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Aims You should

1. understand the role of the various forms of the equivalence principle in the develo-
ment of Einstein’s theory of gravity;

2. understand how we can derive Newton’s theory of gravity as the weak-field limit of
Einstein’s theory.

Objectives You should be able to demonstrate that you can

1. quote the various forms of the equivalence principle, explaining the significance of
the terms in them;

2. equivalently, explain the ‘comma-goes-to-semicolon’ rule;

3. perform some dynamical calculations, and manipulate indexes confidently.

Proving that nothing ever changes:

[. . . ] For Aristotle divides theoretical philosophy too, very fittingly, into three
primary categories, physics, mathematics and theology. [. . . ] Now the first
cause of the first motion of the universe, if one considers it simply, can be
thought of as an invisible and motionless deity; the division [of theoretical
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GRG I, part 4 – Physics

philosophy] concerned with investigating this [can be called] ‘theology’, since
this kind of activity, somewhere up in the highest reaches of the universe,
can only be imagined, and is completely separated from perceptible reality.
The division which investigates material and ever-moving nature, and which
concerns itself with ‘white’, ‘hot’, ‘sweet’, ‘soft’ and suchlike qualities one may
call ‘physics’; such an order of being is situated (for the most part) amongst
corruptible bodies and below the lunar sphere. That division which determines
the nature involved in forms and motion from place to place, and which serves
to investigate shape, number, size, and place, time and suchlike, one may define
as ‘mathematics’. [. . . ]

From all this we conclude: that the first two divisions of theoretical philos-
ophy should rather be called guesswork than knowledge, theology because of
its completely invisible and ungraspable nature, physics because of the unstable
and unclear nature of matter; hence there is no hope that philosophers will
ever be agreed about them; and that only mathematics can provide sure and
unshakeable knowledge to its devotees, provided one approaches it rigorously.
For its kind of proof proceeds by indisputable methods, namely arithmetic and
geometry. [. . . ] As for physics, mathematics can make a significant contribu-
tion. For almost every peculiar attribute of material nature becomes apparent
from the peculiarities of its motion from place to place. Preface to Book 1 of
Ptolemy’s Almagest, between 150–161 CE [2]

Ptolemy is right, here (though some of the details of his cosmology have been adjusted
since he wrote this, and what he refers to as ‘theology’ is now more often referred to
as ‘Quantum Gravity’): mathematics we can know all about, with certainty; for physics
we have to make guesses. He’s dead right about mathematics’ contribution, though, and
we’ll discover that our first insights in this section do indeed come from considering the
peculiarities of the material world’s motion from place to place.

1 The energy-momentum tensor

The point of this whole course is to describe how gravity, in the form of the curvature of
spacetime, is determined by the presence of mass. In newtonian physics, the relationship is
straightforward, since the notion of mass is unproblematic. In relativity, however, we know
that what matters is not mass alone, but energy-momentum, and so it is not unreasonable
that what matters in GR is not mass, but the distribution of energy-momentum, and so we
must find a way of describing this in an acceptably geometrical fashion. In this section
we are confining ourselves to special relativity, and in the next section we discover that
this is not, physically, a restriction in fact. This section largely follows Schutz ch. 4.

We start (as we all end) with dust.

1.1 Dust, fluid and flux

A fluid in GR and cosmology is, not surprisingly, something which flows; that is, a
substance where the forces perpendicular to an imaginary surface (ie, pressure) are much
greater than the forces parallel to it (ie, stress, arising from viscosity). The limit of this,
a perfect fluid is a substance which has pressure but zero stresses. An even simplerperfect fluid
substance is termed dust , which denotes an idealised form of matter, consisting of adust
collection of non-interacting particles which are not moving relative to each other, so
that the collection has zero pressure. That is to say that there is a frame, called the
momentarily comoving reference frame , MCRF, with respect to which all the particles inMCRF
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a given volume have zero velocity1.
We can suppose for the moment that all the dust particles have the same (rest)

mass m, but that different parts of the dust cloud may have different number densities n.
Just as the particle mass m is the mass in the particle’s rest frame, the number density n is
always that measured in the MCRF.

If we lorentz-transform to a frame which is moving with velocity v with respect to
the MCRF, a (stationary) volume element of size �x�y�z will be lorentz-contracted
into a (moving) element of size �x0�y0�z0 D .�x=/�y�z, where  is the familiar
lorentz factor  D .1 � v2/�1=2, supposing that the frames are chosen such that the
relative motion is along the x-axis. That means that the number density of particles, as
measured in the frame relative to which the dust is moving, goes up to n. What, then,
is the flux of particles through an area �y�z in the y0–z0 plane? The particles in the
volume all pass through the area �y0�z0 in a time �t 0, where �x0 D v�t 0, and so this
total number of particles is .n/.v�t 0/�y0�z0. Thus the total number of particles per
unit time and per unit area, which is the flux in the x0-direction, is nv. Writing N x for
this x-directed flux, and vx for the velocity along the x-axis, v, this is

N x
D nvx : (4.1)

We can generalise this, and guess that we can reasonably define a flux vector

N D nU ; (4.2)

where again n is the dust number density in its MCRF, and U is the 4-velocity vector
.; vx ; vy ; vz/. Since the velocity vector has the property g.U ; U / D �1 (remember
your SR, and that the 4-velocity vector U D .1; 0/ in MCRF), we have g.N ;N / D
N˛N

˛ D �n2. The components of the flux vector N in this frame are

.n; nvx ; nvy ; nvz/: (4.3)

This flux vector is a geometrical object, because U is, and so although its components
are frame-dependent, the vector as a whole is not.

