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Overview

Web pages:

� http://physci.moodle.gla.ac.uk/

� http://www.astro.gla.ac.uk/users/norman/lectures/AH-GR/

� http://www.astro.gla.ac.uk/users/norman/lectures/A2SR/

The course divides into four parts:

Part 1 – Introduction One lecture. Covers the overall motivation for the course –
why Special Relativity cannot provide a complete description of gravity, and why
gravity is special.

Part 2 – Vectors, tensors and functions Three lectures. Recap of linear algebra, and
an introduction to tensors, vectors and one-forms. Basis transforms and compo-
nents.

Part 3 – Manifolds, vectors and differentiation Four lectures. Introduces differen-
tial geometry. Definition of the tangent plane, and differentiation in flat and curved
spaces. Introduces geodesics and curvature. Defines Riemann and Ricci tensors,
and geodesic deviation.

Part 4 – Physics: energy, momentum and Einstein’s equations Three lectures. Back
to physics: introduces the energy-momentum tensor. More discussion of the
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GRG I, part 1 – Introduction

equivalence principle, and a rationale for, and introduction to, Einstein’s equa-
tions linking the curvature of space-time to the presence of gravitating objects.
The Newtonian limit, and classical gravity as the weak-field limit of Einstein’s
equations.

Aims and objectives for Part 1

The point of Aims and Objectives is twofold. They help me keep on track by reminding
me what things it’s important I cover; and they help you follow the course, by reminding
you of the motivation for the material I’m covering. The distinction between the two,
as far as I’m concerned, is simple.

� The aims are the point of the course – why you’re doing the course, and why I’m
teaching it. These are the insights you’ll have, and the ideas you’ll understand,
long after the point where you’ve forgotten most of the details. Unfortunately, it’s
easy to claim, but difficult to show, you have this understanding. So. . . .

� The objectives are the detailed skills, mastery of which demonstrates that you
have in fact achieved the aims of the course. Hint: it is a short step from objectives
to exam questions, and I regard the list of objectives as more-or-less coextensive
with the set of examinable topics.

Aims You should:

1. appreciate why GR is not simply newtonian gravitation plus SR;

2. understand how the equivalence principles lead directly to GR effects such as light
deflection and redshift (see also the aims in part 4).

Objectives You should be able to demonstrate that you can:

1. explain why one cannot simply add SR to newtonian gravity to obtain a ‘relativised’
gravitational theory;

2. quote the strong and weak equivalence principles (see also the objectives for
part 4), and explain what geodesic deviation is; and

3. explain, without detailed calculation, how the equivalence principle leads to light
bending in a gravitational field, or the phenomenon of gravitational redshift.
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1 Three thought experiments on gravitation

What is the problem which General Relativity attempts to solve?
Put another way, why can’t we get a theory of gravity by just taking SR and adding

some ‘relativised’ newtonian gravity?
[The following discussion overlaps with the very useful discussion in Schutz §5.1,

and with MTW §§7.2–7.3.]

1.1 Gravitational redshift

m

m+mgh = E

E′

Figure 1

Imagine dropping a particle of massm through a distance h. The particle starts off with
energym (E D mc2, with c D 1, remember), and ends up with energy E D mCmgh
(see Fig. 1). Now imagine converting all of this energy into a single photon of energyE,
and sending it up towards the original position. It reaches there with energy E 0, which
we convert back into a particle. Now, either we have invented a perpetual motion
machine, or else E 0 D m:

E 0 D m D
E

1C gh
; (1.1)

and we discover that a photon loses energy – is redshifted – as a necessary consequence
of climbing through a gravitational field, and as a consequence of our demand that
energy be conserved.

This phenomenon is termed gravitational redshift , and it (or rather, something gravitational redshift
very like it) has been confirmed experimentally, in the ‘Pound-Rebka experiment’. It’s
also sometimes referred to as ‘gravitational doppler shift’, but inaccurately, since it is
not a consequence of relative motion, and so has nothing to do with the doppler shift
you are familiar with.

