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Aims You should

1. understand the relationship between directional derivatives on a manifold and the
vectors in the tangent plane;

2. understand the relationship between covariant differentiation in flat and curved
spaces;

3. understand the significance of the geodesic equation;

Objectives You should be able to demonstrate that you can

1. obtain the components of the basis transformation matrix ƒ, given the algebraic
relationship between the corresponding coordinates;
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GRG I, part 3 – Manifolds, vectors and differentiation

2. calculate expressions for the connection coefficients � i
jk

, given the metric (though
you do not need to memorise Eq. (3.29)), and use these to calculate the components
of covariant derivatives;

3. quote the expressions Eq. (3.15) and Eq. (3.21) for the covariant derivatives of vectors
and one-forms;

4. explain why parallel transport and the connection are important in the definition of
differentiation on a curved space (that is, give a summary account of the argument
in Sect. 3.2);

5. use the geodesic equation (in its differential equation form, Eq. (3.37)) to obtain
equations for geodesics in coordinate form, in simple cases, and for given metrics or
connection coefficients;

6. calculate the Riemann and Ricci tensors corresponding to a given metric or set of
connection coefficients, in simple cases (note that ‘in simple cases’ is important: this
task is generally algebraically unwieldy unless the problem is constructed to have
a good deal of symmetry, and unless you can recognise and exploit this – it is this
latter ability that is the real objective here);

7. apply the geodesic deviation equation, Eq. (3.54) in simple cases.

1 The tangent vector

In the previous part, we carefully worked out the various things we can do with a set of
vectors, one-forms and tensors, once we have identified those objects. Identifying those
objects on a curved surface is precisely what we are about to do now. We discover that
we have to take a rather roundabout route to them.

1.1 Manifolds and functions

The arena on which everything happens is the manifold , which is a very primitivemanifold
concept. A manifold is a set of points, with the only extra structure being enough to allow
continuous functions to be defined on it. In particular, a manifold does not have a metric
defined.

A chart is a set of functions fx1; : : : ; xng which together map points on the manifoldchart
to Rn. In other words, it is a coordinate system. The fact that the range of this map iscoordinate system
(flat) Rn allows us to say that the manifold is locally Euclidean.

Now consider a path on the manifold – this is just a continuous sequence of points.path
We distinguish this from a curve, �.t/, say, which is a mapping from a parameter tcurve
to points on a path – two mappings which map to the same path but with different
parametrisation are different curves.

If we put these ideas together, and think of the functions x1
�
�.t/

�
; : : : ; xn

�
�.t/

�
,

then we have a set of mappings from the curve parameter to the coordinates. The properties
of the manifold tell us that these are smooth functions xi .t/, so we can differentiate with
respect to the parameter.

1.2 Defining the tangent vector

Now think of a function f WM ! R which is defined on the manifold M , and therefore
at every point along the curve �. The function f is a function of �.t/, so it is also a
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function (Rn ! R) of the coordinates of the points along that curve, or

f D f
�
�.t/

�
D f

�
x1
�
�.t/

�
; : : : ; xn

�
�.t/

��
;

which we can write as just (R! R)

f D f
�
x1.t/; : : : ; xn.t/

�
:

So how does f vary as we move along the curve? Easy:

df
dt
D

nX
iD1

@xi

@t

@f

@xi
:

However, since this is true of any function f , we can write instead

d
dt
D

X
i

@xi

@t

@

@xi
: (3.1)

Now consider the same path parameterised by ta D t=a. We have

df
dta
D

X
i

@xi

@ta

@f

@xi

D a
X
i

@xi

@t

@f

@xi

D a
df
dt

(3.2)

Consider another curve �.s/, which crosses curve �.t/ at point P . We can therefore
write, at P ,

a
df
ds
C b

df
dt
D

X
i

�
a
@xi

@s
C b

@xi

@t

�
@f

@xi
D

X
i

@xi

@r

@f

@xi
D

df
dr
; (3.3)

for some further curve �.r/ which also passes through point P .
But now look what we have discovered. Whatever sort of thing d=dt is, ad=dt is the

same type of thing (from Eq. (3.2)), and so is ad=ds C bd=dt . But we look at Sect. 1.1 of
part 2, and realise that these derivative-things at P , which we’ll write .d=dt /P , satisfy the
axioms of a vector space. Thus the things .d=dt /P are another example of things which
can be regarded as vectors, or .10/ tensors. The thing .d=dt /P is referred to as a tangent
vector . tangent vector

A vector V D .d=dt /P has rather a double life. Viewed as a derivative, V is just an
operator which acts on a function f to give

V f D

�
d
dt

�
P

f D
df
dt

ˇ̌̌̌
t.P /

;

the rate of change of f along the curve �.t/, evaluated at P . There’s nothing particularly
exotic there. What we have just discovered, however, is that this object .d=dt /P can also,
separately, be regarded as a vector in a vector space TP .M/, and as such is a .10/ tensor,
which is to say a thing which takes a one-form as an argument, to produce a number
which we will write as

˝e!; V ˛, for some one-form e! (we will see in a moment what this
one-form is; it is not the function f ). This dual aspect does seem confusing, and makes
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the object V seem more exotic than it really is, but it will (should be!) always clear from
context which facet of the vector is being referred to at any point.

We’ll refer to the set of these directional derivatives as TP .M/, the tangent plane of
the manifold M at the point P . It is very important to note that TP .M/ and, say, TQ.M/ tangent plane
– the tangent planes at two different points of the manifold – are different spaces, and have
nothing to do with one another a priori (though this is ultimately why we introduce the
connection in Sect. 2).

With this in mind, we can reread Eq. (3.1) as a vector expression, identifying the
vectors

ei D

�
@

@xi

�
P

(3.4)

as a basis for the tangent-space, and the numbers @xi=@t as the components of the
vector V D .d=dt /P in this basis, or�

d
dt

�
P

D

X
i

@xi

@t

�
@

@xi

�
P

V D V iei :

So, I’ve shown you that we can regard the .d=dt /P as vectors; the rest of this part of
the course should convince you that this is additionally a useful thing to do.

1.3 The gradient one-form

[Schutz discusses these ideas in the opposite order, defining the gradient one-form before
the tangent vector. See his §§3.3 and 5.2. Which do you think works better?]

Consider a function f , defined on the manifold. This is a field , which is to say it
is a rule which associates an object – in this case the number which is the value of the
function – with each point on the manifold (see Sect. 2.3 of part 2). Given this function,
there is a particular one-form field which we can define (that is, a rule for associating a
one-form with each point in the manifold), namely the gradient one-formedf . Given agradient one-form
vector V D .d=dt /P , the tangent to a curve �.t/, the gradient one-form is defined by its
contraction with this vector:

e̋df; V ˛ D �edf; d
dt

�
Dedf � d

dt

�
�

df
dt

ˇ̌̌̌
P

: (3.5)

The first two equalities here simply express notational equivalences; it is the third equality
which is the definition of the gradient one-form’s action.See example 3.1

Now consider the gradient one-form associated with, not f , but one of the coordinate
functions xi (from Sect. 1.1, recall that the coordinates are just a set of functions on the
manifold, and in this sense not importantly different from an arbitrary function f ). We
write these as simplyedxi : what is their action on the basis vectors ei D @=@xi (from
Eq. (3.4))? Directly from Eq. (3.5),

edxi � @

@xj

�
D
@xi

@xj
D ıi j ; (3.6)

so that, comparing this with Eq. (2.3a), we see that the set e!i Dedxi forms a basis for the
one-forms which is dual to the vector basis ei D @=@xi .dual basis

3-4



GRG I, part 3 – Manifolds, vectors and differentiation

1.4 Basis transformations

What does a change of basis look like in this new notation? If we decide that we do not
like the coordinate functions xi and decide to use instead functions xN{ , how does this
appear in our formalism, and how does it compare to Sect. 2.7 of part 2?