It is obvious how to recover, from Eq. (4.3), the fluxes N x across surfaces of
constant coordinate (they’re just the components in Eq. (4.3)), but we will need to be more
general than this. Any function defined over spacetime, �.t; x; y; z/, defines a surface
� D constant, and its gradient one-formed� acts as a normal to this surface (think of
the planes in our visualisation of one-forms). The unit gradient one-formen �ed�=jed�j
points in the same direction but has unit magnitude (the notational clash with the number
density n is unfortunate but conventional). Consider specifically the coordinate function x:
the gradient one-form corresponding to this,edx, has components .0; 1; 0; 0/ (and so is
already unit). If we contract this one-form with the flux vector, we find

e̋dx;N ˛ � N.edx/ D N x ;

(where the last expression denotes the x-component of N , rather than the whole set of
components). That is, contracting the flux vector with a gradient one-form produces
the flux across the corresponding surface; this is true in general, so that N.en/ produces
the flux across the surface � D constant, whereen Ded�=jed�j. The vector N D nU is
manifestly geometrical; it is our ability to recover the flux in this way that justifies our
naming this the ‘flux vector’.

1This is also, interchangeably, sometimes called the Instantaneously Comoving Reference Frame (ICRF)
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1.2 The energy-momentum tensor

[We’ll switch from .t; x; y; z/ to general .x0; x1; x2; x3/, now, but we’re still confining
ourselves to special relativity.]

We know from our study of special relativity that energy and mass are interconvert-
ible. For our dust particles of mass m, therefore, the energy density of the dust, in theenergy density
MCRF, is mn. In our moving frame, however, as well as the number density rising to n,
the total energy of each particle, as measured in the ‘stationary frame’, goes up to m.
Thus the energy density of the dust as measured in a moving frame is 2mn. This double
factor of  cannot result from a lorentz boost of a vector, and is the first indication that to
describe the energy-momentum of the dust we will need to use a higher-order tensor.

What geometrical objects do we have to play with? We have the momenta of the
dust particles, p D mU , and we have the flux vector N D nU . As mentioned above,
we also have the gradient one-forms corresponding to the coordinate functions,edx˛ .
By contracting the vectors with these one-forms we can extract the particles’ energy
p0 D p.edx0/ or spatial momenta pi D p.edxi /, or the number density N 0 D N.edx0/
(which we can interpret as the number crossing a surface of constant time, into the future)
or number flux N i D N.edxi /.

Let us form the .2
0/ tensor

T D p ˝N D �U ˝ U ; dust (4.4)

(writing � D mn for the mass density, and recalling the definition of outer product inmass density
Sect. 2.2 of part 2) – this is known as both the energy-momentum tensor and the stress-energy-momentum tensor
energy tensor. We now examine the components of this tensor, obtained by contractingstress-energy tensor
it with the basis one-forms e!˛ D edx˛ , where the coordinate functions xi are those
corresponding to a frame with respect to which the dust is moving. These components
are, of course,

T ˛ˇ D T.edx˛;edxˇ / D p.edx˛/ �N.edxˇ /:
The 0-0 component T 00 is just 2mn, which we can recognise as the energy density

of the dust, or the flow of the zeroth component of momentum across a surface of constant
time.

The 0-i component T 0i D m � nvi (after comparing with Eq. (4.3)). Given that
nv has the dimensions of (per-unit-area per-unit-time), and that mass and energy are
interconvertible in relativity, this is identifiable as the flux of energy across a (spatial)
surface of constant xi .

The i -0 component T i0 D pi �N 0 D mvi � n is the flux of the i -th component
of momentum across a surface of constant time, into the future. By analogy with the
energy density, this is known as (the i-th component of) the momentum density of themomentum density
dust. Now, energy flux across a surface is an amount of energy-per-unit-time, per unit area
or, since energy and mass are the same thing, mass-per-unit-time, per unit area. However,
momentum density is the amount of momentum per unit volume, which is mass-times-
speed per unit volume, which is dimensionally the same as energy flux. Another way of
getting to the same place (in Schutz’s words this time) is that energy flux is the density of
mass-energy times the speed it flows at, whereas momentum density is the mass density
times the speed the mass flows at, which is the same thing. Thus the identity of T i0 and
T 0i in this case is not coincidental or special to dust, but quite general:

T i0 D T 0i :

Finally the i -j component of the energy-momentum tensor, T ij D piN j D mvi�

nvj , is the flux of i-momentum across a surface of constant xj . It has the dimensions
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of momemtum per unit time, per unit area, leading us to identify it as force per unit area,
or pressure.

In general, therefore, we can interpret the component T.edx˛;edxˇ / as the flow of the
˛-th component of momentum across a surface of constant coordinate xˇ .

