating point representation; there is a good alternative introduction
in Numerical Recipes [nr], and an excellent and detailed introduction in chapter 2 of Sun’s
Numerical Computation Guide [sunncg] (appendix E of the same book claims to be ‘What every
computer scientist should know about floating point arithmetic’, and is an edited reprint of
[goldberg91]. It makes interesting reading, but it’s probably more than many natural scientists
need to know). My account here is not intended to supplant either of these sources. Below, I’ll
talk exclusively of IEEE base-2 floating point numbers, as defined in IEEE standard IEEE-7549;
there are other standards, but they’re now of historical interest only, as just about all modern
machines other than VAXes and older Crays use IEEE. Most of what I say concerning accuracy
will be about single precision; exactly the same issues arise with double precision, but you can
sweep them under the carpet for longer.

2.3.2.1 Endianness of floating-point numbers The IEEE standard leaves it open to chip
manufacturers to decide the order in memory of the four or eight bytes of a floating point number
(the same is true of integers, though they’re not part of the IEEE spec). This is denoted by the
endian-ness (or ‘bytesex’) of the machine. Alpha and Intel chips are little-endian; Sparcs, the
Motorola 68k family used in Macs, and Motorola PowerPC chips, are big-endian (there’s also a
‘PGP-endian’ ordering, but that really isn’t likely to trouble anyone any more). This generally
does not matter if you stick to a single platform (other than in the context of programs such as

9http://grouper.ieee.org/groups/754/
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those described in Appendix A.1 and Appendix A.2 ), but it makes a difference if you want to
share raw data files (see Section 2.5.2.3 ) between architectures.

2.3.2.2 Accuracy The central insight is that you cannot represent an infinite number of reals
in a finite number of bits without approximation. It is a consequence of this that the result of
any calculation will lose precision when it is represented as a floating-point bit pattern, and that
the extent and importance of this loss of precision depends on the operands. Both of these seem
obvious by themselves, but the consequences can be sufficiently non-obvious to trip you up.

A non-special IEEE floating-point single-precision longword represents a number

(−1)s × 1.m× 2e−127, (1)

where s (the sign), m (the mantissa or significand) and e (the exponent) are base-2 numbers
represented in 1, 8 and 23 bits respectively, and 0 < e < 255; the offset 127 is called the bias.
These are encoded into the 32 bits of the longword as shown in table Table 1.

s e m
1 = 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 = 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2ε = 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 + 2ε = 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

b = 1.000220 = 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1
(b− 1) = 2.197266× 10−4 = 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

Table 1: IEEE floating-point representations of numbers. This table is adapted from table 2--3
in [sunncg] and figure 1.3.1 in [nr], which have fuller discussions of the issues here. For discussion
of b and b− 1 see the text.

Firstly, it is important to distinguish between the range and the accuracy of floating-point
numbers. The smallest and largest positive numbers which can be represented by normal IEEE
single-precision numbers are 1.02×21−127 ≈ 1.175×10−38 and 1.1 . . . 12×2254−127 ≈ 3.403×1038,
but this is very different from the accuracy to which these numbers are represented. These
extreme values differ from the next representable ones up and down by 1 × 2−23 × 2−126 ≈
1.401× 10−45 and 1× 2−23 × 2127 ≈ 2.028× 1031 respectively, so that any number which differs
from them by less than that amount is unrepresentable. This accuracy limitation is expressed by
the machine epsilon, ε = 2−24 ≈ 5.960×10−8 (for IEEE single-precision), which is the maximum
relative error incurred when a real number is represented in floating-point. It is a consequence
of this that ε is the smallest number such that 1 ⊕ 2ε 6= 1, where the operator ⊕ represents
addition of floating-point numbers.10

Another way of thinking about this is as follows. When two floating-point numbers are added,
the exponent of the smaller one must be increased to match that of the larger, and the mantissa
(or significand), m, must be shifted rightwards to compensate. If the two numbers differ greatly
in magnitude, then the smaller will lose significance in this operation, and if it is less than a

10This is a slightly different convention from that used in, for example, [nr], which definesε to be the smallest
number for which 1⊕ ε 6= 1.
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factor 2ε of the larger one, the shift will push the number right off the end of the mantissa, and
contribute nothing to the sum. You can easily confirm that 224 ⊕ 1.0 = 224 = 16777216.0.

The immediate practical consequence of this is that if, in the bowels of some calculation, you
are adding up many small numbers (doing an inner product for very large vectors, for example),
then the final total may be grossly inaccurate if you’ve fallen into this trap. Similarly, if you
are subtracting numbers which are almost equal, perhaps in the course of debiasing or removing
some DC offset, the subtraction may allow all or most of the leading accurate digits to cancel,
leaving the result to be determined by digits possibly heavily contaminated by roundoff. [RW]

Consider the simple calculation ab − ac, with a ≈ 1.000244, b ≈ 1.000220 and c ≈ 1.000269.
Here, the rounding in the two multiplications conspires to give a difference which has a huge
relative error of 2.07×10−3. We can, however, address the problem by rewriting the calculation
in ways which are equivalent for real arithmetic, but inequivalent for machine arithmetic. If we
do the subtraction before the multiplication, and calculate a ⊗ (b 	 c), then we retain a little
precision in the subtraction and end up with a relative error of 9.765625 × 10−4. Finally, if
we instead calculate a ⊗ ((b − 1) 	 (c − 1)), then we do the subtraction with a full 23 bits of
precision (compare Table 1), and lose as little as possible of this in the final multiplication, and
end up with a relative error of only 2.532525× 10−7. This is clearly a rather synthetic example,
but it is not at all unrealistic, as it is equally clearly closely related to the common problem
of calculating the discriminant b2 − 4ac of the quadratic formula, when the quadratic is nearly
degenerate.

These problems are demonstrated in the short program fpdemo.c in Appendix A.3. Note that
the numbers a = 1 + 1/212, b = 1 + (1−)/212 and c = 1 + (1+)/212 are (a) specifically chosen
to demonstrate the effect, and (b) are calculated within the program, rather than being ini-
tialised from the decimal representations 1.000244, and so on. If the latter were not true, then
the improvement in relative error would disappear, since all precision would have been lost in
this initialisation. If you wish to explore the representation of floating-point numbers on your
machine, you can do so using the example program fpp.c in Appendix A.2.

These problems are unfortunately both easy to run into, and hard to notice if you’re not in the
habit of looking for them whilst writing your code. A brute-force way around them is to do
sensitive parts of your calculation in double precision. If you are doing the calculation in double
precision and still running into the problem, then you will have to rearrange the calculation
somehow, to contain the loss of precision.11 Note, however, that a compiler’s optimizer can
frustrate your efforts here, if you’ve given it a sufficiently high optimization level that it starts
reorganising your code: in general (a ⊕ b) ⊕ c 6= a ⊕ (b ⊕ c), and a 	 b ⊕ (b 	 c) 6= a 	 c, but a
high optimization level may instruct the compiler to ignore this fact, which can be disastrous
for the accuracy of your code. Moral: make sure you know what the various optimization levels
actually do before you invoke them.

As alluded to above, it is generally possible to sweep accuracy problems under the carpet by
using double-precision floats. These occupy eight bytes of storage rather than four, and the
analogue of Eqn. (1) is

(−1)s × 1.m× 2e−1023,

where s, m and e are respectively 1, 52 and 11 bits long, and the bias is 1023. Thus the smallest
and largest normal positive double-precision IEEE numbers are 1.02 × 21−1023 ≈ 2.225× 10−308

11For example, appendix E of [sunncg] displays ‘Kahan’s summation formula’, which allows you to perform a
large sum without losing precision in the manner described above.
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and 1.1 . . . 12 × 22046−1023 ≈ 1.798 × 10308, and the machine epsilon for double precision is
2−53 ≈ 1.11× 10−16.

On some platforms such as Solaris and Compaq, with the manufacturer’s compilers, it is possible
to use quadruple precision. You should not use double or quadruple precision automatically,
however, for a variety of practical and principled reasons.

Firstly, if your program already suffers from rather prodigal use of memory (ie, has very large
arrays), then the doubling in the size of real arrays will only make the problem worse and, by
probably increasing the amount of swapping, might make your program significantly slower.

Secondly, although there are some issues to do with the relative speed of single- and double-
precision calculations, these are probably not significant enough to be worth worrying about
in all but the most long-running codes, and in any case would generally be swept up by the
compiler (I’d welcome any correction or amplification on this point).12

Thirdly, if your results change if you switch to double-precision, then there is an accuracy
problem in your code, which would probably bear some investigation. If there is some part of
your code which genuinely requires the extra precision -- say because you have to add numbers
of hugely different scale in accumulating a large inner product -- then there is not much you can
do about it, and that part of your code, at least, must have the extra precision. Failing such
an explanation, however, you can regard such behaviour as a miner’s canary, indicating some
potential problem with your code, which you might benefit from investigating further.

Fourthly, remember that some algorithms are designed to work with single precision, and will
no longer work properly if you search-and-replace double for float or real*8 for real*4. As
just one example, one of the Numerical Recipes algorithms (svdcmp) includes a convergence test
of, essentially, if (val+err==val). Whatever the merits or otherwise of this as a test, it is a
cheap way of establishing whether err has reached machine precision, which will not work in
the expected way if val and err are double precision.

For further details on floating point representation, see, for example [hauser96], and informal
but very useful discussions (both available on the web) by William Kahan [kahan96] and Jim
Demmel [demmel]. The former is one of the authors of the IEEE-754 standard for floating-point
numbers.

2.3.2.3 Other floating-point topics As well as defining the format in which normal floating-
point numbers are stored, the IEEE-754 standard includes the definitions for several other
(classes of) special values.

When the exponent e (of a single-precision number) is zero, the longword is taken to represent
the number

(−1)s × 0.m× 2−126 (2)

(compare Eqn. (1)). Unlike the usual floating-point numbers, which have an implied leading 1
in the significand and 23 bits of precision, and which are referred to as ‘normalised’, these have
an implied leading 0 and less than 23 bits of precision. These are ‘denormal’ or ‘subnormal’
numbers, and are the result of an underflow, such as dividing the smallest normalised number by

12There used to be an issue here in that all of K&R C’s floating-point operations were defined to be done in
double-precision -- this made things easy for compiler writers, at the expense of runtime. This is no longer true
in ANSI C.



SC/13.2 9

two. This behaviour is known as ‘gradual underflow’, and allows the precision in a calculation
to degrade gracefully when it underflows. It is distinct from ‘Store-0 underflow’ common before
the IEEE standard, in which any expression which underflowed was replaced by zero. This was,
and remains, one of the more contentious parts of the IEEE standard. Be warned that older
Crays, which use their own floating-point format, have a Store-0 underflow policy, and that the
Alpha chip, although it generally implements IEEE floats, has a Store-0 underflow as its default
mode, and will neither produce, nor accept as input, denormalised numbers.

If the significand as well as the exponent is zero, the longword represents the number (−1)s× 0.
Note that the IEEE zero is signed, which allows 1/(+0) and 1/(−0) to be positive and negative
infinity; this can be important when doing calculations near branch points.

If the exponent is 255 and the significand is zero, the longword represents the value (−1)s ×
∞. That is, infinity has a special value, distinct from the largest possible normalised number.
Positive infinity is generated by, for example 1/0, or log 0, where infinity is the mathematically
correct, but otherwise unrepresentable, value of a calculation.

If the exponent is 255 and the significand is non-zero, the longword is Not a Number, usually
represented by the string ‘NaN’. A NaN is the result of an operation on invalid operands, such
as 0/0 or log(−1). NaNs have the properties that any operation which has a NaN as an operand
has a NaN as its result; and any comparison on a NaN, such as < or ==, evaluates to False,
including NaN==NaN. The only exception is that, when x is a NaN, then x != x is true. Why
would you want to use such a peculiar number? Generally you don’t, and its appearance in
a calculation is an error, which is why processors can be set to dump core when a NaN or an
Infinity is produced. However, it can be useful to turn off this behaviour if it is not off by default,
and rather than elaborately avoid producing a NaN at each stage, make a check once at the
end of a calculation, possibly invoking an alternative (possibly more expensive or special-cased)
algorithm if any NaNs are found.

Different compilers handle exceptional values in different ways; see Table 2. Of the three Starlink
platforms, only the Alpha traps on exceptional values by default.

Compiler traps enabled by default see suppress with
Sun cc & f77 none -ftrap
Alpha cc overflow, divide-by-zero, invalid operation -fptm, -ieee -ieee
Alpha f77 overflow, divide-by-zero, invalid operation -fpe -fpe1
gcc none -mfp-trap-mode (Alpha-gcc)

Table 2: Summary of compiler IEEE traps

We have only scratched the surface of a rather intricate topic here. Both Suns and Alphas have
extensive f77 and cc man-pages, which hint at the broad range of floating-point options available
when compiling and linking your code. See Section 2.5.2.4 for discussion of the efficiency
tradeoffs when using IEEE exceptional values.

2.4 Programming languages

I speak Spanish to God, Italian to women, French to men, and German to my horse.
Emperor Charles V (attr.)

There is no One True Programming Language, nor even One True Compromise.



10 SC/13.2

The language you use to write code is as much a function of your background, environment and
personal tastes, as it is a function of technical merit. At some level or another, all programming
languages are equivalent, but just as you’d look askance at anyone who wrote a stellar atmosphere
code in TeX13, it’s clear that some languages are more suited for some tasks than others.

The obvious issue at this point is the choice between Fortran and C. Let me state first of all that,
for general scientific computing, I do not believe the difference between the two is substantial
enough, or the advantages of each are unqualified enough, that it warrants abandoning the
language you’re comfortable with and learning the other.

The languages’ respective strengths only become significant when you are deep within their
‘native territories’: for Fortran this territory is that of numerically intensive codes with week-
long runtimes, for C it is intricate manipulation of data structures. Away from these extremes,
the choice is at the level of which to choose for a particular application, given that you know
both, and an ideal application might be said to be one with a Fortran heart whirring away in a
C harness.

Though Fortran and C are both simple languages, Fortran is simple in ways that an optimizing
compiler can exploit. This means that for a numerically intensive application, where processing
speed is very important, Fortran is the only suitable language.

Why is this? The reason can be illustrated by the two languages’ loop semantics. Fortran’s loop
is very simple:

do 10, i=1,n
C process array element a(i)
10 continue

The equivalent construction in C is

for (i=0; i<n; i++) {
/* process array element a[i] */

}

The difference is what the two language compilers can say about the loop. The Fortran compiler
can know that the loop will be performed exactly n times, since neither i nor n may be changed
within the loop; also the array a(i) cannot overlap with any other array within the loop body.
On the other hand, in C, the loop for (init; test; increment) { body } is defined to be
equivalent to the loop init; while (test) { body; increment; }, so that both i and n could
change within the loop, and since a could be a pointer, it could point anywhere. The Fortran
compiler could rewrite the first loop as

do 10, i=1,n,4
C process array element a(i)
C process array element a(i+1)
C process array element a(i+2)
C process array element a(i+3)

10 continue
13Not impossible. Since someone has already done the hard work of implementing a BASIC interpreter in TeX

(honestly!), you’d simply have to port your code to BASIC and let it rip.
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cutting the number end-of-loop tests by a factor of four (this is a simple example of ‘loop un-
rolling’, and presumes that n is divisible by 4). The loop semantics could also make the elements
of the loop candidates for parallelization, if the compiler and hardware support that14. The C
compiler has to do a lot more investigative work before it can make any similar rearrangements.

Even if there were no such fundamental differences, the fact would remain that Fortran vendors
have always sold their products on the strength of their optimizers, so that it is both easier and
profitable for Fortran compilers to produce very fast code.

Though C’s loop semantics are troublesome, it is really the pointer type which causes a lot of the
trouble -- since a pointer is little more than an address, the compiler can have little clue what
the programmer is aiming to do with it, and so has little choice but to make a literal translation
of the C code into assembler.