The new coordinates will generate a set of basis vectors

eN{ D
@

@xN{
: (3.7)

This new basis will be related to the old one by a linear transformation

eN{ D ƒ
j
N{ ej ;

and the corresponding one-form basis will be related via the inverse transformation

e! N{ D ƒN{je!j
(recall example 2.8 of part 2). Thus, from Eq. (2.13),

ƒN{j D e!N{.ej / DedxN{ � @

@xj

�
D
@xN{

@xj
(3.8a)

ƒ
j
N{ D e!j .eN{/ Dedxj � @

@xN{

�
D
@xj

@xN{
: (3.8b)

See example 3.2
See example 3.3
See example 3.4

� Note that the transformation matrix is defined as transforming the basis vectors and
one-forms; as an immediate consequence it can transform the vector and one-form

components also (as discussed in Sect. 2.7). Because of the above choice of basis vectors
as the differentials of the coordinate functions, the transformation matrix also describes a
transformation between coordinate systems. This choice of basis vectors is a coordinate basis
– see Schutz §5.5 for discussion of non-coordinate bases.
� If we consider a curve �.t/, which is such that @x1

�
�.t/

�
=@t D 1 and xi

�
�.t/

�
D

ci for i > 1 (ie this is a ‘grid line’), then simply comparing with Eq. (3.1) we see
that d=dt D @=@x1. Thus in a coordinate basis, where ei D @=@xi , the i-th basis vector at
any point is tangent to the i-th ‘grid line’, which matches the intuition we have for the basis
vectors ex , ey , and so on, in ordinary plane geometry.

2 Covariant differentiation in flat spaces

We are now finally in a position to move on to the central tool of this part, the ideas of
coordinate-independent differentiation of tensors, parallel transport, and curvature. We
will make this move in two steps: first, we will learn how to handle the situation where
the basis vectors of the space of interest are different at different points in the space, but
confining ourselves to flat (euclidean) space, where we already know how to do most of
the calculations; secondly, we will discover the rather simple step involved in transferring
this knowledge to the case of fully curved spaces.

� There are other ways of introducing the covariant derivative, which are very insight-
ful, but more than a little abstract. Stewart [1, §1.7] introduces it in an axiomatic

way which makes clear the tensorial nature of the covariant derivative from the very outset, as
well as its linearities and some of its other properties. ‘Blue Schutz’ [2, ch.6] introduces it in a
typically elegant way, via parallel transport, and emphasising the ultimate arbitrariness of the
precise differentiation rule. Both of these routes define a connection which is more general
than the one we are led to here, and only later specialise it to the metric connection which
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we are led to below. Chapter 10 of MTW [3] gives a very good, and visual, introduction to
covariant differentiation, though approaching it from a somewhat different direction.

The point of this – the goal we are aiming for – is this: given some geometrical
object V of physical interest (such as an electric field in a space, or a strain tensor in some
medium), we want to know how it varies as we move around a space, in a way which
doesn’t depend on the coordinates we have chosen.

2.1 Differentiation of basis vectors

This section is to some extent another notation section, in that it is describing something
you already know how to do, but in more elaborate and powerful language.

You will in the past have dealt with calculus in curvilinear coordinate systems and
produced such results as the Laplacian in spherical polar coordinates being

r
2
D

1

r2
@

@r

�
r2
@

@r

�
C

1

r2 sin �
@

@�

�
sin �

@

@�

�
C

1

r2 sin2 �
@2

@�2
:

We are now aiming for much the same destination, but by a slightly different route. This
follows Schutz §§5.3–5.5 quite closely.

We will proceed by examining the basis vectors of (plane) polar coordinates, as
expressed in terms of the cartesian basis vectors ex and ey . In the next section we will
see that our formalism is not restricted to this route.

The basis vectors of polar coordinates are

er D cos �ex C sin �ey (3.9a)
e� D �r sin �ex C r cos �ey : (3.9b)

A little algebra shows that

@

@r
er D 0 (3.10a)

@

@�
er D

1

r
e� (3.10b)

@

@r
e� D

1

r
e� (3.10c)

@

@�
e� D �rer ; (3.10d)

so that we can see how the basis vectors change as we move to different points in the
plane, unlike the cartesian basis vectors.

At any point in the plane, a vector V has components .V r ; V � / in the polar basis at
that point. We can differentiate this vector with respect to, say, r , in the obvious way

@V

@r
D

@

@r
.V rer C V

�e� /

D
@V r

@r
er C V

r @er

@r
C
@V �

@r
e� C V

� @e�

@r
;

or, in index notation, with ˛ running over the ‘indexes’ r and � ,

@V

@r
D

@

@r
.V ˛e˛/

D
@V ˛

@r
e˛ C V

˛ @e˛

@r
:

3-6



GRG I, part 3 – Manifolds, vectors and differentiation

If, finally, we realise that there is nothing special about the coordinate r , and that we could
write a similar expression involving xˇ , which is either of the coordinates r and � , we
can write the perfectly general form (which we could in fact have written down directly),

@V

@xˇ
D
@V ˛

@xˇ
e˛ C V

˛ @e˛

@xˇ
: (3.11)

In cartesian coordinates, the second term in this expression is identically zero, since the
basis vectors are the same everywhere on the plane, and so we can obtain the differential
of a vector by simply differentiating its components (the first term above); this is not true
when we are using curvilinear coordinates, and the second term comes in when we worry
about how the basis vectors are different at different points on the plane.

Now, the second term above, @e˛=@xˇ , is itself a vector, so that it is a linear combi-
nation of the basis vectors, with coefficients ��

˛ˇ
:

@e˛

@xˇ
D �

�

˛ˇ
e�: (3.12)

This set of symbols ��
˛ˇ

are called the Christoffel symbols , and this set of n�n�n numbers Christoffel symbols
encodes all the information we need about how the coordinates, and their associated basis
vectors, change within the space. The object � is not a tensor – it is merely a collection
of numbers – so its indexes are not staggered (just like the transformation matrix ƒ).

We have done all the work to calculate the Christoffel symbol(s) for polar coordinates.
If we compare Eq. (3.10) with Eq. (3.12), we see

��r� D �
�
�r D 1=r; �r�� D �r; (3.13)

with all other components zero. See example 3.5

2.2 The covariant derivative in flat spaces

Importantly, there is nothing in the definition of the Christoffel symbols, Eq. (3.12), or their
calculated values, Eq. (3.13), which refers to the cartesian basis which we (incidentally)
used when working them out in Eq. (3.10). That is, we are at this point free of any
dependence on a particular coordinate system.

Notation: If we rewrite Eq. (3.11) including Eq. (3.12), relabel and reorder, we find

@V

@xˇ
D

�
@V ˛

@xˇ
C V ��˛�ˇ

�
e˛: (3.14)

For each ˇ this is a vector at each point in the space – that is to say, it is a vector field –
with components given by the term in brackets. We denote these components of the vector
field by the notation V ˛ Iˇ , with the semicolon denoting covariant differentiation. If we
further denote the derivative of the component @V ˛=@xˇ D V ˛;ˇ , then we can write

@V

@xˇ
D V ˛ Iˇe˛ (3.15a)

V ˛ Iˇ D V
˛
;ˇ C V

��˛�ˇ : (3.15b)

It is important to be clear about what you are looking at, here. The objects V ˛ Iˇ are
numbers which are the components, indexed by ˛, of a set of vectors, indexed by ˇ. They
look rather like tensor components, however, and we are about to deduce that that is
exactly what they are in fact. But components of which tensor? See example 3.6

See example 3.7
See example 3.8 3-7
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Final step: Look back at Eq. (3.7), and notice that the differential @=@xˇ in Eq. (3.14)
is associated with the basis vector eˇ . Indeed, the (vector) differential @=@xˇ is a linear
function of the vector eˇ (if you doubled the length of eˇ , you would halve the values
of xˇ , and thus double @=@xˇ ). Another way of saying that is that there exists a .11/ tensor,
which we shall call rV , which we shall define by saying that the action of it on the
vector eˇ is the vector @V =@xˇ in Eq. (3.14). Using the notation of part 2, we could write

.rV /.e� I eˇ / � @V

@xˇ
.e� / (3.16)

as the definition of the tensor rV . For notational convenience, we prefer to write this as

reˇV D
@V

@xˇ
: (3.17)

This tensor rV is called the covariant derivative of V , and its components arecovariant derivative

.rV /˛ˇ � .rV /.e!˛I eˇ / � .reˇV /˛ � .rˇV /˛ D V ˛ Iˇ ; (3.18)

where the first equivalence is what we mean by the components of a tensor, the second is
the definition of the tensor, restated from the text above Eq. (3.16), the third is a notational
convenience, which applies in the case where the argument vector is a basis vector, and
the equality indicates the numerical value of this object – the ˛-th component of the
vector rˇV – via Eq. (3.17) and Eq. (3.15a).