By considering the torques acting on a fluid element we can show (Schutz §4.5) that
the tensor T is symmetric in general,

T ˛ˇ D T ˇ˛; or T.ep;eq/ D T.eq;ep/; 8ep;eq: (4.5)

In a perfect fluid, there is no preferred direction, so the spatial part of the energy-
momentum tensor must be proportional to the spatial part of the metric, which is ıij in
SR. Since there is no viscosity, the only momentum transport possible is perpendicular
to the surface of a fluid element, in the form of pressure p (which is force per unit
area, remember), giving the constant of proportionality (see Schutz §4.6 for an expanded
version of this argument), and so

T ij D pıij ; [perfect fluid]: (4.6)

From there it is a short step to show that the energy-momentum tensor for a perfect fluid,
as a geometrical object, is

T D .�C p/U ˝ U C pg; [perfect fluid]: (4.7)

See example 4.1
Dust has no pressure, so its energy-momentum tensor in the MCRF is

T D diag.�; 0; 0; 0/; [dust, MCRF]: (4.8)

The final important property of this tensor is its conservation law. If energy is to be
conserved, then the amount of energy-momentum entering an arbitrary four-dimensional
box must be the same as the amount leaving it. From this we promptly deduce that

@

@x0
T ˛0 C

@

@x1
T ˛1 C

@

@x2
T ˛2 C

@

@x3
T ˛3 D 0;

or

T ˛ˇ ;ˇ D 0: (4.9)

By a similar sort of argument, requiring that under any flow of a fluid or of dust the total
number of particles is unchanged, we can show that

N ˛
;˛ D .nU

˛/;˛ D 0: (4.10)

1.3 Maxwell’s equations
�

For completeness, here are Maxwell’s equations in the form appropriate for General
Relativity. For fuller details, see exercise 25 in Schutz’s §4.10.

Given electromagnetic fields .Ex ; Ey ; Ez/ and .Bx ; By ; Bz/, we can define the
antisymmetric Faraday tensor Faraday tensor

F D

0BB@
0 Ex Ey Ez

�Ex 0 Bz �By

�Ey �Bz 0 Bx

�Ez By �Bx 0

1CCA : (4.11)
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We can also define the current vector J D .�; j x ; j y ; j z/ corresponding to a charge
density � and current 3-vector j. With these definitions, Maxwell’s equations in special
relativity become

F ��;� D 4�J
� (4.12a)

F��;� C F��;� C F��;� D 0: (4.12b)

The Faraday tensor F and the energy-momentum tensor T together form the source for
the gravitational field. Notwithstanding that, we shall not explicitly include the Faraday
tensor in the discussion below.

2 The laws of physics in curved spacetime

So we now have a way to describe the energy-momentum contained within an arbitrary
distribution of matter and electromagnetic fields. What we now want to know is how
these relate to the curvature of the spacetime they lie within.

2.1 Ricci and Bianchi

First we need to establish useful contractions of the curvature tensor. See Schutz §6.6 for
further details of this brief relapse into mathematics.

These contractions are the Ricci tensor , obtained by contracting the full curvatureRicci tensor
tensor over its first and third indexes,

Rˇ� � g
˛�R˛ˇ�� D R

�
ˇ�� ; (4.13)

and the Ricci scalar obtained by further contracting the Ricci tensor,Ricci scalar

R � gˇ�Rˇ� D g
ˇ�g˛�R˛ˇ�� : (4.14)

Note, from Eq. (3.49a), that the Ricci tensor is symmetric: R˛ˇ D Rˇ˛ .
By differentiating Eq. (3.48), we can find

2R˛ˇ��;� D g˛�;ˇ�� � g˛�;ˇ�� C gˇ�;˛�� � gˇ�;˛��; (4.15)

and noting that partial derivatives commute, deduce

R˛ˇ��;� CR˛ˇ��;� CR˛ˇ��;� D 0: (4.16)

Recall that Eq. (3.48) was evaluated in LIF coordinates; however, since in these coordi-
nates ��

˛ˇ
D 0, partial differentiation and covariant differentiation are equivalent, and

Eq. (4.16) can be rewritten

R˛ˇ��I� CR˛ˇ��I� CR˛ˇ��I� D 0; (4.17)

which is a tensor equation, known as the Bianchi identities .Bianchi identities
If we perform the Ricci contraction of Eq. (4.13) on the Bianchi identities, we obtain

Rˇ�I� �Rˇ�I� CR
�
ˇ��I� D 0; (4.18)

and if we contract this in turn, we find the contracted Bianchi identity

G˛ˇ Iˇ D 0; (4.19)
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where the (symmetric) Einstein tensor G is defined asEinstein tensor

G˛ˇ � R˛ˇ � 1
2g
˛ˇR: (4.20)

From its name, and the alluring property Eq. (4.19), you can guess that this tensor turns
out to be particularly important for us.

Anyway, back to the physics.

2.2 The equivalence principle

Back in part 1, we mentioned the equivalence principle (EP). It is now finally time to use
this, and to restate it in terms that take advantage of the mathematical work we have done.
The material in this section is well-discussed in Schutz §7.1; as well as in Rindler [3],
at the end of his chapter 1 and in §§8.9–8.10. It is discussed, one way or another, in
essentially every GR textbook, with more or less insight, so you can really take your pick.

One statement of the principle (Einstein’s, in fact) is

The Equivalence Principle: All local, freely falling, nonrotating laboratories
are fully equivalent for the performance of all physical experiments

(Rindler refers to this as the ‘strong’ equivalence principle, and discusses it under that
title with characteristic care, distinguishing it from the ‘semistrong’ EP, and the ‘weak’
EP, which is the statement that inertial and gravitational mass are the same).