The pointer type is redeemed, however, because it is this which allows C to code complicated
data structures so naturally: not only aggregate types, but linked lists, queues, and all the other
ways of holding, reading, parsing and generally juggling data, so beloved of Computer Science
1.

Fortran 90/95 goes some way towards addressing Fortran’s weaknesses by introducing pointers
(though the fact that they’re living in a Fortran code doesn’t make them any less troublesome
to an optimizer), as well as proper data structures and some modularisation. At the same time
as Fortran does that, however, C++ uses object-orientation to further enhance C’s advantages
in data manipulation, going so far as to make functions auxiliary features of data structures.

For general discussions of the issues involved in high-performance computing, see the book High
Performance Computing [dowd].

Starlink ensures that C, C++, Fortran 77 and Fortran 90/95 compilers are available at all sites.

2.4.1 Fortran 77

Fortran 77 is probably the dominant current Fortran dialect, replacing earlier standards such
as Fortran IV and Fortran 6615. There are several dialects of Fortran, containing various ven-
dors’ language extensions, but the only extensions which are usually portable are those in VAX
Fortran, which includes the enddo statement for terminating do-loops, and the %val() function
which is necessary to intermix Fortran and C code (see Section 2.5.4 ).

The standards document for Fortran 7716 is not exactly bedtime reading, but can be quite
useful when you have forgotten details of syntax, especially to make sure what you are writing is
correct rather than just allowed by the compiler you are using at the time. As an introduction
to Fortarn 77, I’ve heard good things about [metcalf85]. [MBT]

An important deficiency in Fortran is its lack of any standard way of dynamically allocating
memory (as opposed to allocating arrays to be a fixed size at compile time). The Starlink CNF

14Note that, with pipelining, RISC chips can typically support some degree of on-chip parallelization, even for
a single CPU.

15A statement like that can’t be made without some qualification. Depending how you added it up, you could
probably make a case that old Fortran dialects probably have more code actually running on CPUs, since many
heavily-used libraries were written a long time ago.

16http://www.fortran.com/fortran/F77 std/rjcnf.html
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library, SUN/209 is intended to make this reasonably easy, and includes a brief discussion of the
underlying mechanism. This is rather a can of worms, but the essential technique is to write a
bit of C which obtains a pointer to a block of memory via a call malloc, return that pointer to
the Fortran program as an integer, then use %VAL() to supply that integer as an argument to a
function which is expecting an array. This is non-standard (and not likely to become standard,
now that Fortran 90 includes its own mechanisms for dynamic memory allocation), but it is
a well-established technique and therefore probably more portable than you have any right to
expect.

There is a large number of introductions to Fortran, but not, I believe, a single preeminent one.
The Starlink application programming standard, SGP/16, is a collection of programming style
guidelines for Fortran, and includes further references.

There is a reasonable amount of online information on Fortran, which is well-covered at the
‘Fortran Market’ (<http://www.fortran.com/fortran/info.html>), which includes several For-
tran FAQs.

2.4.2 Fortran 90/95

Almost immediately after Fortran77 was standardised, work began on its successor. Although
this project was named Fortran 8X, the work took long enough that the final standard was
named Fortran 90.

The Fortran standard is maintained by ISO committee JTC1/SC22/WG517, and the current
version of the standard is ISO/IEC 1539-1 : 199718.

Fortran 90 was an attempt to respond to the numerous developments in language design, seen
since Fortran’s last standardisation in the sixties and seventies. In contrast to Fortran 77,
which aimed to standardise existing practice, Fortran 90 was an attempt to push forward the
development of Fortran as a language. A summary of the new features (adapted from [metcalf96])
is:

• Free format source code form (no more column-counting).

• A means for the language to evolve by labelling some features as ‘obsolescent’.

• Array operations (for example, X(1:N)=R(1:N)*COS(A(1:N))).

• Pointers.

• Improved facilities for numerical computation including a set of numeric enquiry functions.

• User-defined derived data types composed of arbitrary data structures and operations upon
those structures.

• Facilities for defining collections called ‘modules’, useful for global data definitions and
for procedure libraries. These support a safe method of encapsulating derived data types.
Operator overloading and prototyping.

• Requirements on a compiler to detect the use of constructs that do not conform to the
syntax of the language or are obsolescent.

17http://www.nag.co.uk/sc22wg5/
18http://www.nag.co.uk/sc22wg5/IS1539-1 1997.html
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• New control constructs such as the select case construct, an exit and a new form of
the do.

• The ability to write internal prodedures and recursive procedures, and to call procedures
with optional and keyword arguments.

• Dynamic storage (automatic arrays, allocatable arrays, and pointers).

• Improvements to the input-output facilities, including handling partial records and a stan-
dardized namelist facility.

• Many new intrinsic procedures, (date, precision, arrays, ...)

Fortran 90 is backwards compatible with Fortran 77, so that every strictly conformant Fortran
77 program is also a valid Fortran 90 program. However, many of Fortran 77’s odder features are
strongly deprecated, and may disappear in the next revision of Fortran, due to appear sometime
in the next decade. Fortran 95 is a minor revision of Fortran 90.

There is an increasing number of books on Fortran 90/95; for a booklist, refer to the Fortran
Market at the URL above. I am, of course, reluctant to recommend books I have not used
myself, so I will simply note that I have heard good things about [metcalf96], and that the
first author was prominent in the negotiations concerning the development of the Fortran 90
standard.

If you plan to use Fortran 90/95, but avoid the deprecated parts of Fortran 77 altogether, you
might be interested in F19, which is a subset of Fortran 90 with all the deprecated features
removed. You can obtain an F compiler from Imagine1, including a free educational version for
Linux.

Several Fortran compilers were reviewed in a short report20 of January 1997 by the high perfor-
mance computing project at Liverpool.

It is occasionally necessary to produce code in a mixture of Fortran and C. See Section 2.5.4.

2.4.3 C

There are hundreds of books on C, but the only essential one is the Kernighan and Ritchie
book [kr] (also known as just ‘K&R’). This is a very short book, by the authors of the language,
which combines a tutorial introduction with a detailed reference to the language and its standard
libraries. I believe it’s the only C book you’ll ever need.

The book’s compression makes it possible, and even advisable, to read it from beginning to
end. It avoids the bloat found in many other C books by not teaching you how to program, by
never saying anything twice, and by never attempting the empty reassurance that ‘it’s all easy,
really’; its examples often illustrate more than one point at a time, and culminate in a sample
implementation of the library function malloc. Science textbooks don’t talk down to you; I
don’t see why computer texts should be excused for doing so.

It follows from this that K&R is not necessarily the ideal recommendation for someone new to
programming, who might need something a little more comprehensive. My recommendation in

19http://www.swcp.com/~walt/imagine1/
20http://www.liv.ac.uk/HPC/FortranCompilerStudyHTML/FortranCompilerStudyHTML.html
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that case is to find an introductory C (or even general programming) book which covers what
you want without irritating you, and use that up to the point where you feel comfortable with
K&R.

C allows the programmer a considerable degree of freedom in how an algorithm is expressed. The
fact that this freedom is easily abused makes style guides more common for C than for other
languages. Starlink has adopted The Elements of C Programming Style by Jay Renade and
Alan Nash as its principal C programming standard, as well as producing a compact collection
of programming style suggestions in SGP/4.

One way of making your life easier in this respect is to be consistent about using current standard
ANSI-C. See Section 2.5.5.

The C language as originally designed by Kernighan and Ritchie was standardised as ANSI-C
in 1990 (K&R 2nd edition describes the latter). This standard is currently being revised by an
ISO working group with the memorable name ISO/IEC JTC1/SC22/WG14 -- C21. One of the
motivations to the work is to provide better support for floating point calculations in C, such
as defining a standard interface to the IEEE floating point exceptions.

The excellent C FAQ22 contains substantially more than you realised you wanted to know about
C. It contains detailed discussions of both common and arcane problems.

2.4.4 C++ and object orientation

C++ is an object-oriented version of C, and was finally standardised in 1997. Compiler makers
have tracked the developing standards, so that recent C++ compilers should conform pretty
closely to the standard even if they formally pre-date it.

Object-orientation is the notion that functions are attached to data, rather than simply operating
on them. For example, if a C program were to declare a data type Array, and initialise a
variable of that type with Array a; then one can imagine a function to return the determinant
of the array, declared as float determinant (Array a);. In C++, the ‘function’ to obtain
the determinant could be declared as part of the data type, and obtained via the expression
a.determinant(). There are two main points to this. Firstly, the so-called ‘member function’
determinant can have privileged access to the internal representation of the data type Array,
so that other parts of the program need not, and may not, manipulate that representation,
erroneously or otherwise. Secondly, and consequently, the representation and matching member
functions can be changed with the guarantee that the rest of the program will be unable to tell
the difference. This is characterised in the remark that new programs have always been able to
use old code (in libraries), but object-oriented approaches mean that old programs can use new
code (when an implementation changes, while the interface remains the same).

Of course, both of these points are to some extent true of traditional programming languages
-- indeed I’d doubt that there’s anything you can do in C++ which you couldn’t do with some
ingenuity in C -- but the point is that they are much easier, and much more natural, in C++.

It may be clear at this point that C++ is not a beginner’s language. The result of grafting
a high-level abstraction onto portable assembler is a language with far more syntax than is
healthy. Do not feel you need to learn C before C++-- they are closely enough related that the

21http://std.dkuug.dk/JTC1/SC22/WG14/
22http://www.eskimo.com/%7Escs/C-faq/top.html
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differences can be confusing. My feeling, however, is that you should consider learning Javafirst
if you have the time: there is relatively little that needs to be unlearned going from Java to
C++, and Java’s simplicity makes it easier to come to grips with object-orientation, without
drowning in a sea of punctuation.

The excellent C++ FAQ23 includes book recommendations. The canonical book for C++,
with the same status K&R has for C, is The C++ Programming Language [stroustrup], by
the language’s author. However, I find Stroustrup’s book rather irritating: it’s rather badly
organised, and the index is dreadful.

Note, by the way, that the C++ compiler on Suns is named CC, on Alphas named cxx, and on
Linux named both c++ and g++.

2.4.5 Java

Java was developed by Sun and at present (mid-2002) eclipsed only by XML as the current
Big Thing. Source code is compiled to machine-independent bytecode, which is then either
interpreted, or compiled to machine code on the fly, by a Java Virtual Machine (JVM) on
a particular platform. The main interest to astronomy might be in developing machine- and
architecture-independent interfaces either to codes or archives. It’s also, I think, of use as a
stepping-stone to C++, since its object-oriented features are less obscured by syntax than they
are in C++. A very good textbook, written (you won’t be surprised to guess) by two of the
language’s authors, is The Java Programming Language [arnold98]; once you’ve mastered the
basics, there’s a good deal of helpful advice in Effective Java [bloch01]. There are numerous
resources at Sun’s Java site at <http://java.sun.com>.

Java is a mixture of an interpreted and a compiled language. Java source code is compiled by
the Java compiler into bytecodes, which are then interpreted by a Java Virtual Machine. These
bytecodes are low-level, but architecture-independent so that, in principle, only the virtual
machine and its runtime need to be ported to a new machine, whereas the code should be
completely portable. This does not work quite as well in practice as it does in principle, but it
does mean that Java is not too far off the ideal of run-anywhere code.

Since Java bytecodes are ultimately interpreted, Java programs have the potential to be rather
inefficient. However, just-in-time compilers (JIT), which analyse running code and optimize the
most heavily-used parts, and similar developments, should help the situation improve in the
future. This is possible because JITs have access to both the program source code and the
running program, and so can combine the features of both an optimizer and a profiler, and
thus optimize more aggressively than a traditional compiler could. This, combined with Java’s
good built-in support for different platforms and for resource-discovery, means that, possibly
somewhat surprisingly, Java has been suggested as a suitable language for high-end codes. The
Java Grande Forum24 is concerned with investigating and promoting developments in this area.

Note that it is relatively easy to write slow Java (for example, adding Strings is a lot slower
than using a StringBuffer; input and output streams are not (extensively) buffered, so if you
have a lot of I/O, you would be well advised to use Buffered{Input,Output}Stream objects
wrapping your I/O objects; small-object creation is extensively and increasingly optimised, but
it’s still not dirt-cheap, so look out for that in a small loop). That means that using a profiler

23http://www.parashift.com/c++-faq-lite/
24http://www.javagrande.org/
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(see Section 2.5.1 ) is particularly important. However, with Java, that’s easy, because there’s
one built in to the JVM. Give the option -Xrunhprof:help to find out how to invoke it. For
example:

java
-Xrunhprof:cpu=samples,file=myprog.hprof
myclass

There’s quite a lot of information in here (and the file format is under development), but as
with all profilers, you’ll see a list of the number of times various methods were called: the ones
at the top of the list are the ones where the program spent most of its time, so work out why,
and concentrate on making them faster. Ignore the rest.

Java is still developing. At present (mid-2002) Java 1.3.1 is long in the tooth but stable. Version
1.4 is in beta, and on the point of being released properly; it includes a few changes to the
language, most noticeably the inclusion of an assert construct.

2.4.6 Other languages

C and Fortran cover most of the bases for scientific computing, but there are one or two others
which come in useful occasionally.

2.4.6.1 awk and sed Often, you can find yourself performing some repetitive editing task,
for example massaging data into a form which a program can conveniently read. Such tasks can
conveniently, and reliably, be done by programs such as awk and sed. Neither of these utilities
is as well-known as it should be, as they can save a great deal of tedious and error-prone effort.

sed is a version of the very simple editor ed, which is specialised for performing edits on a stream
of text. For example, the following rather elaborate sed script prints all the section headings
from a LaTeX document:

sed -n
’s/^\\\(sub\)*section{\(.*\)}.*$/\2/p’
sc13.tex

This may look like gibberish, but it is simpler than it looks. The option -n instructs sed not
to print out input lines, which it does by default. The sed expression in quotes calls the s
command: whenever the ‘regular expression’ between the first pair of slashes matches, the s
command replaces it with the expression between the second pair and, because the s command
is suffixed with a p, prints out the modified line. The regular expression matches lines which
start with a backslash, have zero or more occurrences of the string ‘sub’, which is followed by the
string ‘section{’, then any sequence of characters, followed by a } then any characters, ending
at the end of the line. The caret ^ matches the beginning of a line, the backslash is a special
character, so that it must be ‘escaped’ by prefixing it with another backslash, \\, the grouping
operators are \( and \), the asterisk indicates that the previous (bracketed) expression may be
present zero or more times, the dot matches any character, and the dollar matches the end of
the line. As well as grouping, the parentheses save what they match, and the expression \2 in
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the replacement text refers to what the second pair of parentheses matched, namely the text
between the curly braces. The overall result is that the matched string (the whole of the line)
is replaced by the contents of the braces and then, because of the p suffix, printed.

Another useful tool is awk, named after its designers Aho, Weinberger and Kernighan. Like sed,
it works through a text file, executing scraps of code whenever a line matches some condition.
Before it does anything with a line, it breaks it into fields, separated by whitespace by default.
Consider the following example25

ps u | sed 1d | \
awk ’{print $4, $0; totmem+=$4}; END {printf "total memory: %f\n", totmem}’

This (not terribly useful) line generates a process listing using ps, uses sed to delete the first line
(that is, it executes the command d on line number 1), and then passes the result through the
awk program contained in quotes. On every line, this prints field number 4 (the %MEM column in
the listing) and field 0 (which is awk-speak for the whole input line), and adds the value of the
fourth field to a running total; on the line matching the pattern END -- that is, the pseudo-line
at the end of the file -- awk prints out the accumulated total.

You won’t typically generate expressions as complicated as these on the fly (at least, not until
you get really good). This example is intended to suggest that you can, in aliases or in scripts,
perform quite complicated transformations of text files. For further details you could look at the
sed or awk man-pages, which are complete but very compressed, or work through a tutorial in
your system’s printed documentation. There are several guides to sed and awk, but you might
be best off, initially, using an advanced introduction to Unix, such as [quigley] or [nutshell]. The
canonical documentation for regular expressions is on the ed(1) manual page.