1.2 Schild’s photons
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Figure 2

Imagine firing a photon, of frequency f , from a point A to a point B directly above
it in a gravitational field (see Fig. 2). As we discovered in Sect. 1.1, the photon will
be redshifted to a new frequency f 0. After some number of periods, n, we repeat this,
and send up another photon (between the points marked A0 and B 0 on the spacetime
diagram).

Photons are a kind of clock, in that the interval between ‘wavecrests’, 1=f , forms
a kind of ‘tick’. This will be measured to have different numerical values in different
frames, but it nonetheless defines two frame-independent events.

Since nothing will have changed between sending off the two photons, the inter-
vals AB and A0B 0 will be the same (I’ve drawn these as straight lines on the diagram,
but the argument doesn’t depend on that). However the intervals AA0 and BB 0, as
measured by local clocks, are different. That is, we have not constructed the parallel-
ogram we might have expected, and have therefore discovered that the geometry of
this spacetime is not the flat geometry we might have expected, and that this is purely
as a result of the presence of the gravitational field through which we are sending the
photons.

Finding out more about this geometry is what this course is about, and one of the
first physical principles we will use is illustrated by a falling lift.

1.3 The falling lift

Recall from Special Relativity that we may define an inertial frame to be one in which inertial frame
Newton’s laws hold, so that particles which are not acted on by an external force move
in straight lines at a constant velocity. In Misner, Thorne and Wheeler’s words, inertial
frames are defined so that motion looks simple. This is so if we are in a box far away
from any gravitational forces, and so we may identify that as a local inertial frame local inertial frame
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(because the previous section suggests that we cannot carelessly make claims about
extended frames). Another way of removing gravitational forces, less extreme than
going into deep space, is to put ourselves in free fall. Einstein asserted that these two
situations are indeed fully equivalent, and defined an inertial frame as one in free fall.

Objects at rest in an inertial frame – in either of the equivalent situations of being
far away from gravitating matter or freely falling in a gravitational field – will stay at
rest. If we accelerate the box cum inertial frame, perhaps by attaching rockets to its
‘floor’, then the box will accelerate but its contents won’t; they will therefore move
towards the floor at an increasing speed, from the point of view of someone in the box1.
This will happen irrespective of the mass or composition of the objects in the box; they
will all appear to increase their speed at the same rate.

Figure 3

Note that we are carefully not using the word ‘accelerate’ for the objects’ change
in speed. We reserve that word for the physical phenomenon measured by an ac-
celerometer, and the result of a real force, and try to avoid using it (not, I fear, always
successfully) to refer to the second derivative of a position – depending on the coor-
dinate system, the one does not always imply the other, as we shall see later.

This is very similar to Galileo’s observation that all objects appear to fall under
gravity at the same rate, irrespective of their mass or composition, and this has been
verified to considerable precision in the Eötvös experiments. Einstein supposed that
this was not a coincidence, and that there was a deep equivalence between acceleration
and gravity (we shall see later, in part 4, that the force of gravity we feel standing in
one place is the result of us being accelerated away from the path we would have if we
were in free fall). He raised this to the status of a postulate:

The (weak) Equivalence Principle (EP): Uniform gravitational fields are
equivalent to frames that accelerate uniformly relative to inertial frames.

Figure 4

Imagine a box floating freely in space, and imagine shining a torch horizontally
across it. Where will the beam end up? Obviously, the beam will end up at a point
on the wall directly opposite the torch (Fig. 3). There’s nothing exotic about this. The
weak equivalence principle tells us that the same must happen for a box in free fall.
That is, a person inside a falling lift would observe the torch beam to end up level
with the point at which it was emitted, in the (inertial) frame of the lift. This is a
straightforward and unsurprising use of the EP. How would this appear to someone
watching the lift fall?

Since the light takes a finite time to cross the lift cabin, the spot on the wall where
it strikes will have dropped some finite (though small) distance, and so will be lower
than the point of emission, in the frame of someone watching this from a position of
safety (Fig. 4). That is, this non-free-fall observer will measure the light’s path as being
curved in the gravitational field. Even massless light is affected by gravity.See example 1.1

2 Relativity and gravitation

2.1 Tides and geodesic deviation

Consider two particles, A and B , falling towards the earth (Fig. 5). They start off
level with each other, at a height z.t/ from the centre of the earth, and separated by a
horizontal distance �.t/.