The EP gives us a route from the physics we understand to the physics we don’t
(yet). That is, given that we understand how to do physics in the inertial frames of special
relativity, we can import this understanding into the apparently very different world of
curved – possibly completely round the twist – spacetimes, since the EP tells us that
physics works locally in exactly the same way in any local inertial frame, free-falling in
a curved spacetime.

So that tells us that an electric motor, say, will work as happily as we free-fall into a
black hole, as it would work in any less doomed SR frame. It does immediately constrain
the general form of physical laws, since it requires that, whatever their form in general,
they must reduce to the SR version when expressed in the coordinates of a LIF. For
example, whatever form Maxwell’s equations take in a curved spacetime, they must
reduce to the SR form, Eq. (4.12), when expressed in the coordinates of any LIF. The
same goes for conservation laws such as Eq. (4.9) or Eq. (4.10). This form of the EP
doesn’t, however, rule out the possibility that the curved-spacetime law is (much) more
complicated in general, and simply (and even magically) reduces to a simple SR form
when in a LIF. Specifically, it doesn’t rule out the possibility of curvature coupling, where
the general form of a conservation law such as Eq. (4.9) has some dependence on the
local curvature, which disappears in a LIF.

For that, we need a slightly stronger wording of the EP as quoted above (see
Schutz §7.1; Rindler §8.9 quotes this as a ‘reformulation’ of the EP):

The Strong Equivalence Principle: Any physical law which can be expressed
in tensor notation in SR has exactly the same form in a locally inertial frame of
a curved spacetime.

The difference here is that this says, in effect, that only geometrical statements count (this
is why we’ve been making such a fuss about the primacy of geometrical objects and the
relative unimportance of their components, all the way throughout the course). That is, it
says that a SR conservation law such as Eq. (4.9), T ��;� D 0, has the same form in a LIF,
and as a result, because covariant differentiation reduces to partial differentiation in the
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LIF, the partial derivative here is really just the LIF form of a covariant derivative, and so
the general form of this law is

T �� I� D 0; (4.21)

with the comma turning straight into a semicolon, and no extra curvature terms appearing
on the right hand side. That is why this form of the equivalence principle is sometimes
referred to as the ‘comma-goes-to-semicolon’ rule.

Note that this comma-goes-to-semicolon is emphatically not what happened in the
step between, for example, Eq. (4.16) and Eq. (4.17), and in numerous other similar moves
throughout part three. What was happening there was a mathematical step: covariant
differentiation of a geometrical object is equivalent to partial differentiation when in
a LIF; we have a true statement about partial differentiation in Eq. (4.16), so the same
statement must be true of covariant differentiation; such a statement in one frame is true
in any frame, hence the generality. The Strong EP comma-goes-to-semicolon rule, on the
other hand, is making a physical statement, namely that the statement of a physical law
in a LIF directly implies a fully covariant law which is no more complicated.See example 4.2

It is possibly not obvious, but the Strong EP also tells us how matter is affected by
spacetime. In SR, a particle at rest in an inertial frame moves along the time axis of the
Minkowski diagram – that is, along the timelike coordinate direction of the local inertial
frame, which is a geodesic. The Strong EP tells us that the same must be true in GR, so
that this picks out the curves generated by the timelike coordinate of a local inertial frame,
which is to say:

Space tells matter how to move: Free-falling particles move on timelike
geodesics of the local spacetime. (4.22)

This, like the Strong EP, is a physical statement about our universe, rather than a mathe-
matical one.

2.3 Geodesics and the link to ‘gravity’

We should say a little more about the rather bald statement (4.22).
This statement describes the motion of a particle in a particular spacetime. If you

want to describe or predict the motion of a particle, you do it in two steps. First, you work
out which geodesic it will travel along: this involves solving Einstein’s equations, and
working out from the initial conditions of the motion which of the large number of possible
geodesics your particle is actually on. Secondly, you work out how to translate from the
simple motion in the inertial coordinates attached to the particle, to the coordinates of
interest (presumably attached to you).

The key thing on the way to the important insight here, is to note that if you’re
moving along a geodesic – if you’re in free fall – you are not being accelerated, in the
very practical sense that if you were carrying an accelerometer, it would register no
acceleration. If you stand still and drop a ball from your hand, the ball is showing the path
you would have taken, were it not for the floor. That is, it is the force exerted by the floor
on your feet that is accelerating you away from your ‘natural’ free-fall path. If you hold
an accelerometer in your hand – for example, a weight on a spring – you can see your
acceleration register as the spring extends beyond the length it would have in free-fall.

In other words, GR says we’ve always been thinking of this situation backwards.
We’re used to standing-on-the-ground being the normal state and falling being the ex-
ceptional one (we’re primates, after all, and not falling out of trees has been regarded as
a Key Skill). But GR says that we’ve got that inside out: inertial motion, which in the
presence of masses we recognise as free-fall, is the simplest, or normal, state, requiring
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no explanation, and it’s not-falling that has to be explained. The equivalence principle
says that the force of gravity doesn’t just feel like being forced upwards by the floor, it is
being accelerated upwards by the floor.

2.4 Einstein’s equations

We have now worked out how spacetime affects the motion of matter. We now have to
work out how matter affects spacetime – where does ‘gravity’ come from? We can’t
deduce this from anywhere; we can simply make intelligent guesses about this, based
on our experience of other parts of physics – see Ptolemy’s remarks about this at the
beginning of this part – and hope that our (mathematical) deductions from these are
corroborated, or not, by experiment. Thus our goal in this section is to make Einstein’s
equations plausible. Schutz does this in his §§8.1–2; Rindler does it very well in his §§8.2
and 8.10.