2.4.6.2 Perl Perl is a general-purpose scripting language. It started off as a text-reformatting
facility, rather like a super-awk, but it has now grown to the point where it really is a pro-
gramming language in its own right, capable of supporting quite substantial projects. Perl
programmers can call on a huge range of supporting code, collected at the Comprehensive Perl
Archive Network, CPAN26, to do everything from internet programming to database access.
Perl’s expressive power makes it ideal for rapid development of all sorts of complex systems --
some huge proportion of the web’s CGI scripts, for example, are written in Perl. Unfortunately,
the flexibility of Perl’s syntax make it quite possible to write spaghetti, the like of which we
have not seen since Fortran IV dropped out of fashion.

The Perl manual pages are reasonably clear. O’Reilly publishes a good book on Perl, written
by Larry Wall, its author [wall]. This is a good reference book, but [schwartz97] is possibly a
better tutorial introduction. Perl regular expressions are slightly different from the ones used
by sed and friends -- see the perlre manual page.

Perl is a semi-interpreted language. Somewhat like Java, when the Perl interpreter first processes
your Perl script, it compiles it to an internal code, which it then proceeds to interpret. This
means that Perl programs have a relatively long startup time, but run reasonably efficiently
after that. This is not a big issue in most applications.

25There are two versions of ps on Suns -- this example assumes you are using the /usr/ucb/ps version.

26http://www.cpan.org
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The current (end-2001) version of Perl is 5.6 or thereabouts. Perl 6 will be a significant step in
the evolution of the language: it’s in the offing, but still some way away.

2.5 Code topics

Several of the topics mentioned here are discussed at greater length in the Sun Fortran User’s
Guide [sunf77], which is of interest even if you program only in C.

2.5.1 Profiling

Before you start doing any optimization at all, check which parts of your code are slowing the
machine down -- there’s no point in tweaking, for example, a one-time initialisation routine
which takes only a tiny fraction of the program’s runtime. You do this by using a profiler.

Different compilers will invoke a profiler (presuming they have one) in different ways. The
Sun and Digital Fortran compilers include profiling code if you give the option -pg to the f77
command. Compile and link the program with this option (if you wish, you can compile only
those modules you want to profile with the -pg option, but you must include the option in
the final link command), and then run it. This run will create a file gmon.out in your current
directory. Then you can run gprof. Taking as example the programs in Appendix A.4, we can
build and profile them as follows:

% f77 -pg -o timewaster p1.f p2.f p3.f
p1.f:
MAIN silly:
p2.f:
mkidentity:
p3.f:
determinant:
Linking:
% timewaster
1.00000
% ls
gmon.out p1.o p2.o p3.o
p1.f p2.f p3.f timewaster*
% gprof timewaster >timewaster.gprof

The output file timewaster.gprof is many lines long, even though the program is so short! The
file contains a great deal of information, but buried amongst it is the following display (from
the Sun profiler, trimmed):

called/total parents
index %time self descendents called+self name index
called/total children

0.05 0.64 1/1 main [2]
[1] 97.2 0.05 0.64 1 MAIN [1]
0.64 0.00 100000/100000 mkidentity [4]



SC/13.2 19

0.00 0.00 1/1 s wsle nv [167]
0.00 0.00 1/1 determinant [8]
0.00 0.00 1/1 do l out [157]
0.00 0.00 1/1 e wsle [158]
-----------------------------------------------

0.64 0.00 100000/100000 MAIN [1]
4] 90.1 0.64 0.00 100000 mkidentity [4]

This indicates that the subroutine mkidentity was called 100000 times from the main program,
and that 90.1% of the time -- a total of 0.64 seconds -- was spent in that routine. Were this a
real project, this would indicate that this routine would be a good one to examine for speedups.

This example, and a further one using the tcov utility, were taken from [sunf77], which might be
consulted for further details. pixie is the corresponding utility on Compaqs -- see its man-page
for details [RW].

gprof is not specific to Sun, but is available for other architectures, and other compilers (in-
cluding gcc) as well.

2.5.2 Optimization

Just say no! Or, if you need authority:

[ Donald Knuth, in Literate Programming ]Premature optimization is the root of all
evil.

The first thing to ask yourself, when you are considering performance enhancements on your
code is ‘do I really need to do this?’. You should only attempt optimizations once you have
either identified a particular part of your code which needs improving, or else you know that you
can write the efficient version of the code correctly. If the ‘efficient’ version is unnatural, then
the savings in runtime you achieve by reordering the code have a good chance of being wiped
out by the time spent debugging a convoluted juggling act. Within reason, prefer simplicity and
robustness to efficiency27 -- get your code working correctly and believably, and only then start
worrying about speed. That way, if you later establish that you need to work on part of the
code, you at least have a trusted set of results to check the new version’s against. Another way
of putting this is that it’s easier to optimize correct code than it is to correct optimized code.

If you’re writing a code which will run for days or more, then it might be worthwhile investing
a significant effort in tuning your code for performance. Doing this properly might involve you
learning more about your machine’s architecture than you might enjoy, and as as result will
make your program less portable to the next generation of whizz-bang hardware, or even the
next compiler.

It is generally worthwhile to use hand-optimized routines, if they are available for your compiler.
Where this can pay particularly good dividends is in the case of linear algebra, where the speed
of a calculation can be significantly improved (‘a factor of several’) by routines carefully written
to access memory in an optimal way. There is a standard interface to such routines called the
BLAS (Basic Linear Algebra Subroutines), which your compiler documentation may mention.

27However, there is no excuse for Bubble Sort!
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Although it won’t be as fast as a machine-specific implementation, the free BLAS implementation
at Netlib28 (UK mirror29) should speed your codes up significantly. [MBT,RW]

The first lesson to learn about optimization is that the compiler can probably do it better than
you can.

Most compilers will have a -On option, to allow you to set how aggressive the compiler’s opti-
mization will be. The GNU gcc compiler, for example, allows optimization levels 1, 2 and 3, and
Solaris Fortran has five levels, which progressively enable more techniques for improving your
program’s execution speed. Compaq compilers have a ‘-tune host’ option, to produce code
optimized for a particular machine. [MBT]

If your program starts behaving oddly, at some point you should start worrying about errant
optimization, if you have that turned on. Optimization works by the compiler recognising
patterns in your code, and possibly rearranging the output assembly language to take advantage
of these. If it gets this wrong (because there’s a bug), if your program relies on a particular
floating-point behaviour, or if you’re doing something sufficiently weird with your programming
language that you manage to confuse the compiler, then you could trick it into doing the wrong
thing.

Specifically, if you have occasion to worry about the order in which expressions are evaluated
-- for example to conserve precision, as described in Section 2.3.2.2 -- then you should be very
wary of optimization, as one of the first things an optimizer might do is to reorder expressions
which are associative mathematically but not computationally. If you have some code like this,
it might be best to isolate a single routine in a module of its own and compile it separately with
its own appropriate optimization level.

Parallelization is another type of optimization. Just say no several times to this, but if you have
an application which really needs it, then buy a book and some aspirins. See Section 2.5.2.7.

Although you should generally leave optimization to the compiler, there are some things you
can do to at least avoid getting in its way.

2.5.2.1 Avoid using the register keyword in C This is, historically, supposed to suggest
to a compiler that a particular variable might be better stored in a register than in main memory,
though the actual semantics defined in the C standard is that the keyword is an assertion that
the program nowhere takes the address of the variable so qualified. Such an assertion means,
amongst other things, that the variable will never be visible from any other functions, which
might trigger other optimizations. [SG]

You do not need to use this keyword to actually suggest to the compiler that it store the
variable in a register, since the compiler might well do this anyway, and have a better idea of
which (non-obvious, or temporary) variables to choose than you have.

2.5.2.2 Walk through arrays in the correct order A multi-dimensional array is necessarily
stored in memory as a linear array. If you have to process this entire array, it will be fastest
if you try to do so in the order in which the array is stored. Fortran arrays are stored with
the leftmost index varying fastest. That is, the Fortran array integer i(2,2) will be stored in
memory in the order i(1,1), i(2,1), i(1,2) and i(2,2)

28http://www.netlib.org/blas/
29http://sunsite.doc.ic.ac.uk/packages/netlib/blas/index.html
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Take, for example the Fortran array integer ia(1000,1000). If you run through this array
with the first index changing fastest, as in the following fragment

do 10,
j=1,1000 do 20, i=1,1000 call some calc (ia(i,j)) 20
continue 10 continue

then you will move through the array in the ‘natural’ order. If, however, you process it in
the other order, with the second index changing fastest, then when you move from ia(i,j) to
ia(i,j+1), the computer will have to jump 1000 places forward in the stored array, each time
round the loop. This would not matter too much if the entire array were stored in physical
memory, but this will not be the case for any sizable matrix, so that to find the appropriate
array element, the machine may have to reload part of its memory from a saved version on disk.
Such input is relatively slow, and if the calculation is laid out in such a way that this happens
repeatedly in an inner loop, which is executed many times by an outer loop, then there can be
a significant impact on your program’s performance.

This system of swapping memory back and forth to disk is known as ‘virtual memory’, and the
machine’s discovery that the memory it needs is swapped out is known as a ‘page fault’, and is
one of the important statistics about the run of your program. You can obtain such statistics
in copious detail by using the compiler’s profiler (see Section 2.5.1 ), or quickly by using the
time command (see your system’s time man-page for details -- not all versions provide this
information by default).

Of course, it’s not really as simple as just that. Even when the entire array is stored in physical
memory, or when you have rearranged your program to minimise the number of page faults,
it can be important not to hop about in arrays too much. Modern architectures will typically
have a small amount (modern PCs around half a Mb, biggish servers around 8 Mb) of memory
called ‘cache’ which has much faster access time (typically an order of magnitude or more) than
the bulk of the RAM. The relationship between this and core RAM is strongly analogous to
the relationship between core RAM and disk, in that cache-lines (which are like memory pages,
but typically only a few words long) get swapped in and out of it when one word from the line
is required. The upshot of that is that it’s important to avoid hopping about over distances
much smaller than an I/O page since, even if you have no page faults, cache faults make a huge
difference. And of course it’s not as simple as that either -- sometimes there are two levels of
cache, some architectures implement some sort of prefetching, and so on. Except with some
rather sophisticated profilers (which generally have to be supported by a processor architecture
which keeps a record of these things) it’s not really possible to see how many cache faults you’re
getting, except by writing the code more efficiently and seeing what the difference is. [MBT]

Unlike Fortran, C arrays are stored with the rightmost index increasing fastest, so that the array
int i[2][2] will be stored as i[0][0], i[0][1], i[1][0] and i[1][1].

2.5.2.3 I/O Input and output are slow, and the faster processors become, the bigger is the
cost of I/O relative to CPU cycles. That means you should think twice before writing out
intermediate results, for reuse later in the same calculation or another. For example, it’s quite
easy to fall into the trap of ‘saving time’ by reading in a precalculated table of values, without
realising that it can take more time to read the file than it would take to recalculate the table
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from scratch each time. Remember that computers don’t get bored, and don’t mind doing the
same calculation repeatedly.

If you do need to save values for later use, and don’t mind doing it only semi-portably, you can
save time and precision by using raw I/O rather than formatted ASCII [RW]. A C example is:

FILE *ofile; float arr[10];

/* set arr[i] to have sensible values */

ofile = fopen ("output-c.dat", "w");
fwrite ((void*)arr, sizeof(arr[0]), 10, ofile);
fclose (ofile);

Note that we carefully cast the variable arr to type void*, and that we could replace this by
(void*)&arr[0] if we thought it was clearer. Note also the minor trick of using sizeof(arr[0])
rather than the more obvious sizeof(float); they are equivalent, but the first will remain
correct even if we change our mind about the size of the elements of the array arr. You would
read the contents of this file in using the function fread.

The fwrite and fread functions are not portable in general, since they deal with floating point
numbers merely as bundles of bits, and pays no attention to how these are interpreted. This
means that such files are not portable between machines which interpret these bits differently,
so that files written on a little-endian machine (see Section 2.3.2 ) will be gibberish if read on
a big-endian machine, and vice-versa. However, C’s raw I/O is semi -portable, inasmuch as the
fwrite function above does nothing other than copy 10 × 4 bytes (in this case) from memory
to disk; fread similarly copies bytes from disk to memory without any interpretation.

The corresponding Fortran example is

real arr(10)

C set arr() to have sensible values
open (unit=99,file=’output-f.dat’,form=’unformatted’)
write (99) arr
close (99)

Note that Fortran unformatted output is not portable in any way. Unlike C raw I/O, the Fortran
compiler is free to store the information on disk in any way it likes, and the resulting file will not,
in general, have 10× 4 bytes in it. That is Fortran unformatted I/O is machine- and compiler-
specific, and the file output-f.dat in this example will only be readable in general using a
Fortran program built using the same compiler.

2.5.2.4 Use NaN and Infinity As described in Section 2.3.2.3, any operation which has a
NaN as input, produces a NaN as its result. Similarly, the special values positive and negative
Infinity are legitimate numbers which can appear in a calculation. Consider the following
code fragment:
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do 10, i=-5000,5000
do 20, j=-5000,5000

if (j .ne. 0) then
t(i,j) = real(i)/real(j)

else
t(i,j) = 0.0

endif
20 continue
10 continue

The if test is to avoid a division-by-zero error. If this loop were buried deep within a hierarchy
of other loops, then the test could be the source of a significant fraction of the runtime. It can,
however be omitted, allowing the matrix t(i,j) to include numerous Infinitys and one NaN
(due to 0/0). Because both of these values are permissable floating-point operands, they can be
allowed to percolate through the rest of the calculation without elaborate further tests, to be
checked only at the end. This is possible only if the floating-point environment is set up not to
generate signals on floating-point exceptions (see also Section 2.3.2.3 ).

Note that calculations involving the exceptional values tend to run more slowly than those using
normal values, so if your calculation produces a significant number of exceptional values -- like
the artificial example above -- a switch to IEEE semantics might not produce a speed win overall.
Note also that the expression (a.lt.b) is not equivalent to .not.(a.gt.b), since both a.lt.b
and a.gt.b are false when one of the variables is an IEEE exceptional value: this could produce
hard-to-find bugs if you were not alert to this when you were writing the code. [SG]

2.5.2.5 Remove debugging options It may or may not be obvious that debugging and
profiling options, as discussed in Section 2.5.3 and Section 2.5.1, will both slow your program
down (especially in the latter case), and make it bigger. You should compile your program, or at
least the numerically intensive parts of it, without them when you are not debugging it. [MBT]

2.5.2.6 Choose a fast compiler Random points:

• This is a case where free software is not necessarily better. Both Sun and Compaq expend
resources on making their compilers as efficient as possible. If speed is important to your
application, you’re probably best off using one of these compilers.

• On the Alpha, it’s worth while using the Fortran 90 compiler even for Fortran 77 code
[SG].

2.5.2.7 Further reading Take a look at the Sun Numerical Computation Guide [sunncg],
particularly the end of chapter 5, and at the collection of papers at <http://sunsite.doc.ic.ac.

uk/sun/Papers/SunPerfOv+references/>, particularly the helpful paper about compiler switches:
you and your compiler (this is a generally useful collection of Sun papers, by the way).

If you do need to spend significant effort tuning your code, then you should consult a textbook
on the matter. A good one is High Performance Computing [dowd]. This reference touches on
parallelizing your code, a topic which I have deemed sufficiently arcane not to be discussed at
all in this introductory guide.
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2.5.3 Debugging

One approach to debugging is the brute-force method: simply scatter tracing statements through
your code and watch them fill your screen. There are some types of debugging for which this
is ideal -- for example, graphing a trace of intermediate values may reveal that an algorithm is
showing signs of instability -- but it can be very cumbersome.