From the diagram, the separation �.t/ is proportional to z.t/, so that �.t/ D kz.t/,
for some constant k. The gravitational force on a particle of mass m, at altitude z is
F D GMm=z2, thus

d2�

dt2
D k

d2z

dt2
D �k

F

m
D �k

GM

z2
D ��

GM

z3
:

1By ‘point of view’ I mean ‘as measured with respect to a reference frame fixed to the box’, but such
circumlocution can distract from the point that this is an observation we’re talking about – we can see this
happening.
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This tells us that the inertial frames attached to these freely falling particles approach
each other at an increasing speed (that is, they ‘accelerate’ towards each other in the
sense that the second derivative of their separation is non-zero, but since they are in
free fall, there is no physical acceleration). See example 1.2

2.2 There is no universal inertial frame

ξ(t)

z(t)

A B

Figure 5

A lot of Special Relativity depended on inertial frames having infinite extent: if I am an
inertial observer, then any other inertial observer must be moving at a constant velocity
with respect to me.

Consider observers plummeting down liftshafts, in free-fall, on opposite sides
of the earth. These are inertial observers, but the second derivative of their spatial
separation is not zero – they are accelerating with respect to one another. This means
that, if I am one of these inertial observers, then (presuming I do not have more pressing
things to worry about) I cannot use SR to calculate what the other inertial observer
would measure in their frame, nor calculate what I would measure if I observed a bit
of physics that I understand, which is happening in the other inertial observer’s frame.

But this is precisely what I do want to do, supposing that the bit of physics in
question is happening in free fall in the accretion disk surrounding a black hole, and
I want to interpret what I am seeing through my telescope. Gravitational redshift of
spectral lines is just the beginning of it!

It is General Relativity which tells us how we must patch together such disparate
inertial frames.

2.3 What does GR plan to do about it?

Newton’s second law is

F D ma:

That makes the geometrical statement that when you apply to an object a force acting
in a certain direction, that object accelerates in the same direction as the force, with
an acceleration which is proportional to it. If we want to give numerical values to this
statement, then we need a coordinate system – where is the origin, what scale are the
axes, and so on – but the physical law is true irrespective of which system we pick, and
it remains true if we change our mind.

This is not just a peculiar property of Newton’s laws. We (and Einstein) can
elevate this to another principle:

The principle of general covariance: All physical laws must be invariant
under all coordinate transformations.

That is, only geometrical objects matter – to be a physical law, an equation must be
expressible in a form which is purely geometrical, and thus independent of the choice
of coordinate system used to represent it.

That is what GR does: it describes the physics of gravity in a purely geometrical
way, avoiding giving fundamental importance to any particular set of coordinates. It
describes gravity, not as the rather mysterious, instantly-acting, force which Newton
described in his ‘law of universal gravitation’, but instead as the inevitable consequence
of our movement through a curved spacetime.

The problem is, that doing geometry on a curved space is tricky. . . .

� In the following parts, there are various passages, and a couple of complete
sections, marked with dangerous bend signs, like this one. They indicate supple-

mentary detail, or material beyond the scope of the course which I think may be nonetheless
interesting, or extra discussion of concepts or techniques which students have found confus-
ing or misunderstandable in the past. These (and especially the last category) are passages
you will probably want to skip on a first reading; none of it will be examinable.

1-5



GRG I, part 1 – Introduction

A Natural units

In Special Relativity, we normally use natural units (also geometrical units), in whichgeometrical units
we use the same units, metres, to measure both distance and time, with the result that
we measure distance in these two directions in spacetime using the same units (because
of the high speed of light, metres and seconds are otherwise absurdly mismatched). We
extend this in General Relativity, but now measuring mass in metres also. First, a recap
of natural units in SR.