Newton’s theory of gravity can be expressed in terms of a gravitational field �.
The gravitational force f on a test particle of mass m is a three-vector with components
fi D �m�;i , and the source of the field is mass density �, with the field equation
connecting the two being

�;i ;i D 4�G� (4.23)

(with the sum being taken over the three space indexes, and where �;i ;i D gij�;ij D

gij @2�=@xi@xj ). This is Poisson’s equation. In a region which does not contain any
matter – for example an area of space which is not inside a star or a planet or a person,
the mass density � D 0, and the vacuum field equations are

�;i ;i D 0: (4.24)

Now cast your mind back to part one, and the expression in the notes there for the
acceleration towards each other of two free-falling particles. This expression can be
slightly generalised and rewritten here as

d2� i

dt2
D ��;i ;j �

j : (4.25)

But compare this with Eq. (3.54): they are both equations of geodesic deviation, sug-
gesting that the tensor represented by R�˛�ˇU ˛U ˇ is analogous to �;i ;j (we’ve used
the symmetries of the curvature tensor to swap two indexes, note, and used U rather
than X to refer to the free-falling particle velocity). Since the particle velocities are
arbitrary, that means, in turn, that the �;i ;i appearing in Poisson’s equation is analogous
to R˛ˇ D R�˛�ˇ , and so a good guess at the relativistic analogue of Eq. (4.24) is

R�� D 0: (4.26)

This guess turns out to have ample physical support, and Eq. (4.26) are known as Einstein’s
vacuum field equations for GR.

If R�� D 0, then R D g��R�� D 0 and therefore

G�� D R�� �
1

2
Rg�� D 0:

So much for the vacuum equations, but we want to know how spacetime is affected
by matter. We can’t relate it simply to �, since Sect. 1.2 made it clear that this was a
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frame-dependent quantity; the field is much more likely to be somehow bound to the E-M
tensor T instead. Looking back at Eq. (4.23), we might guess

R�� D ��T �� (4.27)

as the field equations in the presence of matter, where � is some coupling constant,
analogous to the newtonian gravitational constant G. This looks plausible, but the
conservation law Eq. (4.21) immediately implies thatR�� I� D 0 which, using the Bianchi
identity Eq. (4.19), in turn implies that RI� D 0. But if we use Eq. (4.27) again, this
means that .g˛ˇT ˛ˇ /I� D 0 also. If we look back to, for example, Eq. (4.8), we see that
this field equation, Eq. (4.27), would imply that all matter has a constant density. Which
is not the case. So Eq. (4.27) cannot be true.2

So how about

G�� D ��T �� (4.28)

as an alternative? The Bianchi identity Eq. (4.19) tells us that the conservation equation
T �� I� D 0 is satisfied identically. Additionally – and this is the key part of the argument
– numerous experiments tell us that Eq. (4.28) have so-far undisputed physical validity:
they have not been shown to be incompatible with our universe. They are known as the
Einstein field equations , and allow us to complete the other half of the famous sloganEinstein field equations

Space tells matter how to move – the statement (4.22) plus equations (3.36)
or (3.37); matter tells space how to curve – equation (4.28).

Einstein’s equation constitutes ten second-order non-linear differential equations (ten
since there are only ten independent components in the einstein tensor), which reduce
to six independent equations when we take account of the four differential identities
Eq. (4.19). Between them, these determine six of the ten independent components of
the metric g�� , with the remaining four functional degrees of freedom in the metric
corresponding to coordinate transformations which do not change the geometry. The non-
linearity (meaning that adding together two solutions to the equation does not produce
another solution) is what allows spacetime to couple to itself without the presence of any
curvature terms in the energy-momentum tensor (which acts as the source of the field); it
is also what makes Eq. (4.28) devilishly difficult to solve, and a good deal of the second
part of this course, GRG II, is devoted to examining some of the solutions which have
been derived over the years.

� The identities Eq. (3.49) together reduce the number of independent components
of the curvature tensor from 256 (44) to 20. That corresponds to there being 20

independent second derivatives of the metric g˛ˇ;�� rather than 100 (100 since both the
metric and partial differentiation are symmetric). See the end of Schutz §6.2.See example 4.3

There are two further points to make, both relating to the arbitrariness which is
evident in our justification of Eq. (4.28).

The first is to acknowledge that, although we were forced to go from Eq. (4.27) to
Eq. (4.28) by the observation that the universe is in fact lumpy, there is nothing other
than Occam’s razor which forces us to stop adding complication when we do arrive at
Einstein’s equations, which do so far appear to match the universe we find ourselves in.
There have been various attempts to play with more elaborate theories of gravity, but
almost none so far which have acquired experimental support. Chandrasekhar’s words on
this, quoted in Schutz §8.1, are good:

2This argument comes from §8.10 of [3]; Schutz has a more mathematical argument in his §8.1. Which you
prefer is a matter of taste, but in keeping with our attempt to talk about physics in this part, we’ll prefer the
Rindler version for now.
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The element of controversy and doubt, that have continued to shroud the general
theory of relativity to this day, derives precisely from this fact, namely that in
the formulation of his theory Einstein incorporates aesthetic criteria; and every
critic feels that he is entitled to his own differing aesthetic and philosophic
criteria. Let me simply say that I do not share these doubts; and I shall leave it
at that.