Better, in many cases, is to use a debugger. A debugger allows you to roam through your code,
stopping in troublesome functions, examining data, and stepping through your code line-by-line.
There is a great deal you can do with a debugger, but they are not often the easiest tools to
master. However, there is a good deal you can do armed only with experience of the foothills of
the debugger’s learning curve.

I will describe the Sun debugger dbx, here. The use of the GNU debugger, gdb, and the dbx
debugger on Digital Unix, are broadly similar.

First, compile crash.c, listed in Appendix A.5, in the usual way (cc -o crash crash.c), run
it, and watch it crash when it tries to dereference a zero pointer. This leaves a core file in the
current directory30. You can obtain rudimentary post-mortem information from this core file
with dbx, as follows:

% dbx crash core
[...]
program terminated by signal SEGV (no mapping at the fault address)
(dbx) where
=>[1] bananas(0x0, 0x1, 0xef691338, 0x10074, 0x2, 0xeffff8d0), at 0x10870
[2] main(0x1, 0xeffff94c, 0xeffff954, 0x20800, 0x1, 0x0), at 0x108fc
(dbx) quit

The where command to dbx shows where the program was when it crashed (the [...] shows
where I have omitted some unenlightening chatter from the debugger).

The other information dbx gives you is less useful -- the debugger doesn’t know enough about
your program to be more helpful. You can, however, tell the compiler to pass on more information
to the debugger when it processes your code; do this with the -g flag to the compiler, as in cc
-g -o crash crash.c. If you compile several modules to produce your executable, you’ll need
to give this option to the compilation of each module you wish to debug. You’ll also have to
give this option at the link stage on SunOS4, but not on Solaris or for gdb on Linux.

If we run crash again now, and look at the core file, we see that the debugger can provide us
with more information.

% dbx crash core
[...]
program terminated by signal SEGV (no mapping at the fault address)

30If you don’t get a core file, it might be that you have your shell set to prevent it -- possibly as a (reasonable)
precaution to avoid filling up filespace with ‘useless’ core files. The command ulimit -c (sh-type shells only) will
show the maximum size of core file: setting this to zero inhibits creating core files, and setting it to a very large
number or to unlimited allows core files to be created. On csh-type shells, the corresponding command is limit
coredumpsize unlimited
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Current function is bananas
12 printf ("banana split: %d\n", *zp);
(dbx) where
=>[1] bananas(i = 0), line 12 in "crash.c"
[2] main(), line 22 in "crash.c"
(dbx) print i
i = 0
(dbx) print buf
buf = "banana number 0
"
(dbx) print *zp
dbx: reference through nil pointer
(dbx) print zp
zp = (nil)
(dbx) quit

Note that we can examine the values of variables in scope at the point where execution stopped,
and that dbx knows enough about C (or Fortran) to know the type of variables it is asked to
print. Printing the value of the pointer zp shows us why our program has crashed.

The debugger is not only useful for such post-mortem diagnosis. It is also (for some people,
primarily) used for investigating a program’s behaviour when it is running normally, albeit with
bugs we wish to track down. For example, start the debugger and tell it to stop when it enters
the function bananas:

% dbx crash
[...]
(dbx) stop in bananas
(2) stop in bananas

You can set multiple breakpoints (so called) not only in functions, but also at line numbers, or
linenumbers within files (using (dbx) stop at crash.c:12). Then tell the program to start
running:

(dbx) run
Running: crash
(process id 29707)
Entering the bananas function: 1
stopped in bananas at line 6 in file "crash.c"
6 sprintf (buf, "banana number %d\n", i);
(dbx) next
stopped in bananas at line 7 in file "crash.c"
7 if (i != 0)
(dbx) print i
i = 1

Note that, as well as output from the debugger itself, we also see output from the running
program. If the program required input from the user, it would receive it as normal. The
program stops at the first line of code within the bananas function. We can move one line
forward in the code, verify that the parameter i has its expected value, then tell the program
to resume execution.
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(dbx) cont
banana number 1
No bananas left!
stopped in bananas at line 6 in file "crash.c"
6 sprintf (buf, "banana number %d\n", i);
(dbx) print i
i = 0
(dbx) cont
signal SEGV (no mapping at the fault address) in bananas
at line 12 in file "crash.c"
12 printf ("banana split: %d\n", *zp);
(dbx) quit

The Solaris debugger can be used through a GUI: give the command debugger to start this up.
The Digital GUI debugger is ladebug. There is a GUI interface to gdb, called xxgdb.

In general, you can’t debug optimized code (that is, code compiled with the option -O), because
the optimizer may rearrange lines or remove redundant variables. However, both dbx and gdb
do have support for debugging code with mild optimization, though there are some things, such
as stepping from line to line, you might not be able to do.

This introduction has merely scratched the surface of what you can do with the debugger, by
showing you the bare minimum of commands you need to navigate around your running program.
There is a great deal more information available in Sun’s debugging manual [sundebug], or in
gdb’s info pages (info gdb).

2.5.4 Intermixing Fortran and C

Because there are so many reliable subroutine libraries written in Fortran, you will sometimes
need to call a Fortran routine from C. Likewise, you might need to call a low-level C routine
from a Fortran program.

For a detailed overview of such ‘mixed language programming’, see SUN/209, CNF and F77
Mixed Language Programming, which gives a detailed introduction to calling each language
from the other, as well as a set of C macros to help support this. I will not duplicate the
contents of that guide, but instead give a very compressed introduction to the problem. This
might be enough to get you going. There is a further discussion of the issues, and a compressed
description of the solutions, at the Cambridge High Performance Computing Facility (HPCF),
at <http://www.hpcf.cam.ac.uk/mixed.html>. For a Sun-specific discussion, see Chapter 12 of
[sunf77].

The biggest difference between C and Fortran is that ‘C is call-by-value, Fortran is call-by-
reference’. What that means is that when a C function is called, it receives the values of its
arguments, so that any changes to them disappear when the function finishes, but when a
Fortran function is called, it receives a reference to its arguments, so they can be altered easily
within the function. The consequence of this is that when you call a Fortran function from C,
you should pass arguments using C’s address-of operator,&, and when you call a C function from
Fortran, you will typically need to pass it the value of the variable using the %val() function
(this is a non-standard VAX Fortran extension, but one which is now so ubiquitous that it’s
safe to use). These remarks apply to unstructured types such as characters, integers and floats
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-- arrays and strings present other problems, as described below. It follows from what I’ve said
that if a C function is declared as void subr (int *p), it’s expecting (the value of) a pointer
to an integer, so that this could be called in the ‘normal’ way from fortran: call subr (ia),
where ia is an integer variable.

See Appendix A.6 for example programs.

2.5.4.1 Arrays Fortran’s arrays are simple: an array of any dimension is just a list of locations
in memory, stored in the order a(1,1), a(2,1), and so on (see Section 2.5.2.2 ); when a Fortran
function is given an array argument, what it actually receives is a pointer to the ‘top-left’
element. If you’re calling Fortran from C, you simply have to be aware of the switch on order,
and then pass &a[0][0].

If you have a C routine with a one-dimensional array argument (either void func (int a[])
or void func (int *a)), and you want to call it from Fortran, you can call it simply by giving
the array name as an argument: call func (a).

Passing a multi-dimensional array to a C function is potentially problematic. However, you’ll
almost never need to do that, because Fortran very rarely needs to invoke C to do a numerical
calculation. If the C declaration is func (int a[][3]), for example (that is, an array of three-
element arrays), then a Fortran array integer a(3,n) could be passed simply, as call func
(a). If, on the other hand, the C declaration were func (int **a) (that is, a pointer to pointer
to integer, with the actual array elements separately allocated), then the above Fortran array
could not be passed as shown (and no, smarty, call func (%loc(a)) wouldn’t work, even
though it’s the right type). If you do need to call such a C function, you’ll probably have to
provide a suitable C wrapper for it, and call that from the Fortran code. C’s array/pointer
syntax is elegant, but not ideally suited for numerical work31.

2.5.4.2 Strings C strings are simple objects: they are by definition arrays of characters, with
the end of the string marked by a zero byte. The internal structure of Fortran strings is not
defined, so that they could be stored in whichever way is most convenient to the author of the
compiler; typically, however, they are an array of characters with a length encoded with them.
The practical upshot of this is that you simply cannot pass strings back and forth between
Fortran and C code in a portable way, and it is fortunate that you rarely need to do this. On
those occasions when you do need such a facility, you can use a library of conversion routines
such as those described in SUN/209.

2.5.4.3 Compiling and linking When a Fortran compiler produces object code,it typically
adds an underscore to the end of each function name. That is, the subroutine:

subroutine func1 (i)
integer i
call func2 (i)
end

31A little known factoid for C enthusiasts: did you know that C’s array reference syntax is commutative, since
a[i] is defined to be equivalent to *(a+i) and is thus equal to i[a]? This means that a[3] is the fourth element
of the array a, and so is 3[a]! Bizarrely enough, the latter is a legitimate array reference, but one you’re probably
best not including in your own code.
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will produce object code with an external symbol func1 calling a subroutine named func2 .
You must be aware of this when you compile Fortran code which is to be linked with C functions.
There are two ways of dealing with this.

First, you can call this subroutine from C by calling it with the correct name:

int i1;
extern void func1 (int *i);
/* call it */
func1 (&i1);

So far so good. The problem arises when you want to call C from the Fortran function, since
the Fortran function will expect to link against a function with a trailing underscore. If the C
function is written by you, then you could provide this, but if it is a library routine, you will have
to tell the compiler not to add the underscore to the external name when it generates object
code. For Sun’s f77 compiler, you do this with the compiler option -ext names=plain, for the
GNU g77 compiler it is with the -fno-underscoring option, and for f77 on the Alpha, it is
-assume nounderscore [RW]. Note that this will apply to all function names in that module.
Sun’s compiler also allows you to declare that a function is in a C module, using a pragma, but
this is obviously non-portable, and so is not recommended. On this subject, [RW] points out
that to get access to main() via f77 on decs, you need to set -nofor main at link time.

You should, in general, use the Fortran compiler to link the object files into an executable. This
calls the linker with all the correct Fortran libraries. It is of course possible to do the same with
the C compiler, but requires a much more elaborate call.

2.5.5 Compilers, and other stray remarks on code

Using Fortran’s implicit none keyword is a Good Idea. The tiny amount of typing time you
save by relying on Fortran’s automatic declaration of variables, is more than likely wiped out by
the debugging time spent clearing up silly problems implicit none would have avoided from
the beginning.

Similarly, in C, use ANSI-C rather than older ‘K&R’ C, and use prototypes religiously. That is,
if you have a module myfuncs.c, then create a header file myfuncs.h containing the prototypes
of the functions within it, and include it (#include "myfuncs.h") both in any modules which
use those functions and inside myfuncs.c as well. That way, if you change the interface to
any functions in that module, the compiler will prompt you to change the calls to that func-
tion everywhere that it is used. This way, the compiler can help you avoid a whole class of
embarrassingly silly problems.

Make your code portable. Unless you are specifically targetting your code at a particular (su-
percomputer) processor, or magic parallelizing compiler, you will save yourself time in the long
run by not making assumptions about the machine or compiler environment. Especially given
the imminent arrival of 64-bit machines, you are probably not doing yourself any favours by, for
example, assuming that integers are four bytes. Probably more pertinently, exploiting compiler-
specific features might prevent you running your code on some new faster architecture. If you
do decide to use some non-portable features, you can make the future porting effort easier by
having second or third thoughts about precisely how to use them, and by isolating them into a
few subroutines, rather than scattering them throughout your code. It follows that....
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Compiler Warnings Are Your Friend. Try compiling your codes with compiler warnings switched
on (with the option -Wall on GNU compilers, +w2 on Sun Workshop compilers, and -w0 on
Compaqs). You might be surprised at the number of peculiarities and non-standard features
this exposes, each of which is a potential portability problem for the future. Don’t treat compiler
warnings as irrelvant nagging -- each of them is, to some extent, an error you have made, which
has the possibility of turning round and biting you later. I would particularly advise this if
you develop using GNU compilers, as these seem particularly liberal about standards: gcc in
particular seems happy to take any old nonsense, say ‘I know what you mean’, and produce code
from it -- in my experience it usually guesses my intentions correctly, but I don’t want to rely on
it. You can also adjust the strictness of the C compiler’s conformance to the ANSI-C standard by
using compiler options (Sun: -Xa and -Xc; DEC: -std1; GNU: -ansi and -pedantic). Having
said all this, I don’t want to overstate the importance of compiler warnings: the main plank of
this advice is to spend time now to save time and aggravation later, but this tradeoff is unlikely
to be in your favour if you spend time removing every last anomaly from your code.

2.6 Link farms

At the end of each section of this cookbook, I’ll include a collection of web-based resources you
can use to search for further information. These will typically be either FAQs (lists of ‘frequently
asked questions’) or ‘link farms’ (thematic collections of links with little further detail).

2.6.1 Unix documentation and standards

• ‘POSIX32 is the term for a suite of applications program interface standards to provide for
the portability of source code applications where operating systems services are required.
POSIX is based on the UNIX (Registered trademark administrated by the Open Group)
Operating System, and is the basis for the Single UNIX Specification from The Open
Group.’ [IEEE PASC (Portable Application Standards Committee)]

• This is currently (2001-06-20) undergoing revision by the Austin Group33

• The POSIX standard is

1. ‘IEEE Std 1003.1 Standard for Information technology -- Portable Operating Systems
Interface (POSIX) -- Part 1: System Interface [C language binding]’, which is iden-
tical to ‘ISO/IEC JTC1 IS 9945-1 Standard for Information technology -- Portable
Operating Systems Interface (POSIX) -- Part 1: System Interface [C language bind-
ing]’

2. ‘IEEE Std 1003.2 Standard for Information technology -- Portable Operating Systems
Interface (POSIX) -- Part 2: Shell & Utilities’, which is identical to ‘ISO/IEC JTC1 IS
9945-2 Standard for Information technology -- Portable Operating Systems Interface
(POSIX) -- Part 2: Shell & Utilities’.

...and these cost money (lots34) to buy on paper.

32http://www.pasc.org/abstracts/posix.htm
33http://www.opengroup.org/austin
34http://standards.ieee.org/catalog/olis/licenses/licenses.html
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• Single Unix specification35, from the Open Group (other publications36). My understand-
ing from the PASC document above is that Single Unix is broader than POSIX, and covers
more of the environment (bit vague, here). It feeds into the POSIX/ISO standardisation
process, but is not a formal standard itself. Single Unix does, however, have the great
advantage of being available online.

• The link with The Unix System37 is, I fear, rather obscure to me, but it appears that the
latter is the public face of the Open Group’s labours.

<http://www.geek-girl.com/unix.html>: The ‘Unix Reference Desk’. This is a very useful col-
lection of pointers to unix documentation.

<http://www.faqs.org/faqs/unix-faq/faq/>: the General Unix FAQ, full of arcana. This is
one of several FAQs which cover Unix and related issues; for some others, look at <http://

www.faqs.org/faqs/by-newsgroup/comp/comp.unix.questions.html>

<http://uk.yahoo.com/Computers and Internet/Software/Text Editors/vi/>: Collection of links
to vi documentation at Yahoo.

35http://www.opengroup.org/onlinepubs/007908799/
36http://www.opengroup.org/publications/catalog/web.htm
37http://www.UNIX-systems.org/
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3 Theory support

3.1 Computer algebra

Starlink provides access to computer algebra by supporting the Maple package. You might
have access to Maple on your own Starlink node, but if not, you may use it on the machine
star.rl.ac.uk, if you have an account there. If you are a Starlink user, you should apply for
an account by mailing star@star.rl.ac.uk.

Maple allows you to enter mathematical expressions using a fairly natural syntax, substitute
into them, simplify them, differentiate and (with limits) integrate them, and finally go on to
graph them. As an added bonus, you can also produce output in C, Fortran and LaTeX.