It is straightforward to measure distances in seconds, and we do this naturally
when we talk of the Earth being 8 light-minutes from the sun, or the nearest star being
a little more than 4 light-years away, or Edinburgh being 50 minutes from Glasgow
(ScotRail permitting). In fact, since 1981 or so, the International Standard definition
of the metre is that it is the distance light travels in 1/299792458 seconds; that is,
the speed of light is precisely 299 792 458m s�1 by definition, and so c is therefore
demoted to being merely a conversion factor between two different units of time. In
the same sense, the inch is defined to be precisely 2:54 cm long, and this figure of 2.54
is merely a conversion factor between two different, and only historically distinct, units
of length. We write this as 1 in D 2:54 cm, or 1 D 2:54 cm in�1.

There are several advantages to this. (i) In relativity, space and time are not
really distinct, but having different units for the two ‘directions’ can obscure this.
(ii) If we measure time in metres, then we no longer need the conversion factor c
in our equations, which are consequently simpler. (iii) In these units, light travels a
distance of one metre in a time of one metre, giving the speed of light as an easy-to-
remember, and dimensionless, c D 1. We also quote other speeds in these units of
metres per metre, so that all speeds are dimensionless and less than one. That means
that 1 D c D 3�108 m s�1 so that, just as with the expression 1 D 2:54 cm in�1 above,
we are using the figure 3 � 108 as a conversion factor between the alternative length
units of metres and seconds.See example 1.3

For example, to convert 10 J D 10 kg m2 s�2 to natural units, we could proceed in
two ways. Since c D 1, we have 1 s D 3 � 108 m (this looks very bizarre, but compare
the closely analogous statement 1 in D 2:54 cm), and so 1 s�2 D .9 � 1016/�1 m�2.
So 10 kg m2 s�2 D 10 kg m2 � .9 � 1016/�1 m�2 D 1:1 � 10�16 kg.

Alternatively, we can write 1 D 3 � 108 m s�1 (compare 1 D 2:54 cm in�1), or
1 D .3 � 108/�1 s m�1. Thus

10 J D 10 kg m2 s�2
� .1/2

D 10 kg m2 s�2
� .3 � 108/�2 s2 m�2

D 1:1 � 10�16 kg:

In GR we must additionally deal with the masses of objects, and we measure
masses in metres also, with the conversion factor between kilogrammes and metres
fixed by the demand that the gravitational constant have the easy-to-remember value
G D 1. That means that the expression 1 D G D 6:673� 10�11 m3 kg�1 s�2 becomes
a conversion factor between kilogrammes and the other units. In the same way, and
for the same general reasons of convenience, it is common in relativistic quantum
mechanics – high energy particle physics – to choose units so that „ D c D 1.

It is easy, once you have a little practice, to convert values and equations between
the different systems of units. Throughout the rest of this course, I will quote equations
in units where c D 1, and, when we come to that, G D 1, so that the factors c and G
disappear from the equations.

B Further reading

When learning relativity, even more than with other subjects, you benefit from hearing
or reading things multiple times, from different authors, and from different points of
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view. I mention a couple of good introductions below, but there is really no substitute
for going to section ‘Physics C25’ in the library, looking through the books there, and
finding one which makes sense to you.

The course book is [1] (herafter simply ‘Schutz’). Though possession of this
book is not compulsory, it is very heavily recommended: of the books below, it is the
one closest in style to these lectures; also, I will occasionally direct you to particular
sections of it. Although the later parts of the first edition [2] are now somewhat out
of date, the earlier parts, which are the main overlap with this course, have not much
changed, and this edition may still be available second hand.

Other textbooks you might want to look at are below.

� Carroll [3] is good, but I don’t necessarily recommend buying it. Although
it’s mathematically similar, the order of the material, and the things it stresses,
are sufficiently different from this course and Schutz that it might be confusing.
However, that difference is also a virtue: the book introduces topics clearly, and
in a way which usefully contrasts with my way. Unfortunately, this book isn’t in
the University library, but Sean Carroll’s relativity lecture notes, from a few years
ago, are easily findable on the web.

