
NOTES ON QUATERNIONS, AND POINTING

NORMAN GRAY

The ‘qp’ program manages rotations by expressing positions in 3-d, and rota-
tions, as quaternions. This document briefly introduces quaternions, and discusses
some specific formulae which are used in the ‘qp’ program.

There is an excellent and compact summary of the core results in the book [1],
which goes far beyond the applications to 3-d rotations. The book [2] is considerably
chattier, and is much more practically focused (to the extent that it has almost an
engineering feel). The two books are rather indigestible in different ways. Girard’s
has a very mathematical tone: it is clear, but it generally leaves applications and
insight to the exercises; Kuipers is all about applications, but spends so much
time on these, and on contrasting the quaternion approach with trigonometric and
matrix approaches, that it can be hard to find the useful quaternion results. The
articles [3] and [4] have less detail than the books, but being by the same authors,
they give a good illustration of their respective styles.

1. Quaternions

Quaternions are a generalisation (rather, one of the various generalisations) of
the complex numbers. Rather than there being a single complex element i, there
are three new elements i, j and k, which do not commute, and which have the
properties:

i2 = j2 = k2 = −1(1)

ij = −ji = k, jk = −kj = i, ki = −ik = j.(2)

The set of such quaternions is labelled H. With the quaternion multiplication
illustrated here, they form a group. Quaternion multiplication is distributive (thus
a(b+ c) = ab+ ac), but not associative (a(bc) 6= (ab)c).

As with the complex numbers, a general quaternion may be written

q = q01 + q1i + q2j + q3k

= (q0,q),

where the second notation breaks apart the ‘scalar’ part of the quaternion and
the ‘vector’ part. There is a precise correspondence between these vectors and the
(q1, q2, q3) ∈ R3, enough that we can use the term ‘vector’ to apply to both; also
we will use the notation q to refer to either the vector part of a quaternion q, or
to the quaternion itself if its scalar part is zero. The set of quaternions with zero
scalar part is labelled VecH.

We can define the quaternion conjugate q as

q = q01− q1i− q2j− q3k.
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Through application of the multiplications of Eq. (1), we can see that

|q|2 ≡ qq = qq = q20 + q21 + q22 + q23 .

If |q|2 = 1, the quaternion is a ‘unit quaternion’.
Again applying the rules in Eq. (1) to the product ab, we find that

ab = 1(a0b0 − a1b1 − a2b2 − a3b3)

+ i(a0b1 + a1b0 + a2b3 − a3b2)

+ j(a0b2 + a2b0 + a3b1 − a1b3)

+ k(a0b3 + a3b0 + a1b2 − a2b1)(3)

= −(a0b0 + a · b) + a0b+ b0a+ a× b, ∀a, b ∈ H(4)

after a little rearrangement. Here, a and b are the vector parts of the corresponding
quaternions, and the dot and cross products on these are the usual vector opera-
tions. We can define inner and cross products on quaternions as follows:

a× b ≡ 1

2
(ab− ba) = a× b ∀a, b ∈ H(5)

(a, b) ≡ −1

2
(ab+ ba) = (a0b0 + a · b)− a0b− b0a ∀a, b ∈ H(6)

= a · b ∀a, b ∈ VecH,(7)

and we can observe that

ab = −(a, b) + a× b ∀a, b ∈ H(8)

= −a · b + a× b, ∀a, b ∈ VecH.(9)

Note that a × b ∈ VecH,∀a, b, and that if (a, b) = 0, then a and b anticommute:
ab = −ba. Also if a, b ∈ VecH, then typically ab 6∈ VecH (unless (a, b) = 0).

In the case where a is a unit vector, then aa = 1 and aa = −1, from which
a = −a, and (a, a) = a · a = 1.

It can be shown that the vector triple product in quaternion form is

(a× b)× c = −c× (a× b)
= −a(c, b) + b(c, a), ∀a, b, c ∈ H.(10)

The scalar triple product (a, b× c) does not have a similarly compact form, but we
can note that, not unexpectedly,

(11) (a× b, a) = (a× b, b) = 0.