For example, consider the following example.

star:nxg> maple
|\^/| Maple V Release 4 (Rutherford Appleton Laboratory)

. |\| |/| . Copyright (c) 1981-1996 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
< > Waterloo Maple Inc.

| Type ? for help.
> gi := amp * exp(-(xparam^2/sa^2)/2);

2
xparam

gi := amp exp(- 1/2 -------)
2

sa

We start up Maple, and enter an expression for a gaussian. Maple makes an attempt to display
the result intelligibly. If we had ended the expression with a colon rather than a semicolon,
Maple would have suppressed the display. Note that undefined variables represent themselves,
and that Maple knows that exp is the exponential function, so that it knows, for example, how
to differentiate it.

Now define the variable xparam, and redisplay gi.

> xparam:= cos(theta)*(xc-x0);
xparam := cos(theta) (xc - x0)

> gi;
2 2

cos(theta) (xc - x0)
amp exp(- 1/2 ----------------------)

2
sa

Then differentiate the gaussian, and assign the result to gid. The result is something you’re
happy not to have had to work out yourself.
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> gid := diff (gi, theta);
2 2

2 cos(theta) (xc - x0)
amp cos(theta) (xc - x0) sin(theta) exp(- 1/2 ----------------------)

2
sa

gid := ----------------------------------------------------------------------
2

sa

If that the purpose of this was to do a calculation somewhere, you might want to code this
expression in Fortran. Doing this by hand would be error-prone, but Maple can produce output
in Fortran as well as this ‘prettyprinted’ style.

> fortran (gid,optimized);
t1 = cos(theta)
t4 = (xc-x0)**2
t6 = sa**2
t7 = 1/t6
t10 = t1**2
t15 = amp*t1*t4*t7*sin(theta)*exp(-t10*t4*t7/2)

The optimized argument tells Maple to try to produce Fortran code without repeated subexpres-
sions. You can save this to a file with the expression fortran (gid, filename=‘gaussian.f‘,
optimized); You can produce output in C as well, though because the identifierC is potentially
such a common one, you must explicity load the C library first.

> readlib(C):
> C([gf=gid],optimized);

t1 = cos(theta);
t4 = pow(xc-x0,2.0);
t6 = sa*sa;
t7 = 1/t6;
t10 = t1*t1;
gf = amp*t1*t4*t7*sin(theta)*exp(-t10*t4*t7/2);

There are two things to note here. The first is that we have renamed the expression gid on
the fly. The second is that the expression for t4 is not the most efficient -- it is very bad to
use the pow() function for raising expressions to small integer powers: much better would be
t4a=xc-x0; t4=t4a*t4a;, as has happened automatically for t10.

You can also produce results in LaTeX

> latex(gid);
{\it amp}\,\cos(\theta)\left ({\it xc}-{\it x0}\right )^{2}\sin(\theta
){e^{-1/2\,{\frac {\left (\cos(\theta)\right )^{2}\left ({\it xc}-{
\it x0}\right )^{2}}{{{\it sa}}^{2}}}}}{{\it sa}}^{-2}
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Maple has done the correct thing with the cosine and sine functions, and with the θ variable,
and it has got all the braces matching correctly, but it has expressed the exponential as a
simple e-to-the-power which will look rather ugly (as well, the exponential should be written
with \mathrm{e}).

Leave Maple by giving the command quit.

SUN/107 provides an introduction to Maple, and SGP/47 is a comparison of Maple and Math-
ematica. Also, the Maple manual and tutorial are very clear. There is help within Maple (type
?intro), and this gives enough information to get you going. Maple’s web pages are at <http:/

/www.maplesoft.com/>, but they don’t currently (December 1998) give a lot of tutorial help. See
also the example Maple program in Appendix A.7.

There’s also a GUI for maple, which you can invoke with xmaple.

As a final point, don’t fall into the common trap of thinking that because you’ve produced your
result using computer algebra, it must be right. This is as false of computer algebra as it is of
numerical programming -- be inventive in thinking of cross-checks.

3.2 Data visualisation

Starlink supports two data visualisation packages, IDL and DX, but for relatively simple graph-
ing of simple results, gnuplot will probably produce acceptable results in rather less time.

The package SM, which is a descendent of Mongo, has numerous adherents, but I don’t propose
to discuss it, partly because I’ve never used it, partly because it’s not part of Starlink’s base set
and so is not available at all sites, but mostly because if gnuplot runs out of steam, you might
as well go straight to IDL, which is easily available through Starlink.

SG/8, An Introduction to Visualisation Software for Astronomy, is an overview of visualisation
systems, which mentions both IDL and DX.

3.2.1 gnuplot

Gnuplot is valuable because it’s so simple -- easy things can be done easily. If you want to graph
an equation or plot some data, and produce postscript output, then you’ll probably do it faster,
from a standing start, than someone using one of the beefier packages. Its weaknesses are that
it can’t easily do very complicated or fancy visualisations (that is, it doesn’t try to take over the
world), and it deals naturally only with ASCII data in columns. It is scriptable, but I wouldn’t
fancy programming anything complicated with it.

Start it up with the simple command gnuplot. Once it’s started, you can give it commands as
simple as

gnuplot> plot sin(x)

to produce a plot of the sine function with default ranges, or you can give it a range and specify
a line type as follows

gnuplot> plot [x=0:3.14] sin(x)*cos(x**2)**2 with impulses
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Gnuplot can also graph data files. The example file gausssine.dat consists of two columns of
64× 64 values. It can be plotted in gnuplot with the commands:

gnuplot> set output ’gausssine-gnuplot.eps’
gnuplot> set terminal postscript eps
Terminal type set to ’postscript’
Options are ’eps monochrome dashed "Helvetica" 14’
gnuplot> splot ’gausssine.dat’ using 1 with lines
gnuplot> set terminal x11 # set the terminal type back to the (default) X
gnuplot> set output # close the output file

This produces the EPS file shown in Figure 1. The file has a blank line after each block of
64 numbers. Gnuplot interprets this as a signal that this is the end of a ‘row’ of a matrix (a
standard gnuplot gotcha is that is must be a completely blank line, with no whitespace). You can
plot the surface represented by the second column, with the clause using 2 to splot. Gnuplot
can read more generally formatted data, but that’s already stepping towards advanced usage.

Figure 1: File gausssine.dat, displayed with gnuplot

There is good help within gnuplot, available by typing help.

3.2.2 IDL

IDL is much more powerful and flexible than gnuplot, and has a correspondingly longer learning
curve. It’s never been accused of being elegant, but with only a bit of headbanging, I’ve always
managed to get it to do what I wanted (I’ve always seen it as reminiscent of Fortran in this
respect).

Several missions have used IDL as the language in which they have written their data-analysis
software, and Starlink is currently experimenting with providing IDL interfaces to important
Starlink applications, which is possible because IDL can link to codes written in languages such
as Fortran or C. IDL is moving towards being a core facility at Starlink sites.

IDL displays data in arrays as part of a generic set of array manipulations. For example, the
data in the file gausssine.dat was produced by the following sequence of IDL commands:

x=(findgen(64)-32)^2
d=fltarr(64,64)
for i=0,63 do d(i,*)=sqrt(x+(i-32)^2)
a3=exp(-(d/15)^2)
s=sin(findgen(64)/63*5*3.141592657)
s2=s#s
m=s2*a3

The function findgen(N) returns a float array (indexed from 0 to N − 1) in which the value of
each element is the same as its index; performing an arithmetic operation such as subtraction or
exponentiation on an array performs it on each element of the array; fltarr declares an array
of floats of the specified dimensions; the array reference d(i,*) refers to the entire i’th row of
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d; the operator # forms the direct product of the two vectors. The result of this is to set d to
be an array where each element is the euclidean distance from element (32,32)38.

Once we have the data in the array m, we can produce a surface plot with surface,m, and then
go on to annotate it, rotate it, shade it, contour it, with the large collection of options and
parameters to the surface command. We can produce PostScript output with the following
sequence of commands:

!p.font=0 ; use postscript fonts rather than IDL outlines
set plot, ’ps’ ; use the postscript output driver
device, /encap, filename=’gausssine-idl.eps’

; produce encapsulated postscript
surface, m
device, /close ; close the file

This produces the EPS file shown in Figure 2. A minor, but persistent, irritation with IDL is
that, although its input and output facilities are as flexible as, say, Fortran’s (which they closely
resemble), it doesn’t come with a function for dealing with the common case of data printed
out in columns (the only case gnuplot naturally deals with). Fortunately, such a function is not
only easy to write, but a useful example, too. See Appendix A.8.

Figure 2: File gausssine.dat, displayed with IDL

IDL comes with rather good manuals, the reference parts of which are available on-line by typing
? at the IDL prompt.

See appendix B of SUN/55 for a description of how to import data in the Starlink NDF format
into IDL.

3.2.3 DX

IBM’s Data Explorer is also available on some Starlink machines. I don’t have personal experi-
ence of it, but there is a Starlink manual for it in SUN/203, SX and DX -- IBM data explorer
for data visualisation and a Starlink DX cookbook in SC/2.

In his overview of visualisation systems in SG/8, Clive Davenhall says of DX:

IBM Data Explorer (DX) is a general-purpose software package for data visuali-
sation and analysis. It employs a data-flow driven client-server execution model
and provides a comprehensive range of data manipulation, visualisation and display
functions. Visualisations can be generated using a visual programming editor or
a text-based scripting language. DX is the visualisation package recommended by
Starlink, particularly for three-dimensional scalar and vector data. Starlink has pro-
duced a set of enhancements to DX. If you are using DX at a Starlink site then these
enhancements should be available automatically. The use of DX at Starlink sites and
the Starlink enhancements to DX are documented in SUN/203.

38IDL experts will know that the common IDL idiom for this is d=shift(dist(64),32,32), but have you ever
actually compared dist with its documentation? The documentation for dist suggests that this idiom wouldn’t
work, but the function’s actual behaviour seems to (substantially) depart from the claimed behaviour in exactly
the right way.
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3.2.4 PGPLOT

The above recommendations describe standalone packages which work on data produced by your
code in a separate step. An alternative route is to incorporate the plotting facilities within your
program, and the recommended way of doing this is by using the PGPLOT library.

The library, which was written to support astronomical applications, consists of a collection of
high-level routines for producing plots, maps and images either on-screen or as Postscript to a
file. Refer to SUN/15, PGPLOT --- Graphics Subroutine Library for further details, or to the
PGPLOT home page at <<>>.

Note that there are two versions of PGPLOT currently available on Starlink, ‘native’ PGPLOT,
and a Starlink version which uses GKS. The latter is being deprecated, with a view to being
ultimately phased out, and this will affect how you link your program against the library. At
the time of writing (December 1998), the way in which the dual versions will be supported has
not been finalised; ask your system manager for advice.

3.3 Producing images

If you wish to include images in your LaTeX output, do so using the standard graphics package.
That is, include in your file the command \usepackage{graphics} (if you’re obliged to use the
old LaTeX2.09, you can use the epsf option to the document style). Include the graphics with
the command \starincludegraphics{file.eps}. So how do you produce the postscript?

An important point is that the postscript should be encapsulated postscript. This is postscript
intended to be incorporated within another document: it has a BoundingBox comment at the
top of the file, and typically has the extension .eps.

See Section 3.2 for details of how to produce EPS plots from gnuplot and IDL.

If it’s diagrams you want to produce, then xfig has its adherents. There’s a large manual page
for xfig, but you can do pretty well just starting it up, and pointing and clicking.

If point and click isn’t your style, try MetaPost39. This is a variant of Knuth’s MetaFont
(which is used for designing TeX fonts), which produces postscript instead. To produce a
document using MetaPost, you produce a text file specifying the objects you want to draw
and their spatial relationships. It can be hard work, but the results can look very good. If
you wished to automate producing diagrams, perhaps because you want to produce a set of
diagrams which are systematically different, then MetaPost could very well help you with this.
See .../texmf/doc/metapost under the (Starlink) TeX tree for further details.

39http://cm.bell-labs.com/who/hobby/MetaPost.html
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4 Astrophysical and other libraries

4.1 Astrophysical modelling codes

This section aims to be no more than a set of pointers to more complete information and
resources. I’m no expert in this field, myself, so if I’ve missed some important resource, or
miscontextualised something, please do let me know.

Stellar atmosphere codes:

• CCP740 was a Collaborative Computational Project41, ‘concerned with the calculation of
theoretical models suitable for the interpretation of stellar and interstellar spectra’. As
well as promoting the use of advanced computers in astronomy, it developed a library of
stellar-atmosphere and spectroscopy codes. The project finished in April 2001, but the
resources it produced are still useful.

• Simon Jeffery42 makes available a number of tools for stellar atmosphere calculations.

• At Robert Kurucz’s home page43 you can obtain copies of his ATLAS and other codes,
along with grids of model atmospheres.

• PHOENIX44: state-of-the-art M-star model atmospheres.

Atomic and molecular data:

• The Opacity Project45 is a collaborative project to produce the atomic data required
for stellar envelope calculations. The project makes the results generally available both
through a database called ‘TOPbase’, and by anonymous FTP.

• Other opacity data is available from the OPAL code46. As well as making precalculated
opacity tables available, you can make requests for new tables to be generated.

• Atomic data at Kentucky47 and Harvard48

• JPL Molecular Spectroscopy49

• The Vienna Atomic Line Database (VALD)50 is an excellent site with up-to-date atomic
data needed for spectrum synthesis.

Astronomical chemistry (loosely) -- dust, clouds and the interstellar medium:

40http://ccp7.dur.ac.uk/
41http://www.dci.clrc.ac.uk/ListActivities.asp?Class=5;Classtype=21;
42http://star.arm.ac.uk/~csj/
43http://kurucz.harvard.edu/
44http://phoenix.physast.uga.edu/
45http://vizier.u-strasbg.fr/OP.html
46http://www-phys.llnl.gov/V Div/OPAL/
47http://www.pa.uky.edu/~verner/atom.html
48http://cfa-www.harvard.edu/amdata/ampdata/amdata.html
49http://spec.jpl.nasa.gov/
50http://www.astro.univie.ac.at/~vald/
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• Cloudy51 is a arge-scale plasma simulation code that is widely used across the astronomical
community as an aid in the interpretation of spectroscopic data.

• DUSTY52 is a dust-shell modelling code, also originating at Kentucky.

A number of CFD codes53 are available to buy or download. This is a collection of pointers and
notes about a large number of CFD codes, from a variety of sources.

Thanks to [SJ], [BS] and [AS] for much of the content of this section.

4.2 General-purpose and numerical libraries

There are numerous software libraries available. Many of these are free, many are public domain.
The difference between the two is that ‘public-domain software’ is in some sense ‘ownerless’: it’s
yours to play with, or modify, or exploit, as you wish, with only good manners requiring you to
acknowledge the source (this is not an authoritative statement of copyright law, by the way...).
‘Free’ software, on the other hand, is still copyrighted, but you may have a free licence to use it for
certain purposes. One of the best known of these licences is the GNU General Public Licence54,
which gives you very good access to the code, limited only by the requirement that programs
produced using GPL’d code are themselves made as freely availale. Other licences might make
the code available to academic users only, or only for non-commercial use. The GNU project
have a useful collection of free and not-so-free licences55, which is useful even though they are
sometimes a little fervent about the issues. The type of licence makes a difference if you plan to
redistribute your code. See also the observations about libraries, and thoughtless use of them,
in Section 2.3.

Probably the most commonly used numerical library is the NAG library56. This is a long-
established, and very highly thought-of, library, which contains codes to deal with a broad range
of numerical problems. The routines tend to come in several versions, typically a highly general,
and highly configurable, one, accompanied by easy-to-use drivers. The NAG library is expensive,
but Starlink’s size allows it to negotiate with NAG to provide the library at all Starlink sites.
The routines are generally in Fortran, but C versions of some of them are becoming available.