The one variation of Einstein’s equation which is now being taken seriously is one
that Einstein himself reluctantly suggested. Since g˛ˇ I� D 0 identically, we can add any
constant multiple of the metric to the einstein tensor without disturbing the right-hand
side of Eq. (4.28). Specifically, we can write

G�� Cƒg�� D ��T �� : (4.29)

The extra term is referred to as the cosmological constant . Einstein introduced it in order cosmological constant
to permit a static solution to the field equations, but the experimental evidence for the big
bang showed that this was not in fact a requirement, and the parameter ƒ was determined
to be vanishingly small. Much more recently, however, studies of dark matter and the
cosmic energy budget have shown that the large-scale structure of the universe is not
completely determined by its matter content, and so ƒ, in the form of ‘dark energy’, is
now again the subject of feverish study.

The results of NASA’s WMAP mission (see http://map.gsfc.nasa.gov/) showed
in 2003 that such a cosmological term, related to a dark energy field, is a necessary addi-
tion to Einstein’s equations of Eq. (4.28) in order to match the universe we find ourselves
in.

2.5 The field equations from a variational principle
�

The account above, of how we obtain Einstein’s equations, is pragmatic, and broadly
follows Einstein’s own approach to obtaining them. As well, it conveniently introduces
the idea of the energy-momentum tensor, and lets us develop some intuitions about it. It
is not the only way to obtain the equations, however.

In Sect. 4.1 of part 3, we saw, in passing, how we could obtain the geodesic
equation by extremising the integrated length of proper distance between two points,
ds D jg��dx�dx� j1=2. We can do something very similar with the Einstein-Hilbert
action , Einstein-Hilbert action

S D
1

16�

Z
�

R.�g/1=2d4x: (4.30)

Here, R is the Ricci curvature scalar of Eq. (4.14), g is the determinant of the metric, and
the volume of integration, � is the region interior to some boundary where we can take
the variation to be zero. The Ricci scalar is a simple object – a scalar field on spacetime –
which characterises the local curvature at each point. Under a change of basis, the volume
element d4x is scaled by a factor of the jacobian j@x N�=@x�j, and the determinant g by
a factor of .jacobian/�2 (these are ‘tensor densities’), so that the quantity

p
�g d4x is a

scalar.
We assume that this action, S , is extremised by the variation ıg�� in the metric.

This is a physical statement, and it is startling that such a simple statement – almost the
simplest non-trivial statement we can make with these raw materials – combined with the
very profound ideas of the calculus of variations, can lead us to the einstein equations.

Calculating the variation, ıS , resulting from a variation ıg�� , we find

ıS D

Z
d4x
p
�g

�
R�� �

1

2
Rg��

�
ıg�� (4.31)
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(the calculation is not long, but is somewhat tricky, and is described in Carroll [4, §4.3],
and in MTW [5, box 17.2 & ch. 21]). You will recognise the term in square brackets from
Eq. (4.20); requiring that ıS D 0 for all variations g�� therefore implies that

G�� D 0;

recovering Einstein’s vacuum field equations.
We can add a second term SM to the action, which depends on the energy-momentum

content of the spacetime volume, then perform the same calculation, and discover the
field equations in the presence of matter. Choosing what that term SM should be is of
course an intricate matter, but if we obtain from it the tensor

T�� D �2
1
p
�g

ıSM

ıg��
;

then we can recover the einstein equations of Eq. (4.28).

3 The newtonian limit

We cannot finish this course without using at least one physical metric, and the one
we shall briefly examine is that in the weak field limit, where spacetime is curved only
slightly, such as round a small object like the earth.

Before we do that we need to get units straight. In special relativity we chose our
unit of time to be the metre, and we followed that convention in this course. That meant
that the speed of light c was dimensionless:

1 D c D 299 792 458m s�1:

In gravitational physics, we use geometrical units, for much the same reason. In SIgeometrical units
units, Newton’s gravitational constant has the dimensions ŒG� D kg�1m3s�2, but it is
convenient in GR to have G dimensionless, and to this end we choose our unit of mass to
be the metre, with the conversion factor between this and the other mass unit, kg, obtained
by:

1 D
G

c2
D 7:425 � 10�28 m kg�1:

See Schutz’s §8.1 for a table of physical values in these units. Measuring masses in
metres turns out unexpectedly intuitive: when you learn about (Schwartzschild) black
holes you discover that the radius of the event horizon of an object has the same value
as the object’s mass expressed in metres. Also, within the solar system, the mass of the
sun is less well-known than the value of the ‘heliocentric gravitational constant’, GMˇ,
which has units of m3 s�2 in SI units, and thus units of metres in natural units.3

In the weak-field approximation, we take the spacetime round a small object to be
nearly minkowskian, with

g˛ˇ D �˛ˇ C h˛ˇ ; (4.32)

where jh˛ˇ j � 1, and the matrix �˛ˇ is the matrix of components of the metric in
minkowski space. Note that Eq. (4.32), defining h˛ˇ , is a matrix equation, not a tensor
one: we are choosing coordinates in which the matrix of components g˛ˇ of the metric