You will also sometimes see an expression such as rXV . This is the covariant
derivative of V , contracted with X . In component form, this is

rXV D rV . � ; X/ D X
˛
rV . � ; e˛/ D X

˛
r˛V D X

˛V ˇ I˛eˇ : (3.19)

We have introduced a blizzard of notations here. Remember that they are all notational
variants of the same underlying object, namely the tensor rV . Make sure you understand
how to go from one variant to the other, and why they relate in the way they do.

Here’s where we’ve got to: we’ve managed to define a tensor field related to V ,
called the covariant derivative, and written rV , which (since it is a tensor) is independent
of any coordinate system, and so doesn’t depend on any coordinate system, and doesn’t
pick out any coordinate system as special. If we need its components in a particular
system fx�g, however, because we need to do some calculations, we can find them easily,
via Eq. (3.15), or by transforming the components from a system where we already know
them (such as cartesian coordinate) into the system fx�g – we know we can do this
because we know that rV is a tensor, so we know how its components transform.

Finally, here, note that a scalar is independent of any coordinate system, therefore
all the complications of this section, which essentially involve dealing with the fact that
basis vectors are different at different points on the manifold, disappear, and the covariant
derivative of a scalar is simply the partial derivative (cf Schutz eq. 5.53):

rˇf D
@f

@xˇ
: (3.20)

Comparing this with Eq. (3.5) (with eˇ D @=@xˇ instead of V ), we see that we can
identify the covariant derivative of a function with the gradient one-form:

rf Dedf:
3-8
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From this we can deduce the expression for the covariant derivative of a one-form, which
we shall simply quote as:

.rˇep/˛ � .rep/˛ˇ � p˛Iˇ D p˛;ˇ � p���˛ˇ ; (3.21)

(note the sign difference from Eq. (3.15)). The derivative of a .11/ tensor is

rˇT
�
� � T

�
�Iˇ D T

�
�;ˇ C �

�

˛ˇ
T ˛� � �

˛
�ˇT

�
˛: (3.22)

Note how systematic this expression is, and that it is systematically extensible to higher
orders of tensor – there is oneC� term for each upper tensor index, and one �� term for
each lower index. The expression looks hard to remember, but is easier than it looks.

Also, the product rule applies

rˇ .p�V
�/ D p�IˇV

�
C p�V

�
Iˇ : (3.23)

See Schutz §5.3 for details.

� In this discussion of vector differentiation, built up since the beginning of Sect. 2.1,
we have not had to recall anything other than that the vectors e˛ are the basis

vectors of a vector space. That is, there is no complication arising from our definition of the
vectors as tangent vectors, associated with the derivative of a function along a curve; there is
no meaningful sense in which this is a ‘second derivative’.

2.3 The metric and the Christoffel symbol

The covariant derivative, and the Christoffel symbols, give us information about how,
and how quickly, the basis vectors change as we move about a space. It is therefore no
surprise to find that there is a deep connection between these and the metric, which gives
information about distances within a space.

Remember that the metric (a .02/ tensor) allows us to identify a particular one-form
associated with a given vector:

eV D g.V ; � /: (3.24)

Note that this is a purely geometrical (ie, coordinate-independent) equation. Recall
that in cartesian coordinates (a) the components of a vector and its associated one-form
are equal, and (b) the basis vectors are constant, so that covariant differentiation is just
straight partial differentiation of the components, so that (c) in cartesian coordinates the
components of the covariant derivative (with respect to a basis vector eˇ ) of a vector and
of its associated one-form are equal:

rˇ
eV D g.rˇV ; � /: (3.25)

But this is also a purely geometrical equation; so that, even though we justified it using a
particular (cartesian) coordinate system, it must be true in all coordinate systems.

In components (and in all coordinate systems),

V˛ D g˛�V
� (3.26)

V˛Iˇ D g˛�V
�
Iˇ : (3.27)

Note that the latter equation (which we obtained by comparing Eq. (3.25) and Eq. (3.21))
is not trivial. From the properties of the metric we know that there exists some tensor
which has components A˛ˇ D g˛�V �Iˇ : what this expression tells us is the non-trivial
statement that this A˛ˇ is exactly V˛Iˇ . See example 3.9
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That is to say that we did not get Eq. (3.27) by differentiating Eq. (3.26), though it
looks rather as if we did. What do we get by differentiating Eq. (3.26)? By the product
rule Eq. (3.23)

V˛Iˇ D g˛�IˇV
�
C g˛�V

�
Iˇ :

But comparing this with Eq. (3.27), we see that the first term on the right-hand side must
be zero, for arbitrary V . Thus, in all coordinate systems (and relabelling)

g˛ˇ I� D 0: (3.28)

We have not exhausted the link between covariant differentiation and the metric.
The two are related via

�


ˇ�
D 1

2g
˛ .g˛ˇ;� C g˛�;ˇ � gˇ�;˛/: (3.29)

The proof is in Schutz §5.4, leading up to his equation (5.75); it is not hard to follow,
just a little tedious. It depends on first proving that

�
�

˛ˇ
D �

�

ˇ˛
; in all coordinate systems: (3.30)

Equation (3.29) completely cuts the link between the Christoffel symbol and cartesian
coordinates, which might have lingered in your mind after Sect. 2.2 – once we have a
metric, we can work out the Christoffel symbol’s components immediately.See example 3.10

See example 3.11

3 The covariant derivative in curved spaces

Having done all this work to develop covariant differentiation in flat space, but in purely
geometrical terms, it might be a surprise to discover that there is actually rather little to
do to bring this over to the most general case of curved spaces. See Schutz §§6.2–4.

The first step is to define carefully the notion of a local inertial frame.

3.1 Local inertial frames – the local flatness theorem

Recall from Sect. 1.1 that a manifold is little more than a collection of points. What gives
this manifold shape is the metric tensor g, which is a symmetric .02/ tensor which, in a
particular coordinate system, has the components g˛ˇ , which we can choose more-or-
less how we like. In a different coordinate system, this same tensor will have different
components g

N̨ Ň
. The question is, can we find a coordinate system in which the metric

has the particular form �
N̨ Ň
D diag.�1; 1; 1; 1/? That is, can we find a coordinate

transformation ƒ N̨˛ which transforms the coordinates x˛ into the coordinates x N̨ in which
the metric is diagonal?

If the matrix g˛ˇ does not have three positive and one negative eigenvalues (ie, a
signature ofC3�1 D C2) then no, we cannot, and the metric in question is uninteresting
to us because it cannot describe our universe. If the metric does have a signature ofC2,
however, then it is a theorem of linear algebra that we can indeed find a transformation to
coordinates in which the metric is diagonal at a point.

But we can do better than this. Recall that both g˛ˇ andƒ N̨˛ are continuous functions
of position; within the constraints that g be symmetric and ƒ be invertible, they are
arbitrary. By choosing the numbersƒ N̨˛ and their first derivatives, we can find coordinates
which have their origin at P and in which

g
N̨ Ň
.x N�/ D �

N̨ Ň
CO

�
.x N�/2

�
;
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(compare Taylor’s theorem) or

g
N̨ Ň
.P / D �

N̨ Ň
(3.31a)

g
N̨ Ň; N .P / D 0 (3.31b)

g
N̨ Ň; N Nı.P / ¤ 0: (3.31c)

This is the local flatness theorem , and the coordinates x N� represent a local inertial frame , local flatness theorem
local inertial frameor LIF.

These coordinates are also known as ‘normal’ or ‘geodesic’ coordinates, and geo-
desics expressed in these coordinates have a particularly simple form. Also, in these
coordinates, it turns out that � i

jk
D 0 at a point, which is just another way of saying that

this space is locally flat.
Schutz’s proof of the theorem at the end of his §6.2 is very illuminating.