The PDA library is a collection of public-domain and free routines, assembled by Starlink, and
intended to replace the NAG library in Starlink application code. The collection was assembled
using GAMS, with routines drawn from FFTPACK, SLATEC, NMS, OPT, plus other isolated
sources. If you need to use one of the available algorithms, then the advantage of using the
library version is that the (possibly non-trivial) work of building it for your architecture has
already been done, leaving you able to simply link against the library. The collection is fully
documented in SUN/194.

The remaining libraries are typically free.

In your search for codes, you would do well to start at GAMS57: Guide to Available Mathematical
Software. This describes itself as ‘A cross-index and virtual repository of mathematical and

51http://www.pa.uky.edu/~gary/cloudy/
52http://www.pa.uky.edu/~moshe/dusty/
53http://www.fges.demon.co.uk/cfd/CFD codes.html
54http://www.gnu.org/copyleft/gpl.html
55http://www.gnu.org/licenses/license-list.html
56http://www.nag.co.uk
57http://gams.nist.gov
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statistical software components of use in computational science and engineering’. You can either
search for the code you need by keyword, or work through their classification of problems (a
classification which is occasionally used more widely) to find references. They point to both free
and commercial software.

The first collection to be aware of is Netlib. The archive is based at <http://www.netlib.org>,
but there are UK mirrors58 Although there are some facilities which are primarily available at
Netlib, it also mirrors several other archives.

NHSE59, the (US) National High-Performance Software Exchange, is ‘a distributed collection
of software, documents, data, and information of interest to the high performance and parallel
computing community’. NHSE is part of Netlib, and incorporates software repositories HPC-
netlib60 for high-performance software, PTlib61 for parallel tools, and CSIR62 for chemistry
software.

The CERN program library63 includes CERNLIB64, which consists of a number of component
libraries65. This is a long-standing and well-known library of general-purpose Fortran (typically)
numerical routines with, obviously, some bias towards particle physics. The service is free to all
HEP users, and to physics departments in CERN member states, with separate non-commercial
and commercial rates available. There is a FAQ66.

JPL has a Computational Mathematics Library67. These appear to be free, but no longer
formally supported by JPL.

The ACM Transactions on Mathematical Software68 (TOMS) is a journal produced by the ACM.
The software discussed in there is available at GAMS, and mirrored at HENSA69.

The Scientific Computing Division70 of the (US) National Center for Atmospheric Research71,
has an overview of mathematical and statistical packages72. Not all the packages reviewed there
are freely available, but the discussions are useful.

PORT73 is a collection of general maths subroutines. Its description of itself is on the front
page: ‘The PORT Mathematical Subroutine Library (third edition) is a collection of Fortran
77 routines that address many traditional areas of mathematical software, including approxima-
tion, ordinary and partial differential equations, linear algebra and eigensystems, optimization,
quadrature, root finding, special functions, and Fourier transforms, but excluding statistical
calculations. PORT stands for Portable, Outstanding, Reliable, and Tested.’ Some routines
are public-domain when, for example, they are developments of public routines, others have a
non-commercial-use licence condition.

58http://www.netlib.org/bib/mirrors.html
59http://www.nhse.org/
60http://www.nhse.org/hpc-netlib/
61http://www.nhse.org/ptlib/
62http://www.csir.org/
63http://wwwinfo.cern.ch/asd/index.html
64http://wwwinfo.cern.ch/asd/cernlib/overview.html
65http://wwwinfo.cern.ch/asd/cernlib/libraries.html
66http://wwwinfo.cern.ch/asdcgi/listcernlibfaqs.pl
67http://math.jpl.nasa.gov/
68http://math.nist.gov/toms/Overview.html
69http://www.hensa.ac.uk/netlib/toms/
70http://www.scd.ucar.edu/
71http://www.ncar.ucar.edu/
72http://www.scd.ucar.edu/softlib/mathlib.html
73http://www.bell-labs.com/project/PORT/
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Slatec74 is ‘a comprehensive software library containing over 1400 general purpose mathematical
and statistical routines written in Fortran 77.’

Specifically concerned with minimisation, minpack75 (or at netlib76), is a library for solving
linear and nonlinear minimisation problems. It has documentation within the source code.

4.2.1 Reading and writing data

The codes you write do not exist in isolation, and at some point you will have to read data from,
or write it to, files. You might, therefore, need to read or write one of a number of standard data
formats. Clive Davenhall wrote an article on this in the September 1998 issue of the Starlink
Bulletin77. This covered reading and writing using the IMG library (SUN/160), using NDF files
and the HDS files they are a special case of (SUN/33 and SUN/92 respectively), and reading
and writing FITS files (SUN/136).

You can convert between different data formats using the CONVERT package, documented in
SUN/55. CONVERT is extremely easy to use, and converting a FITS file, say, to an NDF is as
easy as

fits2ndf myfile.fits myfile

If you have to read or write FITS files, then visit the FITS home page78 for the FITS users guide
and the cfitsio79 library. Although FITS files have a very simple format, there are enough
ways of getting things wrong that you will, as usual, save yourself time in the long run by taking
the trouble to use the cfitsio library. It’s easier than you might think: the Quick Start Guide
contains most of what you’ll ever need to know. Note that, although the library is called cfitsio,
it’s designed to be used with Fortran as well, and the programmer’s reference guide comes in
two flavours.

Once the data is there, you will need to visualise it. See Section 3.3 for some pointers to suitable
software.

4.3 Link farms

<http://cdsweb.u-strasbg.fr/astroweb.html>: AstroWeb is one of the most useful link collec-
tion, because it has been developed by the astronomy community.

<http://math.nist.gov/toms/Resources.html>: The TOMS list of web resources for mathemat-
ical software is a collection of pointers maths software on the web.

Yahoo has managed to assemble a respectable collection of pointers to Scientific software at
<http://uk.yahoo.com/Computers and Internet/Software/Scientific/>, as well as more specific
pointers to maths (<http://uk.yahoo.com/Science/Mathematics/Software/>), physics (<http://
uk.yahoo.com/Science/Physics/Software/>) and astronomy (<http://uk.yahoo.com/Computers and Internet

/Software/Scientific/Astronomy/>) resources.
74http://www.hensa.ac.uk/netlib/slatec/index.html
75http://www.hensa.ac.uk/netlib/minpack/
76http://www.netlib.org/minpack/
77http://star-www.rl.ac.uk/bulletin/98sep/node12.html
78http://fits.gsfc.nasa.gov/
79http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
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5 Paper production

5.1 TeX and LaTeX

Starlink supports LaTeX and TeX users by maintaining and packaging for release a TeX dis-
tribution. This is typically based on one of the standard TeX distributions, plus an effort to
ensure that the distribution includes packages of interest to astronomers, particularly some of
the relevant journal style files. See the Starlink LaTeX page80 for details.

LaTeX81 is nominally (though not actually) re-released every six months, in June and December,
with each release incorporating bugfixes, but no significant development. New features are being
incorporated into LaTeX3, which is a major upgrade, still being developed. Versions more than
a year old (that is, more than two releases ago) are formally ‘obsolete’, and bug reports won’t
be accepted for them.

The current version of LaTeX is also known as LaTeX2e, to distinguish it from the by now
completely obsolete LaTeX2.09, which is the version of LaTeX described in the first edition of
Lamport’s book. LaTeX2e has significant internal differences from LaTeX2.09, but was intended
to appear much the same to the user. The most prominent difference is that LaTeX2e files start
with the declaration \documentclass[options]{classname}, and invoke further packages using
\usepackage{packagename}, whilst LaTeX2.09 files start \documentstyle[options]{stylename},
with the options list being a mixture of style file options and package names. LaTeX2e will at-
tempt to go into a ‘compatibility mode’ if it sees a file start with \documentstyle, but this isn’t
terribly reliable, and you certainly shouldn’t create new files like this, unless some primitive
publisher (which used to include MNRAS until rather recently) absolutely insists on it.

Other LaTeX resources you might want to examine are the UK TeX FAQ82 (this is very good),
CERN’s TeXpages83, and the catalogue84 at CTAN85 (the ‘Comprehensive TeX Archive Net-
work’, hosted on three peer machines in the UK, Germany and the US, and mirrored worldwide;
all TeX is there).

All this, of course, assumes that you’re already a LaTeX user. If you’re just starting with LaTeX,
then the canonical place to start is with Leslie Lamport’s LaTeX: a Document Preparation
System, 2nd edition [lamport]. I think this is a good introduction, because it concentrates on
the basics, and leaves the elaborate details to others. The bulk of the book is an accessible
introduction to LaTeX (and note that you really ought to avoid asking LaTeX questions until
you’ve read chapter 2); appendix C is a reference manual.

If it’s the elaborate details you want, then you’ll need to supplement Lamport. Victor Eijkhout’s
TeX by Topic86 is well spoken-of, though I haven’t examined it myself (the book is now out of
print, but the author has made it available for free, for a donation). Two other good books to
examine are A Guide to LaTeX [kopka], and LaTeX Line by Line [diller]. Both are substantially
more advanced than Lamport, and cover a lot of material densely but reasonably clearly. If
forced to choose, I would go for Kopka and Daly over Diller, partly because they have produced

80http://star-www.rl.ac.uk/%7eacc/tex/tex.html
81http://www.latex-project.org/
82http://www.tex.ac.uk/faq
83http://wwwinfo.cern.ch/asdoc/textproc.html
84http://www.tex.ac.uk/tex-archive/help/Catalogue/catalogue.html
85http://www.tex.ac.uk
86http://www.eijkhout.net/tbt/
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a second edition covering LaTeX2e, but also because Diller seems to try to pack in too much,
including some material (such as the intricacies of maths typesetting) which, if you’re going to
learn, you should probably learn from Knuth’s TeXbook. Having said that, the advantage is a
narrow one, and you’d be well-advised to choose based on whose writing style you prefer, and
which one happens to be in the bookshop on the right day87. Both of the last two should be
kept away from anyone not already convinced of LaTeX’s virtues, since they both make LaTeX
seem much more forbidding than it actually is. Finally, Goossens, Mittelback and Samarin’s
The LaTeX Companion [goossens] is useful, but intended as a reference, not as an introduction.
For other print books, and details of these ones, see the TeX FAQ’s bibliography at <http:/

/www.tex.ac.uk/cgi-bin/texfaq2html?label=books>, and Adam Lewenberg’s collection of TeX
and LaTeX print resources88.

There are a number of online tutorials89. Both the ‘Gentle Introduction90’ and the ‘Not so Short
Introduction91’ are available at CTAN. Peter Flynn’s ‘Beginner’s LaTeX92’ is well written and
informative, and spends a good deal more time on the preliminary technicalities than others;
but -- since it grew out of a two-day introduction to LaTeX aimed primarily at humanities users
-- it does not cover maths.

If you prefer learning by example, take a look at the standard sample files, small2e.tex and
sample2e.tex. These will be somewhere in your LaTeX distribution, typically with a path
ending in .../tex/latex/base/small2e.tex (try echo $TEXINPUTS or kpsepath tex to help
locate the TeX distribution on your local machine).

The book on TeX is Knuth’s original, The TeXbook [knuth]. As well as describing the underlying
TeX engine, this also describes Knuth’s very basic macro package, plain. You need the TeXbook
if you’re writing a LaTeX macro package, if you demand complete control over positioning (tricky
in TeX, but an out-and-out hassle in LaTeX), or if you just don’t like the way LaTeX lays things
out and want to do it all yourself. If you don’t fall into any of those categories, plain TeX is
probably not where to start (and I speak as a lapsed TeXie who has spluttered furiously at Leslie
Lamport’s failure to impose a satisfactorily rigourous line on even such fundamental doctrinal
matters as how the word ‘LaTeX’ is to be pronounced).

You should be aware of pdflatex, which is a version of TeX which produces PDF files directly
rather than DVI files (though note that versions before 1.0-prerelease produce bad PDF
which breaks Windows Acroread 5 at least).

Starlink has produced several documents concerned with LaTeX. The LaTeX user’s guide,
SUN/9, concentrates on the practical details of LaTeXing your document and ultimately trans-
forming it into PostScript. You should also refer to SC/9, the LaTeX cookbook. However,
SGP/28, How to write good documents for Starlink, SUN/199, Star2HTML and SGP/50, Star-
link Document Styles are primarily intended for those writing Starlink documentation.

87It’s unfortunate that neither book is much of an advert for TeX’s potentially beautiful typesetting -- both
seem to be produced using a practically unmodified LaTeX book style.

88http://www.macrotex.net/texbooks/
89http://www.tex.ac.uk/cgi-bin/texfaq2html?label=tutorials
90http://www.tex.ac.uk/tex-archive/info/gentle/
91http://www.tex.ac.uk/tex-archive/info/lshort/english/
92http://www.silmaril.ie/downloads/documents/beginlatex.pdf
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5.2 The LANL archive

The LANL preprint archive is based, in the UK, at <http://xxx.soton.ac.uk> which is a mirror
of the master archive93 at LANL. The archive is easy to use as a reader but not, unfortunately,
transparently easy to use as an author (not helped by the rather snide error messages that come
back if you slip up...).

The full instructions94 are comprehensive, but boil down to the following:

• The first time you submit anything to the archive, you need to register as an author. That
registers your email address with them and sets a few preferences (such as the default
archive you’ll submit to).

• Bundle up the LaTeX source for your paper in a .tar.gz archive. The automatic-
processing software at LANL seems to LaTeX every .tex file in sight, so if your submission
isn’t in the canonical format of one TeX file plus a bunch of PostScript figures, you’d prob-
ably best read the instructions one more time. It follows from this that it doesn’t matter
what you call your TeX file: the processing software will still TeX it.

LANL has copies of journal styles such as the A&A one -- when they process your paper
it’ll be formatted according to that style file. They suggest that the PostScript figures in
the article be numbered something like figure1.ps, figure2.ps, so that they alphabetise
correctly. See Considerations for TeX submissions95 for the gory details.

• Read the uploads help again, particularly the information on the information fields you’ll
have to fill in, then go to the uploads page at <http://xxx.lanl.gov/uploads>.

• The uploads page gives you a form to type in the various details of author and title and the
like, and to type in the abstract. You give the name of your tar file, press the button and
wait. After a pause you can check if the automatic processing succeeded. At this stage,
you’ll be given a password for this paper. This allows you and your co-authors to retrieve
the paper before it’s put in the public archive, and will be needed to make alterations, or
update the journal publication details, in future.

• Now, you need a drink.

93http://xxx.lanl.gov
94http://xxx.soton.ac.uk/help/
95http://xxx.soton.ac.uk/help/submit tex



44 SC/13.2

6 General astronomical and astrophysical resources

The Astrophysics Data System96 (ADS) is a NASA project, providing an abstract service, along
with a subsidiary data service. Further to this, SUN/174, An Astronomer’s Guide to On-line
Bibliographic Databases and Information Services, describes bibliographic and other resources
of interest to astronomers.

6.1 Observations

SIMBAD97 is a ‘Set of Identifications, Measurements and Bibliography for Astronomical Data’.
It’s a large database (5,416,970 objects in November 1998) of astronomical objects, which you
can search by identifier, coordinates, or other sampling criteria. As well as basic data for the
objects, it includes some observational data from, and journal references to, the object. You
have to register before you can use it; it’s not free, but if you’re in the US or in an ESO or ESA
member state, the costs are covered for you. Also at CDS is the CDS catalogue service98, which
allows you to search a list of almost 3000 catalogues, plus the contents of tables published in
A&A.

If you’re using such catalogues, you might want to take a look at CAT, the Starlink Catalogue
and table manipulation library, documented in SUN/181. This is a subroutine library for manip-
ulating astronomical catalogues and similar tabular datasets. See also SUN/127, The EXOSAT
Database System, and more generally SUN/162, A Guide to Astronomical Catalogues, Databases
and Archives available through Starlink.