3GMˇ is known to one part in 1010, but sinceG is known only to one part in 104 or so, the uncertainty
inMˇ has the same value.
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tensor g is approximately equal to �˛ˇ . If we lorentz-transform Eq. (4.32) – using the ƒ˛
N̨

of SR, for which �
N̨ Ň
D ƒ˛

N̨
ƒˇ Ň�˛ˇ – we get an equation just like Eq. (4.32), but in the

new coordinates; that is, the components h˛ˇ transform as if they were the components
of a tensor in SR. This allows us to express R˛ˇ�� , R˛ˇ and G˛ˇ , and thus Einstein’s
equation itself, in terms of h˛ˇ plus corrections of order jh˛ˇ j2. The picture here is
that g˛ˇ is the result of a perturbation on flat (minkowski) spacetime, and that h (which
encodes that perturbation) is a tensor in minkowski space: expressing Einstein’s equations
in terms of h (accurate to first order in h˛ˇ ) gives us a mathematically tractable problem
to solve.

The next step is to observe that in the newtonian limit, which is the limit where
Newton’s gravity works, the gravitational potential j�j � 1 and speeds jvj � 1. This
implies that jT 00j � jT 0i j � jT ij j (because T 00 / m, T 0i / vi and T ij / vivj , with
vearth � 10

�4). We then identify T 00 D �CO.�v2/. By matching the resulting form of
Einstein’s equation with Newton’s equation for gravity, we fix the constant � in Eq. (4.28),
so that, in geometrical units,

G�� D 8�T �� : (4.33)

The solution to this equation, in this approximation, is

h00 D h11 D h22 D h33 D �2�; (4.34)

which translates into a metric for newtonian spacetime

g! diag.�.1C 2�/; 1 � 2�; 1 � 2�; 1 � 2�/; (4.35a)

which can be alternatively written as the interval

ds2 D �.1C 2�/dt2 C .1 � 2�/.dx2 C dy2 C dz2/: (4.35b)

� See Schutz §§8.3–4 for the slightly intricate details of this derivation to Eq. (4.35),
and see his §7.2 for the derivation of the newtonian geodesics below. Carroll

[4] gives an overlapping account of the same material in §4.1 and (with more technical
background) §7.1. Also, Prof. Hendry goes into this calculation in considerable detail in
Chapter 5 of GRG2, as part of the discussion of gravitational radiation.
� The decomposition of Eq. (4.32) can be viewed either in terms of tensors in a

background (flat) spacetime (as above), or as exploitation of a gauge freedom in GR.
Because of the coordinate invariance of GR, we are free to choose coordinates (ie choose a
gauge) in which the matrix h˛ˇ has desirable (ie simplifying) properties. The details omitted
here are to do with identifying what the desirable simplifications are, and proving that a
suitable choice of coordinates is indeed always possible. The solution to Eq. (4.33) in terms
of h can then be fairly directly shown to be Eq. (4.34).

What are the geodesics in this spacetime? The geodesic equation is rUU D 0. This
geodesic curve has affine parameter � , but by rescaling this parameter though an affine
transformation (� ! �=m), we can express this in terms of the momentum p D mU .
This has the advantage that the resulting geodesic equation

rpp D 0 (4.36)

is also valid for photons, which have a well-defined momentum even though they have
no mass m. We shall now solve this equation, to find the path of a free-falling particle
through this spacetime. See example 4.4
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The component form of Eq. (4.36) is

p˛p�;˛ C �
�

˛ˇ
p˛pˇ D 0:

If we restrict ourselves to the motion of a non-relativistic particle through this spacetime,
we have jp0j � jpi j, and we reduce this equation to

m
d

d�
p� C �

�
00.p

0/2 D 0: (4.37)

The 0–0 Christoffel symbols for this metric, in this approximation, are

�000 D �;0 CO.�
2/ (4.38)

� i00 D �
1
2 .�2�/;j ı

ij : (4.39)

The 0-th component of Eq. (4.37) then tells us that

dp0

d�
D �m

@�

@�
;

so that the energy of the particle in this frame is conserved in a non-time-dependent field
(the particle picks up kinetic energy as it falls, and loses gravitational potential energy).
The space component is

dpi

d�
D �m�;i

which is simply Newton’s law of gravitation, f D �mr�.See example 4.5
Thus we have come a long way in this course, from Special Relativity back, through

Ptolemy and Newton, to well before the place we started. We have discovered that the
universe is simple (the strong EP and Eq. (4.28)), and that we are now well-placed to look
upward and outward, towards the physical applications of GR II.

I do not know what I may appear to the world, but to myself I seem to have
been only like a boy playing on the sea-shore, and diverting myself in now
and then finding a smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all undiscovered before me. Isaac Newton, as quoted in
Brewster, Memoirs of the life, writings, and discoveries of Sir Isaac Newton
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Examples

Example 4.1 (section 1.2)

Deduce Eq. (4.7), given that you have only the tensors U ˝ U and g D � to work with,
that the result must be proportional to both � and p, and that it must be consistent with
both Eq. (4.6), and Eq. (4.4) in the limit p D 0. Thus write down the general expression
T D .a� C bp/U ˝ U C .c� C dp/g and apply the various constraints. Recall that
U D .1; 0/ in the MCRF.