3.2 Covariant derivatives in curved spaces

You know how to differentiate things. For some function f W R! R,

df
dx
D lim
h!0

f .x C h/ � f .x/

h
: (3.32)

That’s straightforward because it’s obvious what f .x C h/ � f .x/ means, and how we
divide that by a number. Surely we can do a similar thing with vectors on a manifold.
Not trivially, because remember that the vectors at P are not defined on the manifold but
on the tangent plane TP .M/ at a point P , and so the vectors at a different point Q are
in a completely different space TQ.M/, so it’s not obvious how to ‘subtract’ one vector
from the other. Differentiation on the manifold consists of finding ways to define just that
‘subtraction’.

There are several ways to do this. One produces the ‘Lie derivative’, which is
important in many respects, but which we will not examine.

� The Lie derivative is a coordinate-independent derivative defined in terms of a
vector field. A vector field X has integral curves such that, at each point p on the

integral curve, the curve’s tangent vector is X.p/. As an example, stream lines in a fluid are
integral curves of the fluid’s velocity vector field.
� The Lie derivative of a function at a point p, written .£

X
f /p , is defined as the rate

of change of the function along the (unique) integral curve of X going through p,
and Lie derivatives of higher-order tensors are defined in an analogous way. The disadvantage
of this type of derivative is that it clearly depends on an auxiliary vector field X ; but the
compensating advantage is that it does not depend on a metric tensor, or any other definition
of distance. These make it less useful than the covariant derivative for most GR applications,
but it remains useful in other contexts, such as those where there is already an important
vector field present, including applications in fluid dynamics. For details, see [1] or [2]; or
look at exercise 39 in Schutz’s §6.9.

The other way to define this ‘subtraction’ uses the notion of ‘parallel transport’,
which we define and examine now.

You parallel transport a vector along a curve if the vectors at any two infinitesimally parallel transport
separated points are deemed parallel, in the sense of having the same length and pointing
in the same direction (a diagram helps here). The rule for deciding whether two such
vectors are parallel isn’t specified here, and is broadly up to you, but we’ll come back to
that.

This gives us a way of talking about ‘subtraction’. Take a vector field V on the
manifold, and two points P and Q which are both on some curve �.t/, with tangent
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vector U . We can take the vector V .Q/ at Q and parallel transport it back to P ; at
that point it is in the same space TP .M/ as the vector V .P / so we can unambiguously
subtract them to give another vector in TP .M/. These two points are a parameter
distance t .Q/� t .P / apart, so we can divide the difference vector by that distance (which
is a number), find the limit as that distance goes to zero, and thus reconstruct all the
components we need to define a differential just like Eq. (3.32). The differential we get
by this process is the covariant derivative of V along U , written rUV .covariant derivative

The covariant derivative depends on using parallel transport as a way of connecting
vectors in two different tangent planes. The covariant derivative is sometimes also called
the connection , and the Christoffel symbols the connection coefficients.connection

If V .Q/ starts off as just the parallel-transported version of V .P /, then when we
parallel-transport it back to P we’ll get just V .P / again, so that this covariant derivative
will be zero; thus

rUV D 0, (V is parallel transported along U ): (3.33)

The crucial thing here is that nowhere in this account of the covariant derivative have
we mentioned coordinates at all.

� Writing down the details of the construction of this derivative would be notationally
intricate and take us a little too far afield. If you want details, they’re in blue-Schutz

or Stewart. Also, the definition of parallelism via the LIF, below, is not the only one possible,
but picks out a particular derivative and set of connection coefficients, called the ‘metric
connection’. Only with this connection are Eq. (3.34) and Eq. (3.35) true.

We’ve actually said rather little, here, because although this has, I hope, made clear
how closely linked are the ideas of the covariant derivative and parallel transport, we
haven’t said anything about exactly how we go about choosing a definition of parallelism,
and we haven’t seen how this links to the covariant derivative we introduced in Sect. 2.
The link is the locally-flat local inertial frame. Although the general idea of parallel
transport, and in particular the definition we introduce below, may seem obvious or
intuitive, do remember that there is a good deal of arbitrariness in its actual definition.See example 3.12

Consider the coordinates representing the LIF at the point P . This is a flat cartesian
space (but not euclidean, remember, since it does not have a euclidean metric). That
means that the basis vectors are constant – their derivatives are zero. A definition of
parallelism now jumps out at us: two nearby vectors are parallel if their components
in the LIF are the same. But this is the definition of parallelism that was implicit in
the differentiations we used in sections 2.1 and 2.2, leading up to Eq. (3.11), and so the
covariant derivative we end up with is the same one: the tensor rV as defined in this
section is the same as the tensor rV of Eq. (3.18). In other words, in this cartesian frame,
covariant differentiation as defined in this section is the same as ordinary differentiation,
and

V ˛ Iˇ D V
˛
;ˇ in LIF:

Now, this is true for any tensor, so specifically

g˛ˇ I� D g˛ˇ;� D 0 at P ;

by Eq. (3.31a). But this is a tensor equation, so it is true in any coordinate system, and
since there is nothing special about the point P , it is true at all points of the manifold:

g˛ˇ I� D 0 in any coordinate system: (3.34)

As mentioned at the end of Sect. 2.3, from Eq. (3.34) we can, if ��
˛ˇ
D �

�

ˇ˛
(which is the

case for this definition of covariant differentiation), deduce that

�˛�� D
1
2g
˛ˇ .gˇ�;� C gˇ�;� � g��;ˇ /: (3.35)
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See also Schutz’s discussion of geodesics on his pp.156–157 (pp.166–7 in the first
edition), which elaborates the idea of parallelism introduced here.

4 Geodesics

Consider a curve �.t/ and its tangent vectors U (that is, the set of vectors U is a field
which is defined at least at all the points along the curve �). If we have another vector
field V , then the vector rUV tells us how much V changes as we move along the curve �
which U is the tangent to. What happens if, instead of the arbitrary vector field V we take
the covariant derivative of U itself? In general, rUU will not be zero – if the curve ‘turns
a corner’, then the tangent vector after the corner will no longer be parallel to the tangent
before the corner. The meaning of ‘parallel’ here is exactly the same as the meaning of
‘parallel’ which was built in to the definition of the covariant derivative in the passage
after Eq. (3.33). Curves which do not do this – that is, curves such that all the tangent
vectors are parallel to each other – are the nearest thing to a straight line in the space, and
indeed are a straight line in a flat space. A curve such as this is called a geodesic . Thus geodesic
the definition of a geodesic is:

rUU D 0:, (U is the tangent to a geodesic) (3.36)

Equation (3.36) has a certain spartan elegance, but if we are to do any calculations
to discover what the path of the geodesic actually is, we need to unpack it.

The object r.�/U is a .11/ tensor, as you will recall, with its vector argument denoted
by the .�/ (a peculiar notation, I know, and only for this section). Since it is a tensor, it
is linear in this argument. That is, for any vector A and scalar a, raAU D arAU , and
specifically rA�e�U D A

�re�U � A
�r�U . The vector U has components

U D U ˇeˇ ;

and so Eq. (3.36) can be written

U ˇrˇU D U
ˇU ˛ Iˇe˛ D 0

(recalling Eq. (3.18)). The ˛-component of this equation is, using Eq. (3.15b),

U ˇU ˛ Iˇ D U
ˇU ˛;ˇ C U

ˇU��˛ˇ� D 0:

Let t be the parameter along the geodesic (that is, there is a parameterisation of the
geodesic, �.t/, with parameter t , which U is the tangent to). Then (using Eq. (3.5))
U ˇ D U.edxˇ / D dxˇ=dt and U ˛;ˇ D @=@xˇ .dx˛=dt /, and pretty immediately we find

d
dt

�
dx˛

dt

�
C �˛ˇ�

dxˇ

dt
dx�

dt
D 0: (3.37)

This is the geodesic equation . For each ˛ it is a second order differential equation geodesic equation
with initial conditions comprising the initial position x˛0 D x˛.tP / (if the parameter t
has value tP at point P ) and initial direction/speed U ˛0 D dx˛=dt jtP . The theory of
differential equations tells us that this equation does have a unique solution.