96http://cdsads.u-strasbg.fr/
97http://simbad.u-strasbg.fr/Simbad
98http://cdsweb.u-strasbg.fr/Cats.html
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A Example programs

This section contains several example programs. These are also distributed with the source of
this document. Look in </star/examples/sc13*>. The examples are available for download from
<http://www.astro.gla.ac.uk/users/norman/star/sc13/sc13-examples.tar.gz>.

A.1 islittlendian.c

If you want to find out, possibly as part of a script, whether a particular platform is big- or
little-endian, the information will probably be squirrelled away somewhere in the headers for the
compiler you’re using, unfortunately not in any standard way. However, a portable way of doing
this (which incidentally illustrates the contrast between the two systems) is to use this little
program. It isn’t bullet-proof, but if it fails, this is probably the least of your cross-platform
problems. You can use the program as follows:

% echo ’#define BIGENDIAN’ \
‘if ./islittleendian; then echo 0; else echo 1; fi‘ >bytesex.h

to create a file bytesex.h with either #define BIGENDIAN 1 or #define BIGENDIAN 0 in it.

main () {
/* Are we little or big endian? Originally from Harbison and Steele. */
union
{

long l;
char c[sizeof(long)];

} u;
u.l = 1;
exit (u.c[sizeof(long)-1] == 1);
/* Return 0 (success) if we’re little-endian, or 1 (fail) if big-endian */

}

A.2 fpp.c

The first fpp.c, allows you to explore the representation of floating-point numbers on your
machine. Note that machines may have either ‘big-endian’ or ‘little-endian’ addressing schemes
(referring to the order in which integers and floating-point numbers are stored in memory).
Alpha and Intel chips are little-endian, Sparcs, the Motorola 68k family used in Macs, and
Motorola PowerPC chips, are big-endian. On the latter machines, you’ll need to compile these
programs with the -DBIGENDIAN option to the C compiler.

/*
* Explore IEEE single- and double-precision floats.
*
* Invoked with an argument, it reprints that number as a double, hex
* and binary. Without argument, it reads numbers from stdin. The
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* argument is either a double or an integer (hex, with leading ’0x’,
* eg 0x3f800000) as argument.
*
* $Id: fpp.c 12350 2004-03-10 19:16:05Z norman $
*/

#include <config.h>

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

#if HAVE ERRNO H
#include <errno.h>
#else
extern int errno;
#endif

/* bytesex.h defines BIGENDIAN=1 (true) or 0 */
#include "bytesex.h"

#ifndef DOUBLEPRECISION
#define DOUBLEPRECISION 1 /* double-precision by default */
#endif

#if DOUBLEPRECISION
#define EXPONENTWIDTH 11
#define MANTISSAWIDTH 20 /* actually just the part of the

mantissa in the MSB */
#define ZEROMANTISSA(F) ((F).ieee.m == 0 && (F).ieee.m2 == 0)
#define NINTS 2 /* number of ints in a double */
typedef double Float;
#else
#define EXPONENTWIDTH 8
#define MANTISSAWIDTH 23
#define ZEROMANTISSA(F) ((F).ieee.m == 0)
#define NINTS 1 /* number of ints in a float */
typedef float Float;
#endif
/* Create an integer with EXPONENTWIDTH set bits. Relies on

zero-filling when left-shifting. */
#define FULLEXPONENT ~(~0 << EXPONENTWIDTH)

/* Define the structure we’ll use to do the manipulations */
typedef union {

Float f;
unsigned int i[NINTS];
struct {

#if DOUBLEPRECISION
#if BIGENDIAN
unsigned int s : 1;
unsigned int e : 11;
unsigned int m : 20;
unsigned int m2 : 32;
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#else
unsigned int m2 : 32;
unsigned int m : 20;
unsigned int e : 11;
unsigned int s : 1;
#endif
#else /* DOUBLEPRECISION */
#if BIGENDIAN
unsigned int s : 1;
unsigned int e : 8;
unsigned int m : 23;
#else
unsigned int m : 23;
unsigned int e : 8;
unsigned int s : 1;
#endif
#endif

} ieee;
} ieeefloat;

/* Function prototypes */
/* Utility functions */
int pisnan (const Float darg); /* true if argument is a NaN */
int pisinf (const Float darg); /* true if argument is infinite */
int pisfinite (const Float darg); /* true if argument is finite */
int pisnormal (const Float darg); /* true if argument is normal */
Float pnan (const char *tagp); /* return a NaN */
Float pinfinity (Float darg); /* return +ve or -ve infinity */

/* Functions which do the work of this demo program */
char *pbits (unsigned int i, unsigned int n);
int parse int (const char *s, unsigned int i[NINTS]);
int reprint number (char *s, Float farg);

/* Following are utility functions, which are portable */

/* Returns non-zero if argument is a NaN -- all bits in exponent set,
and mantissa non-zero. */

int pisnan (const Float darg)
{

ieeefloat d;
d.f = darg;

#if DOUBLEPRECISION
return (d.ieee.e == FULLEXPONENT && !(d.ieee.m == 0 && d.ieee.m2 == 0));

#else
return (d.ieee.e == FULLEXPONENT && d.ieee.m != 0);

#endif
}

/* returns non-zero if argument is infinity -- all bits in exponent
set, and mantissa zero. */

int pisinf (const Float darg)
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{
ieeefloat d;
d.f = darg;

#if DOUBLEPRECISION
return (d.ieee.e == FULLEXPONENT && d.ieee.m == 0 && d.ieee.m2 == 0);

#else
return (d.ieee.e == FULLEXPONENT && d.ieee.m == 0);

#endif
}

/* returns non-zero if argument is finite (normal, subnormal or zero)
-- not all bits in exponent set. */

int pisfinite (const Float darg)
{

ieeefloat d;
d.f = darg;
return (d.ieee.e != FULLEXPONENT);

}

/* Returns non-zero if argument is normal -- exponent is not all-ones
* nor all-zeros.
*
* Note that this refers to the argument as a double , and might not
* give the expected results if it’s applied to a single which is
* promoted to a double when given as a parameter.
*/

int pisnormal (const Float darg)
{

ieeefloat d;
d.f = darg;
return (d.ieee.e != FULLEXPONENT && d.ieee.e != 0);

}

/* returns a NaN. Argument is ignored */
Float pnan (const char *tagp)
{

ieeefloat d;
d.ieee.s = 0;
d.ieee.e = FULLEXPONENT;
/* Set leading bit in mantissa -- quiet NaN. */
d.ieee.m = (1<<(MANTISSAWIDTH-1));

#if DOUBLEPRECISION
d.ieee.m2 = 0;

#endif
return d.f;

}

/* returns positive or negative infinity, depending on the sign of darg */
Float pinfinity (Float darg)
{

ieeefloat d;
d.f = darg; /* copies sign */
d.ieee.e = FULLEXPONENT;
d.ieee.m = 0;
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#if DOUBLEPRECISION
d.ieee.m2 = 0;

#endif
return d.f;

}

/*
* pbits: given an integer i (assumed 32 bits),
* return the rightmost n (<=32) bits of the integer expressed in binary.
*/

char *pbits (unsigned int i, unsigned int n)
{

static char s[33];
char *p;
/* printf ("pbits(%x/%d)", i, n); */
s[n] = ’\0’; /* terminate the string */
for (p=s+n-1; p>=s; p--, i>>=1)

*p = ((i&1) ? ’1’ : ’0’);
return s;

}

#if DOUBLEPRECISION
/* Take a string of (up to) 16 hex digits, remove leading ’0x’, and
* any spaces, and convert the first 8 into i[0], and the second 8 into
* i[1]. If the string is shorter than 16 digits, pad the remainder
* with ’0’.
*
* Only need this for converting 16-digit strings to d-p floats.
*
* Return non-zero on error.
*/
int parse int (const char *s, unsigned int i[2])
{

char digits0[9], digits1[9], *p;
int ndigits = 0;

if (!(s[0] == ’0’ && s[1] == ’x’))
return 1;

p = digits0;
s += 2;
while (ndigits <= 16)
{

while (isspace(*s)) /* skip blanks */
s++;

if (*s == ’\0’) /* pad remainder */
*p++ = ’0’;

else
*p++ = *s++;

ndigits++;
if (ndigits == 8) /* done 8 digits - switch to second 8*/

p = digits1;
}
digits0[8] = digits1[8] = ’\0’; /* terminate the strings */
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i[0] = strtoul (digits0, (char**)NULL, 16); /* ...and convert them */
i[1] = strtoul (digits1, (char**)NULL, 16);

/* printf ("parse int: digits=%s %s --> %08x %08x\n",
digits0, digits1, i[0], i[1]); */

return 0;
}
#else
/* same, but simpler for single precision */
int parse int (const char *s, unsigned int i[1])
{

char digits0[9], *p;
int ndigits;

if (!(s[0] == ’0’ && s[1] == ’x’))
return 1;

p = digits0;
s += 2;
for (ndigits=0; ndigits<=8; ndigits++)
{

while (isspace(*s)) /* skip blanks */
s++;

if (*s == ’\0’) /* pad remainder */
*p++ = ’0’;

else
*p++ = *s++;
}
digits0[8] = ’\0’; /* terminate the strings */

*i = strtoul (digits0, (char**)NULL, 16); /* ...and convert them */

/* printf ("parse int: digits=%s --> %08x\n", digits0, *i); */
return 0;

}
#endif

/*
* Convert string to number and display in various formats.
* If s is NULL, then use the number farg instead. If the input
* string cannot be interpreted, return non-zero, or zero on success.
*/

int reprint number (char *s, Float farg)
{

ieeefloat F;
if (s == NULL)

F.f = farg;
else
{

if (s[0]==’0’ && s[1]==’x’) { /* it’s an integer */
if (parse int (s, F.i)) {

printf ("can’t parse integer <%s>\n", s);
return 1;

}
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} else {
char *endptr;
errno = 0;

F.f = strtod (s, &endptr);
if (errno != 0)

return 1;
for (; isspace(*endptr); endptr++)

;
if (*endptr != ’\0’)

return 1;
}

}

#if DOUBLEPRECISION
/* 49 bits of precision is 49*log 10(2)=14.75 dec.digits of precision */

printf ("double %24.16e\n hex %08x %08x\n",
F.f, F.i[0], F.i[1]);

#else
printf (" float %12.7e\n hex %08x\n", F.f, F.i[0]);
#endif

printf ("binary %s ", pbits (F.ieee.s, 1));
printf ("%s ", pbits (F.ieee.e, EXPONENTWIDTH));
printf ("%s ", pbits (F.ieee.m, MANTISSAWIDTH));

#if DOUBLEPRECISION
printf ("%s", pbits (F.ieee.m2, 32));

#endif
printf ("\n type ");

/* now print out what type of number it is */
if (F.ieee.e == 0)

if (ZEROMANTISSA(F))
printf ("%s zero",

(F.ieee.s ? "Negative" : "Positive"));
else

printf ("Subnormal");
else if (F.ieee.e == FULLEXPONENT)

if (ZEROMANTISSA(F))
printf ("%s infinity",

(F.ieee.s ? "Negative" : "Positive"));
else

printf ("%s NaN",
(F.ieee.m & (1<<(MANTISSAWIDTH-1))

? "Quiet"
: "Signalling"));
else

printf ("Normal");

/* test the pis??? routines */
printf (" (%c%c%c%c)\n",
(pisnan (F.f) ? ’N’ : ’n’),
(pisinf (F.f) ? ’I’ : ’i’),
(pisfinite (F.f) ? ’F’ : ’f’),
(pisnormal (F.f) ? ’L’ : ’l’));
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return 0;
}

int main (int argc, char **argv)
{

Float f = 0;

printf ("%s-precision %s endian...\n",
(DOUBLEPRECISION ? "Double" : "Single"),
(BIGENDIAN ? "big" : "little"));

if (argc > 1)
reprint number (argv[1], 0);

else
{

char line[80];
while (fgets (line, sizeof(line), stdin) != NULL)

if (line[0] == ’=’) {
switch (line[1]) {
case ’n’:
reprint number (NULL, pnan(""));
break;

case ’i’:
reprint number (NULL, pinfinity(+1.0));
break;

case ’z’:
reprint number (NULL, 0);
break;

default:
printf ("eh?\n");
break;

}
} else {

if (reprint number (line, 0))
printf("Enter float, 0x... integer, =n, =i, =z, "

"or ^D to exit\n");
}

}
exit (0);

}

A.3 fpdemo.c

The program fpdemo.c is discussed in section Section 2.3.2.2, and shows the effects of catas-
trophic cancellation.

#include <stdio.h>

/* bytesex.h defines BIGENDIAN=1 (true) or 0 */
#include "bytesex.h"

/*
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* pbits: given an integer i, put the rightmost n bits of the integer
* expressed in binary, into the string s.
*/

void pbits (unsigned int i, unsigned int n, char *s)
{

char *p;
for (p=s+n-1; p>=s; p--, i>>=1)

*p = ((i&1) ? ’1’ : ’0’);
return;

}

/* Given a float, return a (static) string holding its bit pattern */
char *print float (float f)
{

static char b[35];
union {

float f;
struct {

#if BIGENDIAN
unsigned int s : 1;
unsigned int e : 8;
unsigned int m : 23;

#else
unsigned int m : 23;
unsigned int e : 8;
unsigned int s : 1;

#endif
} ieee;

} ieeefloat;

ieeefloat.f = f;

pbits (ieeefloat.ieee.s, 1, b);
b[1] = ’ ’;
pbits (ieeefloat.ieee.e, 8, &b[2]);
b[10] = ’ ’;
pbits (ieeefloat.ieee.m, 23, &b[11]);
b[34] = ’\0’;

return b;
}

main ()
{

float f, a, b, c;
double fd, ad, bd, cd;

printf ("\n You lose accuracy adding small numbers to large ones...\n");
/* 2^23+1 works OK... */
f = 8388608.0;
printf ("2^23 = %e = %s\n", f, print float (f));
f = f + 1.0;
printf (" +1 = %e = %s\n", f, print float (f));
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/* ...but 2^24+1=2^24 - catastrophic loss of precision */
f = 16777216.0;
printf ("2^24 = %e = %s\n", f, print float (f));
f = f + 1.0;
printf (" +1 = %e = %s\n", f, print float (f));

printf ("\n\n Display the dread effects of catastrophic cancellation\n\
by calculating a*b-a*c, in several different ways. These are equivalent\n\
arithmetically, but not computationally.\n");

/* Now show the effect of catastrophic cancellation by calculating
* ab-ac, when a, b and c are such that the terms nearly cancel.
* To generate numbers which best demonstrate the effect,
* set a = (1+da/2^12), b=(1+db/2^12), etc. Thus
* a * b = (1 + db/2^12 + da/2^12 + da.db/2^24).
* Put da=1.0. Now pick db=1-, so that final term is just below 1/2^24,
* then dc=1+, so that final term is just above 1/2^24.
* Thus a*b rounds down, and a*c rounds up.
* Both are quite accurate, but large errors are revealed when
* they’re subtracted. We can ameliorate this by rewriting the expression.
*/

/* First, do the calculation in double, to get relative errors. */
/* The cancellation is ignorable in double */
ad = 1.0 + ((double)1/4096);
bd = 1.0 + ((double)0.9/4096);
cd = 1.0 + ((double)1.1/4096);
fd = ad*bd-ad*cd;

a = 1.0 + ((float)1/4096); /* a=1.000244; */
b = 1.0 + ((float)0.9/4096); /* b=1.000220; */
c = 1.0 + ((float)1.1/4096); /* c=1.000269; */

/* first method - naive */
f = a*b-a*c;
printf ("a=%e b=%e c=%e\n", a, b, c);
printf ("a*b-a*c = %e (error=%e)\n", f, ((double)f/fd-1.0));

/* pre-subtract the nearly-equal b and c */
f = a*(b-c);
printf ("a*(b-c) = %e (%e)\n", f, ((double)f/fd-1.0));

/* rewrite the expression, to calculate a * ((b-1) - (c-1)).
Thus b-1 and c-1 have full accuracy */

b = ((float)0.9/4096); /* = (above b) -1 */
c = ((float)1.1/4096);
f = a*(b-c);

printf ("a((b-1)-(c-1))= %e (%e)\n", f, ((double)f/fd-1.0));
/* Can’t do the same trick with a. If we calculate (a-1)*() + 1*(),

we don’t get any improvement. We’re not carelessly discarding
accuracy, now - we can’t keep any more than this. */

printf ("\n ...and further illustrate what’s happening by showing\n\
b and b-1. Note the extra accuracy in the latter.\n");



56 SC/13.2

/* Display b and (b-1). Note extra accuracy in latter. */
b = 1.0 + ((float)0.9/4096);/* = (above b) */
printf ("1+1/10000 = %14.7e = %s\n", b, print float (b));
b = ((float)0.9/4096); /* = (above b) -1 */
printf (" 1/10000 = %14.7e = %s\n", b, print float (b));;

printf ("\n\n Display Infinity and NaN\n");
/* Display NaNs and Infinity */
/* Don’t just write a=1.0/0.0, since compiler can warn about this */
a = 0.0; /* and log(0) */
a = 1/a;
b = 1/a;
c = a*b;
printf ("a = 1/0.0 = %14e = %s\n", a, print float (a));
printf ("b = 1/a = %14e = %s\n", b, print float (b));
printf ("c = a*b = %14e = %s\n", c, print float (c));

}

A.4 Profiling

The fortran files p?.f are example files for Section 2.5.1, on profiling. These are drawn from
[sunf77].