For the proofs of these relations, and a few more properties, see [1, Sect. 1.5.2].
If r is a unit quaternion, then we can decompose it into

r = cos
θ

2
+ u sin

θ

2
,

where u is a unit vector (that is, u · u = 1 and u ∈ VecH) and θ ∈ [0, 2π). It can
then be shown that for all q ∈ VecH, the quaternion

(12) q′ = rqr

is also in VecH, and corresponds to a rotation of the vector q by an angle θ clockwise
about the axis u.
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This is the key result for our present purposes, and is why the algebra of quater-
nions finds current application in computer graphics and video games, and in space-
craft and aviation control systems. The important advantages of the quaternion
representation are that the quaternions remain well-behaved, and in particular are
linear, in all orientations including the poles. It is also very straightforward to
compose rotations, with good control over numerical accuracy. Some of these ad-
vantages attach to a representation in terms of rotation matrices, but these are
slightly more complicated to set up, and a straightforward representation requires
more storage space and calculation.

1.1. Quaternions and rotation groups. Neither the terminology nor the con-
cepts of group theory are required for the following notes, but it may be interesting
to point out the group structure of what we have so far.

If a quaternion q is multiplied by another, a, the result is another quaternion
(as we have seen above); if the quaternion is multiplied by two others ab, then
there is a further quaternion c = ab which has the same effect. This indicates that
the quaternions have a group structure. The same can be said of the quaternions
in VecH, and the operation of Eq. (12), and in this case the quaternions are a
‘representation’ of the group SU(2) (that is to say, they have the same structure as
the abstract group with that name, another representation of which is the set of
2×2 complex-valued unit-norm matrices). A further group is the group of rotations
of the 3-d sphere, SO(3) (any such rotation takes a point on the sphere into another
point on the sphere, and the result of two successive rotations corresponds to some
other single rotation; thus this is a group), and it turns out that the group SU(2)
contains two copies of the group SO(3), which is why, ultimately, the operation of
Eq. (12) is able to represent a rotation of the 3-d sphere.

That there are two copies of SO(3) in SU(2) can be seen by considering ‘rotation’
in Eq. (12) by more than 2π:

r2π+θ = cos
2π + θ

2
+ u sin

2π + θ

2

= − cos
θ

2
− u sin

θ

2
= −rθ,

with the result that

q′ = r2π+θqr2π+θ = rθqrθ.

Thus, there are two distinct operations corresponding to Eq. (12) which correspond
to the same rotation by θ of the sphere.

2. The quaternions and spherical polar coordinates

To illustrate the use of quaternions for rotation, we can identify the three basis
quaternions i, j and k with the three unit vectors of 3-d space, and calculate the
effect of a rotation rϕ by an angle ϕ about k, followed by a rotation rθ by an angle θ
clockwise about the new axis j′ = rϕkrϕ.

Although it is not a conventional notation, it is very convenient in these cal-
culations to write bθ = cos(θ/2) and dθ = sin(θ/2), after which bθ2 + dθ2 = 1,
bθ2 − dθ2 = cos θ and 2bθdθ = sin θ. We interpret bθ2 as cos2(θ/2).
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Thus

S = rθrϕ = (bθ + j′dθ)rϕ
= bθ(bϕ+ kdϕ) + dθrϕj since rϕrϕ = 1

= bθbϕ− idθdϕ+ jdθbϕ+ kbθdϕ.

Applying this rotation to the z-axis, k, for example, we obtain

SkS = (bθbϕ− idθdϕ+ jdθbϕ+ kbθdϕ)k(bθbϕ+ idθdϕ− jdθbϕ− kbθdϕ)

= (bθbϕ− idθdϕ+ jdθbϕ+ kbθdϕ)(bθdϕ+ idθbϕ+ jdθdϕ+ kbθbϕ)

= i sin θ cosϕ+ j sin θ sinϕ+ k cos θ,

on expanding the brackets and simplifying.