� Rindler [4] always explains the physics clearly, particularly the differences be-
tween the strong and weak equivalence principles, and the motivation for GR.
However it’s now rather old-fashioned in many respects, in particular in its treat-
ment of differential geometry.

� Similarly, again, Narlikar [5] is worthwhile looking at, to see if it suits you.
The mathematical approach is one which introduces vectors and tensors via
components (like Rindler), rather than the more functional approach we’ll use
here. I think that Narlikar is good at transmitting mathematical and physical
insights.

� Wald [6] is comprehensive and well thought-of.

� Misner, Thorne and Wheeler [7] is a glorious, comprehensive, doorstop of a book.
Its distinctive prose style and typographical oddities have fans and enemies in
roughly equal numbers. If you liked Taylor & Wheeler’s Spacetime Physics,
there’s a good chance you’ll like this one. There’s much, much, more in here than
you need for the course. Chapter 1 in particular is worth reading for an overview
of the subject.

This is a pretty mathematical course, but it is supposed to be a physics course, so
we’re looking for they physical insights which can easily become buried beneath the
maths.

� Another Schutz book, Gravity from the Ground Up [8] aims to cover all of
gravitational physics from falling apples to black holes using the minimum of
maths. It won’t help with the differential geometry, but it’ll supply lots of insight.

� Longair’s book [9] is excellent. The section on GR (only a smallish part of the
book) is concerned with motivating the subject rather than doing a lot of maths,
and is in a seat-of-the-pants style that might be to your taste.

There are also many more advanced texts. The following are graduate-level
texts, and so reach well beyond the level of this course. They are mathematically
very sophisticated. If, however, your tastes and experience run that way, then the
introductory chapters of these books might be instructive, and give you a taste of the
vast wonderland of beautiful maths that can be found in this subject.

� Chapter 1 of Stewart [10] covers more than the content of this course in just
60 pages.
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� Geometrical Methods of Mathematical Physics [11] is by the same author as
[1] above. It’s a lovely book, which explains the differential geometry clearly
and sparsely, including applications beyond relativity and cosmology. However,
it appeals only to those with a strong mathematical background, and horrifies
everyone else.

� Hawking and Ellis [12], chapter 2, covers more than all the differential geometry
of this course.

Notation conventions There are a number of different sign conventions in use insign conventions
relativity books. The sign conventions used in this course match those in Schutz, [7],
[11], and [12]. Stewart [10] has the opposite signs for g, R and G; and Rindler [4] has
opposite signs for g and G.
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Examples

Example 1.1 (section 1.3)

A photon of frequency � is emitted vertically upwards from the floor of the box while a
rocket, firing beneath the box, is accelerating it upwards at 1g. What is the frequency
(or energy) of the photon when it is absorbed by a detector fixed in the box at a height h
above the floor? Use the Doppler redshift formula �em=�obs D 1C v (in units where
c D 1). How does this link to other remarks in this section?
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Example 1.2 (section 2.1)

If two 1kg balls, 1m apart, fall down a liftshaft near the surface of the earth, how much
is their tidal acceleration towards each other? How much is their acceleration towards
each other as a result of their mutual gravitational attraction?

Example 1.3 (section A)

Convert the following to units in which c D 1: (a) 10 J; (b) lightbulb power,100W;
(c) Planck’s constant, „ D 1:05 � 10�34 J s; (d) velocity of a car, v D 30m s�1; (e)
momentum of a car, 3 � 104 kg m s�1; (f) pressure of 1 atmosphere, 105 N m�2; (g)
density of water, 103 kg m�3; (h) luminosity flux, 106 J s�1 cm�2.

Convert the following to physical units (SI): (i) velocity, v D 10�2; (j) pressure
1019 kg m�3; (k) time 1018 m; (l) energy density u D 1 kg m�3; (m) acceleration
10m�1; (n) the Lorentz transformation, t 0 D .t � vx/; (o) the ‘mass-shell’ equation
E2 D p2 Cm2. (Example slightly adapted from Schutz [1, ch.1])
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