A parameter t for which we can write down the geodesic equation Eq. (3.37) is
termed an affine parameter , and if t is an affine parameter, it is easy to confirm that � D affine parameter
at C b, where a and b are constants, is an affine parameter also.

An affine parameter is one which, in MTW’s words [3, §1.5], is ‘defined so that
motion looks simple’. You can reasonably measure time in seconds since midnight, or
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minutes (seconds=60), or minutes since noon (seconds=60 � 720). These are all affine
transformations, and they share the property that unaccelerated motion is a linear function
of time. If you were reckless enough to measure time in units of seconds-squared, then
unaccelerated (that is, simple) motion would look very complicated indeed. Another way
of saying this is that an affine parameter is the time coordinate of some inertial system,
and all that means it that an affine parameter is the time shown on some free-falling ‘good’
clock. There are further remarks about affine parameters in Sect. 4.1.See example 3.13

� The connection (or rather the class of connections) we have defined here (see
Sect. 3.2) is constructed in such a way as to preserve parallelism. Such a connection

is an affine connection – the word ‘affine’ comes from a Latin root meaning ‘neighbouring’.
Other types of connection are possible; see blue-Schutz [2, §6.14] if you’re very keen.

A geodesic is a curve of extremal length. In a space with a metric with the signature
of GR, it is a curve of maximal length; in a euclidean space it is a curve of minimal length:
for Euclid, a straight line is the shortest distance between two points.

�� Note on metric connections (extremely non-examinable) : in other of these asides
I have emphasised that this metric connection is not the only one definable. Since

geodesics are defined in terms of the connection, it does indeed follow that the geodesics
implied by these other connections are different from the geodesics of the metric connection,
and specifically are not the curves of extremal length. This is bound up with the property
Eq. (3.34), and the observation that only with the metric connection is the dot product g.A;B/
invariant under parallel transport. This is one reason why the metric connection is so important,
to the point of being essentially ubiquitous in general relativity.

4.1 The variational principle and the geodesic equation
�

We can prove directly that the geodesic is a curve of extremal length, by deriving the
geodesic equation explicitly from a variational principle.

For a given curve through spacetime, parameterised by �, the length of the curve is
given by

l D

Z
curve

ds D
Z

curve

ˇ̌
g˛ˇdx˛dxˇ

ˇ̌1=2
D

Z �1

�0

ˇ̌
g˛ˇ Px

˛
Pxˇ
ˇ̌1=2d�;�

Z �1

�0

Psd�;

where

Ps D
ˇ̌
g˛ˇ Px

˛
Pxˇ
ˇ̌1=2

expresses the relationship between parameter distance and proper distance, and where
dots indicate d=d�. We wish to find a curve which is extremal, in the sense that its
length l is unchanged under first-order variations in the curve, for fixed �0 and �1. The
calculus of variations (which as physicists you are most likely to have met in the context
of classical mechanics) tells us that such an extremal curve x�.�/ is the solution of the
Euler-Lagrange equations

d
d�

�
@Ps

@ Px�

�
�

@Ps

@x�
D 0:

Have a go, yourself, at deriving the geodesic equation from this, before reading the
discussion below (at an appropriate point, you will need to restrict the argument to
parameterizations of s.�/ which are such that Rs D 0).
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For Ps as given above, we find fairly directly that

�
1

2

Rs

Ps2
2g�ˇ Px

ˇ
C
1

2Ps

d
d�

�
2g�ˇ Px

ˇ
�
�
1

2Ps
g˛ˇ;� Px

˛
Pxˇ D 0: (3.38)

To simplify this, we can choose at this point to restrict ourselves to parameterizations of
the curve which are such that ds=d� is constant along the curve, so that Rs D 0; this � is
an affine parameter as described above. With this choice, and multiplying overall by Ps,
we find

g�ˇ;� Px
ˇ
Px� C g�ˇ Rx

ˇ
� 1

2g˛ˇ;� Px
˛
Pxˇ D 0

which, after relabelling and contracting with g�� , and comparing with Eq. (3.35), reduces
to

Rx� C �
�

˛ˇ
Px˛ Pxˇ D 0; (3.39)

the geodesic equation of Eq. (3.37).
As well as showing the direct connection between the geodesic equation and this

deep variational principle, and thus making clear the idea that a geodesic is a ‘shortest
distance’, this also confirms the significance of affine parameters which was touched on
in Sect. 4. There is a ‘geodesic equation’ for non-affine parameters (namely Eq. (3.38)),
but only when we choose an affine parameter �, does this equation take the relatively
simple form of Eq. (3.37) or Eq. (3.39). The general solution of Eq. (3.38) is the same
path as the geodesic, but because of the non-affine parameterisation it is not the same
curve, and is not, formally, a geodesic.

Schutz discusses this at the very end of his §6.4, and the exercises corresponding to
it.

5 Curvature

We now come, finally, to the coordinate-independent description of curvature. We curvature
approach it through the idea of parallel transport, as described in Sect. 3.2, and specifically
through the idea of transporting a vector round a closed path. This section follows
Schutz §6.5. MTW [3] chapter 11 is good on this.

5.1 The Riemann tensor

Consider the path following lines of constant coordinate, in an arbitrary coordinate system.
Figure 1 shows a loop in the plane of two coordinates x� and x� The line joiningA and B ,
and the line from D to C , have coordinate x� varying along a line of constant x�, and
lines B–C and A–D have x� varying along a line of constant x� . We have a vector V
at A, which we parallel-transport to B , C , D and back to A, and we want to find out how
different the vector is after its circuit from how it was when it started.

Parallel-transporting the vector from A to B involves transporting V along the vector
field e� . From Eq. (3.33), this means that r�V D 0, or V ˛ I� D 0. That is (from
Eq. (3.15b)),

@V ˛

@x�
D V ˛;� D ��

˛
��V

�: (3.40)
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Now, the components of the vector at B are

V ˛.B/ D V ˛.A/C

Z B

A

@V ˛

@x�
dx�

D V ˛.A/ �

Z B

A

�˛��V
�dx�

D V ˛.A/ �

Z aCıa

x�Da

�˛��V
�
ˇ̌
x�Db

dx� ;

where the integrand is evaluated along the line fx� D bg from x� D a to x� D aC ıa.
Doing the same thing for the other sides of the curve, we find:

ıV ˛ D V ˛.Afinal/ � V
˛.Ainit/ D �

Z aCıa

x�Da

�˛ˇ�V
ˇ
ˇ̌̌
x�Db

dx�

�

Z bCıb

x�Db

�˛ˇ�V
ˇ
ˇ̌̌
x�DaCıa

dx�

C

Z aCıa

x�Da

�˛ˇ�V
ˇ
ˇ̌̌
x�DbCıb

dx�

C

Z bCıb

x�Db

�˛ˇ�V
ˇ
ˇ̌̌
x�Da

dx�: (3.41)

At this point we can take advantage of the fact that ıa and ıb are small, by construction,
ignore terms in ıa2 and ıb2, and thus take the integrands to be constant along the
interval of integration (by expanding the integrand in a taylor series, convince yourself
that

R aCıa
a

f .x/dx D ıaf .a/ C O.ıa2/). We don’t know what the �˛
ˇ�
V ˇ jx�DaCıa

and �˛
ˇ�
V ˇ jx�DbCıb are (of course, since we are doing this calculation for perfectly

general �), but since ıa is small, we can estimate them using Taylor’s theorem, finding

�˛ˇ�V
ˇ
ˇ̌
x�DaCıa

D �˛ˇ�V
ˇ
ˇ̌
x�Da

C ıa
@

@x�
�˛ˇ�V

ˇ

ˇ̌̌̌
x�Da

CO.ıa2/

(the @=@x� is a derivative with respect to a single coordinate, which is why the � index
is correctly unmatched). Inserting this, and the similar expression involving ıb, into
Eq. (3.41), and ignoring terms of O.ıa2; ıb2/, we have

ıV ˛ � C

Z aCıa

x�Da

ıb
@

@x�
�˛ˇ�V

ˇ

ˇ̌̌̌
x�Da;x�Db

dx�

�

Z bCıb

x�Db

ıa
@

@x�
�˛ˇ�V

ˇ

ˇ̌̌̌
x�Da;x�Db

dx�:

However, the integrands here are now constant with respect to the variable of integration,
so the integrals are easy:

ıV ˛ � ıaıb

�
@

@x�

�
�˛ˇ�V

ˇ
�
�

@

@x�

�
�˛ˇ�V

ˇ
��
;

with all quantities evaluatated at the point A. If we now use Eq. (3.40) to get rid of the
differentials of V ˇ , we find, to first order

ıV ˛ D ıx�ıx�
h
�˛ˇ�;� � �

˛
ˇ�;� � �

˛
���

�

ˇ�
C �˛���

�

ˇ�

i
V ˇ ; (3.42)

where we have written ıa and ıb as ıx� and ıx� respectively.
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eσ

eλ

A

B

C

D

xλ = b

xλ = b+ δb

xσ = a+ δa

xσ = a

Figure 1

Let us examine this result. The left-hand side is the ˛ component of a vector ıV
(we know this is a vector since it is the difference of two vectors located at the same
point A; recall the vector-space axioms); we obtain that component ıV ˛ by acting on
the vector ıV with the basis one-form e!˛ . The right-hand side clearly depends on the
vector V (also at the point A), whose components are V ˇ . The construction in Fig. 1,
which crucially has the area enclosed by constant-coordinate lines, depends on multiples
of the basis vectors, ıae� and ıbe�. We can see that the number ıV ˛ depends linearly
on each of these four objects – one one-form and three vectors. This leads us to identify
the numbers within the square brackets of Eq. (3.42) as the components of a .13/ tensor

R˛ˇ�� D �
˛
ˇ�;� � �

˛
ˇ�;� C �

˛
���

�
ˇ� � �

˛
���

�
ˇ�; (3.43)

(after some relabelling) called the Riemann curvature tensor (this notation is consistent Riemann curvature tensor
with Schutz; numerous other conventions exist – see the discussion in part 1). Thus
Eq. (3.42) becomes

ıV ˛ D R˛ˇ��V
ˇ ıx�ıx�: D R.e!a; V ; ıx�e� ; ıx�e�/: (3.44)

This tensor tells us how the vector V varies after it is parallel-transported on an arbitrary
excursion in the area local to point A (that is, for small ıa and ıb); that is, it encodes all
the information about the local shape of the manifold.

Another way to see the significance of the Riemann tensor is to consider the effect
of taking the covariant derivative of a vector with respect to first one then another of the
coordinates, r˛rˇV . Defining the commutator commutator�

r˛;rˇ
�
V � � r˛rˇV

�
� rˇr˛V

�; (3.45)

we find that�
r˛;rˇ

�
V � D R��˛ˇV

� : (3.46)

This, or something like it, might not be a surprise. We discovered the Riemann tensor by See example 3.14
taking a vector for a walk round the circuit ABCDA in Fig. 1 and working how how it
changed as a result. The commutator Eq. (3.45) is effectively the result of taking a vector
from A to C via B and via D, and asking how the two resulting vectors are different.

The Riemann tensor has a number of symmetries. In a locally inertial frame,

R˛ˇ�� D 1
2g
˛� .g��;ˇ� � g��;ˇ� C gˇ�;�� � gˇ�;��/; (3.47)

and so See example 3.15

R˛ˇ�� � g˛�R
�
ˇ�� D

1
2 .g˛�;ˇ� � g˛�;ˇ� C gˇ�;˛� � gˇ�;˛�/: (3.48)

Note that this is not a tensor equation, even in these coordinates: in such inertial coordi-
nates V ˛;ˇ D V ˛ Iˇ and so an expression involving single partial derivatives of inertial
coordinates can be trivially rewritten as a (covariant) tensor equation by simply rewriting
the commas as semicolons; however the same is not true of second derivatives, so that
Eq. (3.48) does not trivially correspond to a covariant expression.

By simply permuting indexes in Eq. (3.48), you can see that

R˛ˇ�� D �Rˇ˛�� D �R˛ˇ�� D R��˛ˇ (3.49a)
R˛ˇ�� CR˛�ˇ� CR˛��ˇ D 0: (3.49b)

These are tensor equations so that (as usual) although we worked them out in a particular
coordinate system, they are true in all coordinate systems, and tell us about the symmetry
properties of the underlying geometrical object. See example 3.16
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5.2 Geodesic deviation

In Sect. 2.1 of part 1, we briefly imagined two objects in free fall near the earth (Fig. 2),
and noted that the distance between them would decrease as they both moved towards the
centre of the earth. We are now able to state that these free-falling objects are following
geodesics in the spacetime surrounding the earth, which is curved as a result of the earth’s
mass (though we cannot say much more than this without doing the calculation, which is
a bit of physics we do not know before the next part). We see, then, that the effect of the
curvature of spacetime is to cause the distance between these two geodesics to decrease;
this is known as geodesic deviation , and we are now in a position to see how it relates togeodesic deviation
curvature.

Figure 2

Schutz covers this at the end of his section 6.5. I plan to describe it a different
way, partly because I find his explanation somewhat confusing, but also because a more
geometrically-minded explanantion makes rather a change from continuous components.

First, some useful formulae. (i) Marginally rewriting Eq. (3.46), we find�
rX ;rY

�
V D XˇY �

�
rˇ ;r�

�
V �e� D R

�
˛ˇ�V

˛XˇY �e�: (3.50)

(ii) Using the commutator
�
A;B

�
� AB � BA, we find

rAB � rBA D
�
A;B

�
; (3.51)

which is proved in example 3.17.See example 3.17

X

Xξ

ξ

λ(t)
µ(s)

λ(t)
µ(s+δs)

λ(t+δt)
µ(s)

λ(t+δt)
µ(s+δs)

Figure 3

Consider two sets of curves, �.t/ corresponding to a field of tangent vectors X ,
and �.s/ with tangent vectors �, and suppose that, in some region of the manifold, they
cross each other (see Fig. 3). Choose the curves and their parameterisation such that each
of the � curves is a curve of constant s and each of the � curves is a curve of constant t .
Thus, specifically, the � vector – known as the ‘connecting vector’ – joins points on two �
curves which have the same parameter t . What we have actually described, here, is (part
of) a set of coordinate functions; you will see that the curves � and � have exactly the
properties that the conventionally-written coordinate functions x˛ have. Because of this
construction, it does not matter which order we take the derivatives d=dt and d=ds, so that

d
dt

d
ds
D

d
ds

d
dt
,

�
d
dt
;

d
ds

�
D 0;

or, since X D d=dt and � D d=ds,h
X; �

i
D 0:

Thus, referring to Eq. (3.51),

rX� D r�X: (3.52)

Now suppose particularly that the curves �.t/ are geodesics, which means that
rXX D 0. Then the vector � joins points on the two geodesics which have the same
affine parameter.

That means that the second derivative of � carries information about how quickly
the two geodesics are accelerating apart (note that this is ‘acceleration’ in the sense of
‘second derivative of position coordinate’, and not anything that would be measured by an
accelerometer – observers on the two geodesics would of course experience zero physical
acceleration). With the work above, the calculation is easy. The second derivative is

rXrX� D rXr�X D r�rXX CR
�
˛ˇ�X

˛Xˇ ��e�; (3.53)
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where the first equality comes from Eq. (3.52) and the second from Eq. (3.50). The first
term on the right-hand side disappears since rXX D 0 along a geodesic. Now, the
covariant derivative with respect to the vector X is just the derivative with respect to the
geodesic’s parameter t (since � is part of a coordinate system, see Sect. 2.2), so that this
equation turns into 

d2�
dt2

!�
D R�˛ˇ�X

˛Xˇ �� : (3.54)

Thus the amount by which two geodesics diverge depends on the curvature of the space
they are passing through. Note that the left-hand side here is the �-component of the
second derivative of the vector �, and is a conventional shortcut for rXrX ; it is not
the second derivative of the �� component d2��=dt2, though some books (eg, [1, §1.9])
rather confusingly write it this way. See example 3.18

See example 3.19
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Examples

Some of the examples below are taken from the earlier presentations of this course by
Martin Hendry; these are noted by “[MAH]” and the example sheet where they occurred.
Most of the exercises in Schutz’s §6.8 should be accessible.