Example 4.2 (section 2.2)

(a) Quote, and describe the significance of, the Equivalence Principle and the Strong
Equivalence Principle. [4]

(b) Explain briefly, and without calculation, how the Equivalence Principle implies
that light will be observed to bend when in a gravitational field. [4]

(c) What would happen to an electric motor in free fall across the event horizon of a
black hole (ignore any tidal effects)? [2]

(d) Explain what is meant by the ‘comma-goes-to-semicolon’ rule in general relativ-
ity, and why it follows from the principles of covariance and equivalence. [Objective 1,
Objective 2; adapted from Degree exam 2003]

Example 4.3 (section 2.4)

Prove that the curvature tensor has only 20 independent components for a 4-dimensional
manifold, when you take equations Eq. (3.49a) and Eq. (3.49b) into account.

Example 4.4 (section 3)

The geodesic equation, in terms of the momentum p, is rpp D 0 or, in components,

p˛pˇ I˛ D 0:

By expanding this, taking advantage of the symmetry of the resulting expression under
index swaps, and using the relation p˛d=dx˛ D md=d� , show that

m
dp˛
d�
D
1

2
gˇ;˛p

ˇp : (i)

You may need the relations

p˛Iˇ D p˛;ˇ � �


˛ˇ
p

�


˛ˇ
D
1

2
g�.g�˛;ˇ C g�ˇ;˛ � g˛ˇ;�/

[Objective 3, and other objectives from parts 2 and 3; from degree exam 2009, 10 marks]

Example 4.5 (section 3)

The Schwartzschild metric is

gt t D �.1 � a/ grr D .1 � a/
�1

g�� D r
2 g�� D r

2 sin2 �;
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where a D 2M=r , M is a constant, and all other metric components are zero.
Calculate the five non-zero derivatives of the metric.
Using Eq. (i), and by considering the relevant components of dp˛=d� , demonstrate

that:

1. if a particle is initially moving in the equatorial plane (that is, with � D �=2 and
p� D 0), then it remains in that plane;

2. if a particle is released from rest in these coordinates (that is, with pr D p� D p� D
0, and pt ¤ 0), it initially moves radially inwards.

[Objective 3, and other objectives from parts 2 and 3; from degree exam 2009, 15 marks]
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Attribution-NonCommercial-NoDerivatives 4.0 International Licence. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. The home URL of
these notes is http://purl.org/nxg/text/general-relativity
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affine parameter, 3-13, 3-14, 3-23, 4-12
basis, 2-5, 3-4

coordinate, 2-13, 3-5
dual, 2-7

basis transformation, 2-9, 3-4
Bianchi identities, 4-6
cartesian space, 2-11
chart, 3-2
Christoffel symbols, 3-6, 3-7, 3-9, 3-20, 3-21,

4-12
commutator, 3-16
components, 2-5–2-7
connecting vector, 3-17, 3-23
connection, 3-11

metric, 3-11, 3-13
contraction, 2-4, 2-5, 2-7

in Special Relativity, 2-13
coordinate system, 3-2
cosmological constant, 4-10
covariant derivative, 3-7, 3-11

of a function, 3-8
curvature, 3-14

and the metric, 2-8
curve, 3-2
direct product, 2-4
dual basis, 3-4
dust, 4-2
Einstein

field equations, 4-8–4-11
summation convention, 2-6
tensor, 4-6

Einstein-Hilbert action, 4-11
energy density, 4-3
energy-momentum tensor, 4-4
equivalence principle, 4-6

strong, 4-7, 4-13
weak, 1-4

euclidean space, 2-11, 3-2
eucliean space, 3-5
falling lift, 1-3
Faraday tensor, 4-5
field, 2-5, 3-4, 3-7, 3-11, 3-12

tensor, 2-8
fluid, 4-2
general covariance, principle of, 1-5
geodesic, 3-12
geodesic coordinates, 3-10
geodesic deviation, 1-4, 3-17, 3-24
geodesic equation, 3-13, 3-14, 3-23, 4-12
geometrical units, 1-6, 4-11
gradient one-form, 2-5, 3-4, 4-3

gravitational redshift, 1-3
index lowering, 2-8
inertial frame, 1-3, 3-13

local, 1-3, 3-9, 3-10, 3-22
inner product, 2-2
Kronecker delta symbol, 2-2
Lie derivative, 3-10
linear independence, 2-2
linearity, 2-2, 3-12
local flatness theorem, 3-10
manifold, 3-2
mass density, 4-4
MCRF, 4-2
metric tensor, 2-8

and the Christoffel symbol, 3-9
Minkowski space, 2-13
momentum density, 4-4
natural units, see geometrical units
Newton’s laws, 1-5, 4-13
norm, 2-2, 2-13
normal coordinates, 3-10
one-form, 2-3
orthogonal, 2-2
orthonormal, 2-2
outer product, 2-4, 4-4
parallel transport, 3-11, 3-14
path, 3-2
polar coordinates, 2-12
positive-definite, 2-2
Ricci

scalar, 4-6
tensor, 4-6

Riemann curvature tensor, 3-16
Schild’s photons, 1-3
sign conventions, 1-8
signature, 3-10
Special Relativity, 2-13
stress-energy tensor, 4-4
tangent plane, 3-3, 3-10
tangent vector, 3-3, 3-4, 3-11, 3-12
Taylor’s theorem, 3-10, 3-15
tensor, 2-3

antisymmetric, 2-4
components, 2-7
symmetric, 2-4

transformation matrix, 2-9
in Special Relativity, 2-13

vector, 2-3
vector space, 2-2, 3-3

basis, 2-2
components, 2-2
dimension, 2-2
span, 2-2
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