A.4.1 p1.f

program silly
implicit none
integer n, i
real determinant
parameter (n=2)
real twobytwo(2,2) /4*-1/
do i = 1, 100000

call mkidentity (twobytwo, n)
enddo
print *, determinant (twobytwo)
end

A.4.2 p2.f

subroutine mkidentity (matrix, dim)
implicit none
integer dim
real matrix (dim,dim)
integer m,n
do m = 1, dim

do n = 1, dim
if (m.eq.n) then

matrix(m,n) = 1.
else
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matrix(m,n) = 0.
endif

enddo
enddo
return
end

A.4.3 p3.f

real function determinant(m)
implicit none
real m(2,2)
determinant = m(1,1) * m(2,2) - m(1,2) * m(2,1)
return
end

A.5 crash.c

The program crash.c crashes and dumps core. See Section 2.5.3 for discussion.

#include <stdio.h>

int bananas (int i)
{

char buf[80];
sprintf (buf, "banana number %d\n", i);
if (i != 0)

fputs (buf, stdout);
else
{

int *zp = 0;
printf ("banana split: %d\n", *zp);

}
return 0;

}

int main (void)
{

printf ("Entering the bananas function: 1\n");
bananas (1);
printf ("No bananas left!\n");
bananas (0);
printf ("We made it out!\n");

}

A.6 Mixed language programming

The files mixed-c.c and mixed-f.f illustrate some of the techniques involved in calling C from
Fortran and vice versa, as described in Section 2.5.4.
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On a Sun, compile and link them as follows:

f77 -c mixed-f.f -ext names=plain
cc -c mixed-c.c
f77 -o mixed mixed-c.o mixed-f.o

The extra option to the first f77 command tells the compiler not to add an underscore to function
names; different compilers will have different switches for accomplishing the same thing. See
Section 2.5.4.3 for discussion.

A.6.1 mixed-c.c

#include <stdio.h>

int main (void)
{

float m[3][3];
int i, j, n;

/*
* Note the C declaration of this Fortran function. Although
* we’re passing a matrix, we declare the first argument just
* float* . This is because a dynamically-dimensioned array can’t
* be expressed in C.
*/
extern void addarr (float *m, int *n);

n = 3; /* dimension of matrix */
for (i=0; i<3; i++)

for (j=0; j<3; j++)
m[i][j] = (float)(10*i+j);

printf ("Before:\n");
for (i=0; i<3; i++)
{

printf ("m[%d][j]: ", i);
for (j=0; j<3; j++)

printf ("%6.0f", m[i][j]);
printf ("\n");

}

/* Pass the array, coerced to (float*). */
/* &m[0][0] (address of the first element of the array) would also work. */
addarr ((float*)m, &n);

printf ("\nAfter:\n");
for (i=0; i<3; i++)
{

printf ("m[%d][j]: ", i);
for (j=0; j<3; j++)

printf ("%6.0f", m[i][j]);
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printf ("\n");
}

}

/* cadd2 adds twice its second argument to its first. */
void cadd2 (float *a1, float a2)
{

a2 *= 2; /* double a2 - this doesn’t change a2 in caller */
*a1 += a2; /* add a2 to what a1 points to */

}

A.6.2 mixed-f.f

c Given a square array m(n,n), call cadd2 on each element
subroutine addarr (m, n)
real m(n,n)
integer n
integer i,j
real addval

addval = m(n,n)
do j=1,n

do i=1,n
call cadd2 (m(i,j), %val(addval))

enddo
enddo

return
end

A.7 maple.ms

This example Maple file gives a slightly fuller example of Maple use than given in Section 3.1.

# read into maple with > read ‘maple.ms‘:

# Define a 2-d gaussian
gi:=amp*exp(-(aparam^2/sa^2+bparam^2/sb^2)/2):
aparam:=cos(theta)*(xc-x0)+sin(theta)*(yc-y0):
bparam:=-sin(theta)*(xc-x0)+cos(theta)*(yc-y0):

# Declare arrays. We expressed the gaussian in terms of intelligible
# identifiers, but we want these to be output as array references when
# we produce the Fortran at the end
xa := array(1..5):
ca := array(1..1):

x0 := xa[1]:
y0 := xa[2]:
sa := xa[3]:
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sb := xa[4]:
theta := xa[5]:
amp := ca[1]:

# aadf are the variables we’ll differentiate with respect to
aadf:=[x0,y0,sa,sb,theta]:
# ...and array of differentials.
dyda:=array(1..6):
for i to 5 do

dyda[i]:=diff(gi,aadf[i])
od:
dyda[6] := gi:

# Output the result as Fortran
fortran (dyda, filename=‘gaussianab.f‘, optimized);

A.8 idl-functions.pro

Here is an example of IDL programming, dealing with the common situation of reading in
columns of data. See also Section 3.2.2.

; Common IDL functions

; Read the contents of an array from a file.
;
; The file is in ‘Fortran format’: it holds the contents of the array
; as a list of numbers, with the left-most array index changing
; fastest. For simplicity, the function does no error checking, and
; assumes that the array is the right length.
pro read file, a, fn

openr, iu, fn, /get lun ; open the file to read, allocate unit
readf, iu, a
free lun, iu ; close the file and release the unit.

end

; Read columns of numbers into a 2-d array.
;
; Given a file with n columns and m rows, this takes an n x m
; array and fills it with the contents of the file.
;
; It ignores lines beginning #
pro read columns, a, fn

dims = size (a) ; get array dimensions
line = ’’
print, "cols=",dims[1]," rows=",dims[2]
openr, iu, fn, /get lun
linevals = fltarr(dims[1])
i = 0
while not eof(iu) do begin

readf, iu, line
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if (strmid(line,0,1) ne ’#’) then begin
reads,line,linevals
if (n elements(linevals) ne dims[1]) then begin

print,’line ’,i,": expected’,dims[1], $
’ got’,n elements(linevals)

return
endif
if (i ge dims[2]) then message,’too many lines in file’
a(*,i) = linevals
i = i+1

endif
end
if (i ne dims[2]) then message,’too few lines in file’
close, iu

end
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B References: Starlink documents

This section contains a (non-exhaustive!) selection of Starlink documents which should intersect
with the interests of this cookbook’s audience. Where possible, I have included a reference to a
relevant section of this document.

An overall reference for all Starlink users is the sug/.

Starlink User Notes
Code Title Sect.
SUN/1 Starlink software collection
SUN/9 LaTeX -- Document preparation system v2e User’s Guide Section 5.1
SUN/11 ARY -- Subroutines for accessing ARRAY data structures
SUN/12 LaTeX -- Cook-book Section 5.1
SUN/15 PGPLOT -- Graphics subroutine library Section 3.2.4
SUN/28 NAG -- Numerical and Graphical Libraries Mk 16/4 UG Section 4.2
SUN/33 NDF -- Routines for accessing extensible n-D data 1.3 Section 4.2.1
SUN/55 CONVERT -- A format-conversion package 1.1, UM Section 3.2.2
SUN/73 FORCHECK -- Fortran verifier and programming aid Section 2.4.1
SUN/92 HDS -- Hierarchical data system 4.2, PG Section 4.2.1
SUN/93 TeX -- Superior document preparation system Section 5.1
SUN/107 MAPLE -- Mathematical manipulation language Section 3.1
SUN/127 EXOSAT database system Section 6.1
SUN/136 FITSIO -- Disk FITS I/O routines 5.03 Section 4.2.1
SUN/145 UNIX -- An introduction Section 2.1
SUN/160 IMG -- Simple image data access 1.2 Section 4.2.1
SUN/162 A guide to astronomical catalogues/databases/archives Section 6.1
SUN/167 PERIOD -- A time-series analysis package
SUN/170 Editors on Unix Section 2.1
SUN/172 FTNCHEK -- A Fortran 77 source-code checker Section 2.4.1
SUN/174 Guide to on-line bibliographies and information
SUN/181 CAT -- Catalogue and table manipulation library 5.1 Section 6.1
SUN/193 PERL -- Practical Extraction and Report Language Section 2.4.6
SUN/194 PDA -- Public domain algorithms library 0.4, PM Section 4.2
SUN/203 SX and DX -- IBM data explorer for data visualisation Section 3.2.3
SUN/209 CNF and F77 Mixed Language Programming v3.1: PM. Section 2.5.4

Starlink General Papers
SGP/4 Starlink C programming standard Section 2.4.3
SGP/16 Starlink application programming standard Section 2.4.1
SGP/47 Computer Algebra Software Section 3.1

Starlink Cookbooks
SC/2 The DX cookbook Section 3.2.3
SC/9 LaTeX Cookbook Section 5.1
SC/12 Writing your own data reduction software

Starlink Guides
SG/6 ADAM -- Programmer’s facilities and documentation guide
SG/8 Introduction to Visualisation Software for Astronomy Section 3.2



SC/13.2 63

Miscellaneous User Documents are documents which are not originated by Starlink, which are
held at RAL for the Starlink project. Copies may be available at other Starlink nodes. Ask
your Site Manager if you want one.

Miscellaneous User Documents
MUD/30 IDL -- User’s guide Section 3.2.2
MUD/48 LATEX -- User’s guide and reference manual Section 5.1
MUD/52 MAPLE -- Introduction Section 3.1
MUD/55 NAG -- Fortran library manual: Mk 15 (10 vols) Section 4.2
MUD/56 NAG -- A beginners guide (Book) Section 4.2
MUD/57 NAG -- Newsletters, Error bulletins Section 4.2
MUD/58 NAG -- Graphical library supplement: Mk 3 (2 vols Section 4.2
MUD/72 TEX -- The TeXbook (Book) Section 5.1
MUD/121 Unix for beginners Section 2.1
MUD/122 An introduction to display editing with Vi Section 2.2
MUD/123 Vi -- Quick reference card Section 2.2
MUD/128 NAG -- Fortran Library, Introductory Guide (Mk 15) Section 4.2
MUD/137 MAPLE V -- Language reference manual Section 3.1
MUD/138 MAPLE V -- Library reference manual Section 3.1
MUD/139 MAPLE V -- A tutorial introduction Section 3.1
MUD/159 SM -- Interactive plotting program 2.3.1 Section 3.2
MUD/160 SM -- The SM tutorial Section 3.2
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C Release notes

C.1 Release 2.2

• Enhanced the coverage of Java (though it’s still rather brief).

• Added pointers to stellar atmosphere codes (thanks to Barry Smalley, Ann Sansom, Simon
Jeffery).

• A few additions to the TeX/LaTeX coverage.

C.2 Release 2.1

More detail about NaNs, compilers, largely incorporating the suggestions I received after the
previous edition. Packaged set of examples.

C.3 Version 2

Assorted enhancements and additions. Expanded the section on model atmospheres. Links
checked, and a couple of broken ones restored.

I haven’t been able to incorporate all the suggestions I received after the previous edition.

C.4 Release 1.2

No significant changes as yet. Merely a conversion from the original LaTeX source.
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Change history

Distribution 2-5

Norman Gray, 10 March 2003

Minor edits, plus repackaging

5.1 TeX and LaTeX Added a pointer to Peter Flynn’s Beginner’s LaTeX

Distribution 2-4

Norman Gray, 22 July 2002

Minor edits for clarity, and to restore missing references.

2.3.2.1 Endianness of floating-point numbers Paragraph transformed into section

Distribution 2-3

Norman Gray, 16 July 2002

Minor edits -- typos and enhancements spotted now and again.

2.4.5 Java Hoisted the Java section up a level, and added some remarks about efficiency and
profiling.

5.1 TeX and LaTeX Added a reference to the Adam Lewenberg book pointers

Distribution 2-2

Norman Gray, 1 December 2001

Slight reworking after comments

2.3.2.3 Other floating-point topics Mention that x.ne.x is true when x is a NaN

4.1 Astrophysical modelling codes Reworking of this section after comments from BS; added
VALD and Dusty links.

Distribution 2-1

Norman Gray, 4 December 2001

Update to IEEE trap details

2.3.2.3 Other floating-point topics Added table of compilers and enabled IEEE traps

A Example programs Added download URL
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Version 2

Norman Gray, 2 December 2001

Changes in version 2

Norman Gray, 2 December 2001

Updating, link-checking, general refreshing.

2.2 Editors Added more vi URLs, caught typos

2.3.2.2 Accuracy Added a brief description of the format of doubles

2.4 Programming languages Mention of SUN/209 in the context of dynamic memory allo-
cation in Fortran.

2.4.5 Java Pointed out that JITs make Java a candidate for high-end codes, pointing to the
Java Grande Forum for details.

2.5.2.3 I/O Checked fwrite/fread syntax, and discussed unformatted IO in Fortran.

2.5.5 Compilers, and other stray remarks on code Advice to use prototypes, to avoid
another class of silly errors; added all-warnings switches for Sun and Compaq.

4.1 Astrophysical modelling codes Expanded this section considerably, with several more
links.

4.2 General-purpose and numerical libraries Longer discussion of the GPL and other free
licences.

4.2.1 Reading and writing data Added CONVERT example, and added pointers to FITS
and cfitsio.

5.1 TeX and LaTeX Pointers to the LaTeX project, other tutorials, and the TeX FAQ. Some
reorganisation.

A Example programs Added islittleendian example program

A.2 fpp.c Replaced with expanded/corrected program, which also deals with doubles.

Change 20 June 2000

Norman Gray, 20 June 2000

Incorporating comments from others.

2.2 Editors Expanded the description of vi

2.4.1 Fortran 77 Added pointers to Fortran standard document.

2.4.5 Java Added a description of Java’s model of compiling to interpreted bytecodes, to the
extent that this relates to efficiency and speed.
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2.4.6.2 Perl Added pointer to the Schwartz reference, and a description of Perl’s compile-then-
interpret model.

2.5.2.1 Avoid using the register keyword in C Rewritten following comments

2.5.2.2 Walk through arrays in the correct order Updated/corrected comments on page
faults by adding MBT’s comments on cache faults.

2.5.2.3 I/O Added remarks and examples on raw IO

2.5.2.4 Use NaN and Infinity Mention speed tradeoffs, following comments

Change 14 June 2000

Norman Gray, 14 June 2000

Conversion to SGML

Version 1

Norman Gray, 22 December 1998

Changes in version 1

Norman Gray, 22 December 1998

Last LaTeX version