Example 3.1 (section 1.3)

By considering the contraction of the gradient with a vector ad=dt C bd=ds, show that the
gradient one-form defined by Eq. (3.5) is a linear function of its argument, and therefore
a valid one-form.

Example 3.2 (section 1.4)

In the fx; yg cartesian coordinate system (with basis vectors @=@x and @=@y), the metric is
simply diag.1; 1/. Consider a new coordinate system fu; vg, (with basis @=@u and @=@v),
defined by

u D 1
2 .x

2
� y2/

v D xy:
(i)

You might also want to look back at the ‘dangerous bend’ paragraphs below Eq. (2.19).
(a) Write x1 D x, x2 D y, x N1 D u, x N2 D v, and thus, referring to Eq. (3.8),

calculate the matrices ƒN{j and ƒi
N| [the easiest way of doing the latter calculation is to

calculate @u=@u, @u=@v, . . . , and solve for @x=@u, @x=@v, . . . , ending up with expressions
in terms of x, y and r2 D x2 C y2].
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(b) From Eq. (2.17),

gN{ N| D ƒ
i
N{ƒ

j
N|gij :

Thus calculate the components gN{ N| of the metric in terms of the coordinates fu; vg [you
can end up with expressions in terms of u and v, via 4.u2 C v2/ D r4].

(c) A one-form has cartesian coordinates .Ax ; Ay/ and coordinates .Au; Av/ in the
new coordinate system. Show that

Au D
xAx � yAy

x2 C y2
;

and derive the corresponding expression for Av [based ultimately on MAH, 3.7; Objec-
tive 1].

Example 3.3 (section 1.4)

(a) Write down the expressions for cartesian coordinates fx; yg as functions of polar
coordinates fr; �g, thus calculate @x=@r , @x=@� , @y=@r and @y=@� , and thus find the
components of the transformation matrix from cartesian to polar coordinates, Eq. (3.8b).

(b) The inverse transformation is

r2 D x2 C y2; � D arctan
�y
x

�
:

Differentiate these, and thus obtain the inverse transformation matrix Eq. (3.8a). Verify
that the product of these two matrices is indeed the identity matrix. Compare Sect. 3.2 of
part 2.

(c) Let V be a vector with cartesian coordinates fx; yg, so that

V D xex C yey :

Show that PV and RV have components f Px; Pyg and f Rx; Ryg in this basis.
(d) Using the relations x D r cos � and y D r sin � , write down expressions for Px,

Py, Rx and Ry in terms of polar coordinates r and � and their time derivatives.
(e) Now use the general transformation law Eq. (3.8a)

V N{ D ƒN{jV
j
D
@xN{

@xj
V j

to transform the components of the vectors PV and RV which you obtained in (c), into the
polar basis fer ; e�g, and show that

PV D Prer C P�e�

RV D
�
Rr � r P�2

�
er C

�
R� C

2

r
Pr P�

�
e� :

[MAH, 2.1; Objective 1]

Example 3.4 (section 1.4)

Define a scalar field, �, by

�.x; y/ D x2 C y2 C 2xy;
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for cartesian coordinates fx; yg.
(a) From Eq. (3.5), the i-th component of the gradient one-formed� is obtained by

taking the contraction of the gradient with the basis vector ei D @=@xi . Thus write down
the components of the gradient one-form with respect to the cartesian basis.

(b) The result of example 2.8 of part 2 says that the transformation law for the
components of a one-form is

AN{ D ƒ
j
N{ Aj D

@xj

@xN{
Aj :

Thus determine the components ofed� in polar coordinates fr; �g.
(c) By expressing � in terms of r and � , obtain directly the polar components ofed�

and verify that they agree with those obtained in (b).
(d) Write down the components of the metric tensor in cartesian coordinates, gxx ,

gxy , gyx , gyy , and by examining Eq. (2.10), write down the components of the metric ten-
sor with raised indexes, gxx , gxy , gyx , gyy . Hence determine the cartesian components
of the vector gradient d� (ie, with raised index).

(e) Recall the metric for polar coordinates, and thus the components grr , gr� , g�r

and g�� . Hence determine the polar components of d�. Comment on the answers to
parts (d) and (e). [MAH, 2.2]

Example 3.5 (section 2.1)

In Eq. (3.13) we see, for example, two lowered �s on the left-hand side with no � on the
right-hand side. Why isn’t this this an einstein summation convention error?

Example 3.6 (section 2.2)

Consider a vector field V with cartesian components fV x ; V yg D fx2 C 3y; y2 C 3xg.
(a) Using the transformation law for a .10/ tensor, and the result of example 3.3,

determine fV r ; V �g, the components of the same vector field V with respect to the polar
basis fer ; e�g.

(b) Write down the components of the covariant derivative V i Ij in cartesian coordi-
nates.

(c) Using the fact that V i Ij transforms as a .11/ tensor, compute the components of
the covariant derivative with respect to the polar coordinate basis by transforming the
V i Ij obtained in part (b).

(d) Now, taking a different tack, compute the polar components of the covariant
derivative of V , by differentiating the polar coordinates obtained in (a). That is, use
Eq. (3.15b) and the Christoffel symbols for polar coordinates, Eq. (3.13).

(e) Verify that the polar components obtained in (c) and (d) are the same. [MAH, 4.5]

Example 3.7 (section 2.2)

Do example 3.6 again, but this time working with the one-form field eA, with cartesian
components fx2 C 3y; y2 C 3xg. [MAH, 4.6]

Example 3.8 (section 2.2)

Comparing example 3.6 and example 3.7, verify that in both cartesian and polar coordi-
nates

gikV
k
Ij D Ai Ij :
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[MAH, 4.7]

Example 3.9 (section 2.3)

Derive Eq. (3.26) from Eq. (3.24) (one-liner). Derive Eq. (3.27) from Eq. (3.25) (few
lines).

Example 3.10 (section 2.3)

Let Aj be the components of an arbitrary one-form. Write down the transformation law
for Aj and for its covariant derivative Aj Ik . By considering the expression for A

N| I Nk , in
a transformed coordinate system, show that the transformation law for the Christoffel
symbols has the form

� N{
N| Nk
D
@xN{

@xi
@xj

@x N|
@xk

@x
Nk
� ijk C

@xN{

@xl
@2xl

@x N|@x
Nk
:

The fact that this does not look anything like Eq. (2.17) further demonstrates that the
Christoffel symbols are not the components of a tensor. [MAH, 4.1]

Example 3.11 (section 2.3)

Suppose that in one coordinate system the Christoffel symbols are symmetric in their
lower indexes, � i

jk
D � i

kj
. By considering the transformation law for the Christoffel

symbols, obtained in example 3.10, show that they will be symmetric in any coordinate
system. [MAH, 4.2]

Example 3.12 (section 3.2)

Things to think about: Why have you never had to learn about covariant differentiation
before now? The glib answer is, of course, that you weren’t learning GR; but what was
it about the vector calculus that you did learn that meant you never had to know about
connection coefficients? Or, given that you did effectively learn about them, but didn’t
know that was what they were called, why do we have to go into so much more detail
about them now? There are a variety of answers to these questions, at different levels.

Example 3.13 (section 4)

(a) On the surface of a sphere, we can pick coordinates � and �, where � is the colatitude,
and � is the azimuthal coordinate. The components of the metric in these coordinates are

g�� D 1; g�� D sin2 �; others zero:

Show that the components of the metric with raised indexes are

g�� D 1; g�� D
1

sin2 �
; others zero:

[4 marks]
(b) The Christoffel symbols are defined as

�˛�� D
1
2g
˛ˇ .gˇ�;� C gˇ�;� � g��;ˇ /;
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and the geodesic equation is

d
dt

�
dx˛

dt

�
C �˛ˇ�

dxˇ

dt
dx�

dt
D 0;

for a geodesic with parameter t . Using these find the Christoffel symbols for these
coordinates (ie, ��

��
, ��

��
and so on), and thus show that the geodesic equations for these

coordinates are

R� � sin � cos � P�2 D 0 (i)

R� C 2
cos �
sin �

P� P� D 0; (ii)

where dots indicate differentiation with respect to the parameter t . [12 marks]
(c) Using the result of part (b), or any other properties of geodesics which you

know, explain, giving reasons, which of the following curves are geodesics, for affine
parameter t .

1. � D t , � D �=2 2. � D t , � D �=4 3. � D t , � D 0
4. � D t , � D t 5. � D �0, � D t 6. � D �0, � D 2t � 1
7. � D �0, � D t2

[6 marks]
(d) If U is the tangent vector to a geodesic, so that

rUU D 0;

prove that V D aU is also tangent to a geodesic, for any constant number a. [8 marks]
[MAH 5.1, originally, later Class Test 2002, with additions; Objective 2, Objec-

tive 5]

Example 3.14 (section 5.1)

Prove Eq. (3.46). Write r˛rˇV � D r˛.V �Iˇ / D .V �Iˇ /I˛ , and use the expression
Eq. (3.22) to expand the derivative with resepect to x˛ . At this point, decide to work in
LIF coordinates, in which all the ��

˛ˇ
D 0, making the algebra easier. Thus deduce that

r˛rˇV
� D V �;ˇ˛ C �

�

�ˇ;˛
V � . You can then immediately write down an expression for

rˇr˛V
�. Subtract these two expressions (to form Œr˛;rˇ �V

�), noting that the usual
partial differentiation of components commutes: V �;˛ˇ D V �;ˇ˛ . Compare the result
with the definition of the Riemann tensor in Eq. (3.43), and arrive at Eq. (3.46). If you get
stuck with the algebra, the proof’s in Schutz §6.5.

Example 3.15 (section 5.1)

Prove Eq. (3.47). Recall that in a locally inertial frame, at a point P , the components of
the connection are zero: �˛�� D 0. The derivatives, however, are not, so use Eq. (3.35)
straightforwardly to find �˛��;� . Recall Eq. (3.31a), and that partial derivatives always
commute.

Example 3.16 (section 5.1)

In example 3.13 you calculated the Christoffel symbols for the surface of the unit sphere.
Calculate the components of the curvature tensor for these coordinates, plus the Ricci
tensor Rˇ D R˛ˇ˛ and the Ricci scalar R D gˇRˇ (see part 4).
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You can most conveniently do this by calculating selected components of the curva-
ture tensor R˛ˇ�� obtained by lowering the first index on Eq. (3.43); you can cut down
the number of calculations you need to do by using the symmetry relations Eq. (3.49)
heavily. Why should you not use Eq. (3.48), which appears to be more straightforward?

This question is long-winded rather than terribly hard. It’s worthwhile slogging
through it, however, since it gives valuable practice handling indices, and makes the idea
of the curvature tensor rather more tangible. [Objective 6]

Example 3.17 (section 5.2)

Prove Eq. (3.51), by writing it in component form. Recall Eq. (3.30). The last step is the
tricky bit, but recall that for a (tangent) vector A, Af D A�e�f D A�f;�, where f is
any function, including a vector component.

Example 3.18 (section 5.2)

Consider coordinates on a sphere, as you did in example 3.13, and consider the geodes-
ics �.t/ in Fig. 4 with affine parameter t and tangent vectors X – these are great circles
through the poles. The curves �.s/ with tangent vectors � are connecting curves as
discussed in Sect. 5.2.

X µ(s)

λ(t)

θ

φ

Figure 4

We can parameterise the curve �.t/ using the coordinates .�; �/, as

�.t/ W �
�
�.t/

�
D t I �

�
�.t/

�
D �0

(compare Sect. 1.2), and you verified in example 3.13 that this does indeed satisfy the
geodesic equation.

(a) Using Eq. (3.1), show that the components of X are

X� D 1; X� D 0:

(b) Write Eq. (3.54) as

g��.rXrX�/
�
� g��R

�
˛ˇ�X

˛Xˇ �� D 0 (i)

and, by using the components of the curvature tensor which you worked out in exam-
ple 3.16, show that

.rXrX�/
�
D 0 (iia)

.rXrX�/
�
C �� D 0: (iib)

This tells us that the connecting vector – the tangent vector to the family of curves �.s/,
connecting points of equal affine parameter along the geodesics �.t/ – does not change
its � component, but does change its � component. Which isn’t much of a surprise.

(c) Can we get more out of this? Yes, but to do that we have to calculate rXrX�,
which isn’t quite as challenging as it might look. From Eq. (3.18) we write

rX� D X
˛
r˛� D X

˛eˇ �
ˇ
I˛ D X

˛eˇ

 
@�ˇ

@x˛
C �ˇ˛�



!
: (iii)

You have worked out the Christoffel symbols for these coordinates in example 3.13, so we
could trundle on through this calculation, and find expressions for the components of the
connecting vector � from Eq. (ii). In order to illustrate something useful in a reasonable
amount of time, however, we will short-circuit that by using our previous knowledge of
this coordinate system.

3-24



GRG I, part 3 – Manifolds, vectors and differentiation

The curve

�.s/ W �.s/ D �0; �.s/ D s

is not a geodesic (it is a small circle at colatitude �0), but it does connect points on the
geodesics �.t/ with equal affine parameter t ; it is a connecting curve for this family of
geodesics. Convince yourself of this and, as in part (a) above, satisfy yourself that the
tangent vector to this curve, � D d=ds, has components �� D 0 and �� D 1; and use
this together with the components of the tangent vector X and the expression Eq. (iii) to
deduce that

P
� � rX� D 0e� C cot �e� ;

(where P� is simply a convenient – and conventional – notation for rX�) or P�� D 0,
P�� D cot � .

(d) So far so good. In exactly the same way, take the covariant derivative of P�, and
discover that

rX
P
� D rXrX� D 0e� � 1e� D ��;

and note that this � does in fact accord with the geodesic deviation equation of Eq. (ii).
Note that this example is somewhat fake, in that, in (c), we set up the curve �.s/ as

a connecting curve, and all we have done here is verify that this was consistent. If we
were doing this for real, we would not know (all of) the components of � beforehand,
but would carry on differentiating � as we started to do in (c), put the result into the
differential equation Eq. (ii) and thus deduce expressions for the components ��.

As a final point, note that the length of the connecting vector � is just

g.�; �/ D g˛ˇ �
˛�ˇ D sin2 �;

which you could possibly have worked out from school trignometry (but it wouldn’t have
been half so much fun).

[Objective 5, Objective 7]

Example 3.19 (section 5.2)

(a) Describe the relationship between geodesic deviation and the metric of a spacetime,
referring in your answer both to the equation of geodesic deviation (Eq. (ii) below), and
to the behaviour of test particles in free fall near the Earth’s surface. [5]

(b) In the newtonian limit, the metric can be written as

g�� D ��� C h�� (i)

where

��� D diag.�1; 1; 1; 1/

h�� D

(
�2� � D �

0 � ¤ �
;

and � is the newtonian gravitational potential �.r/ D GM=r . In this limit, and with this
metric, the curvature tensor can be written as

2R˛ˇ�� D h˛�;ˇ� C hˇ�;˛� � h˛�;ˇ� � hˇ�;˛�:
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The equation for geodesic deviation is

d2�˛

dt2
D R˛ˇ��U

ˇU��� ; (ii)

where the vectors U are tangent to geodesics, and we can take them to be velocity vectors.
Consider two particles in free fall just above the Earth’s north pole, so that their

(cartesian) coordinates are both approximately x D y D 0, z D R, where R is the
radius of the Earth. Take them to be separated by a separation vector � D .0; �x ; 0; 0/,
where �x � R. Since they are falling along geodesics, their velocity vectors are both
approximately U D .U t ; 0; 0; U z/.

With this information, show that the two particles accelerate towards each other such
that

d2�x

dt2
D �

GM

r3
�x (iii)

to first order in � (given values for G, M and R, why can we take �2 � 0?).
[ Since these are non-relativistic particles, you may assume, at the appropriate point,

that jU t j � jU zj, and thus that jU t j2 � �1. ] [20]
(c) If we had used a different metric to describe the same newtonian spacetime,

rather than that in Eq. (i), would we have obtained a different result for the geodesic
deviation, Eq. (iii)? Explain your answer. [5] [Objective 5, Objective 7; based on degree
exam, 2003]
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