2.1. Conversion from equatorial to horizontal coordinates. If an object has
RA and Dec (α, δ), what are its Alt-Az coordinates (θ, ϕ), at an observatory with
co-latitude l̄ and at local sidereal time θs?

In equatorial coordinates, the object is in direction

(13) T = i cosα sin δ̄ + j sinα sin δ̄ + k cos δ̄

(writing δ̄ = π/2−δ). We rotate this vector by angle −θs clockwise about k to bring
it into the right-handed coordinate system where the longitudinal coordinate is zero
at the meridian, and then by angle −l̄ about j to bring it from this system into
the right-handed horizontal system. Note that here we are replacing the change of
coordinate system by a rotation of the target vector T in a fixed coordinate system
(which is in effect, in this case, the horizontal system).

For example, consider Rigel (RA=5h14m32s, Dec=−8◦12′6′′), as observed from
Glasgow (latitude 55◦54′8′′) at LMST=3h27m29s. We have

T = i0.195 + j0.970− k0.143

rϕ = cos(−51.◦9/2)− k sin(51.◦9/2)

rl = cos(−34.◦1/2)− j sin(34.◦1/2)

rlrϕ = 0.860 + i0.128− j0.264− k0.418

rlrϕTrϕrl = i0.812 + j0.446 + k0.377.

We can turn this last result back into polar coordinates by comparison with Eq. (13),
which tells us that tanϕ = q2/q1 and q3 = cos θ̄. Remembering to turn ϕ into az-
imuthal coordinate π−ϕ, we end up with Rigel having azimuth 151.◦2 and elevation
22.◦1.

This is a mapping from one angular system to another, through a transformation
expressed in angular terms, and doing the calculation in terms of quaternions is
indirect to the point of perversity. The example illustrates the relationship between
angular measure and quaternions, but the examples below might illustrate the
power of the quaternion approach more clearly.

3. Various relations involving quaternions

The point of using a quaternion representation is to make it easy, and compu-
tationally efficient, to perform a variety of calculations involving motions on the
sphere.
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3.1. Tracking. Our goal here is to describe the motion of a point across the ce-
lestial sphere due to sidereal motion, in horizontal coordinates. In equatorial co-
ordinates, this consists of rotation by an angle h = ωt. For sidereal rotation,
ω = 15′/min× 1.00274 and t is in UT. Thus the rotation in horizontal coordinates,
of a target point described by a quaternion T ∈ VecH, is generated by

(14) Sh = rl(bh+ kdh)rl,

where rl is the rotation by observatory co-latitude, described above. Specifically,
at a time t, we must rotate T to

(15) Tt = STS.

Consider now an infinitesimal rotation, by an angle dh. We can write

T → T ′ = dSTdS, dS = 1 + u
dh

2
,

where u is the axis of rotation (in horizontal coordinates). Expanding this, and
retaining only first order in dh, we obtain

T ′ = T +
1

2
(uT − Tu)dh

= T + u× Tdh

≡ T + dT.

Consider now this rotation expressed as infinitesimal rotations of angle ϕ about k

and θ about j′ = k̂× T = k×T/|k×T |, the unit vector in the direction perpendicular
to both k and T . These correspond to rotations in longitude (about the z-axis) and
in co-latitude respectively. As above, we have

T ′ =

(
1 + k

dϕ

2

)(
1 + j′

dθ

2

)
T

(
1− j′

dθ

2

)(
1− k

dϕ

2

)
= T + dϕk× T + dϕj′ × T.

Taking the inner product of this with, in turn, k and j′, we find

(dT, j′) = (dϕk× T + dθj′ × T, j′)

= dϕ(k× T, k× T )
1

|k× T |
= dϕ|k× T |,

and using

j′ × T =
1

|k× T |
(k× T )× T =

1

|k× T |
[
−k|T |2 + T (k, T )

]
we find

(dT, k) = (dϕk× T + dθj′ × T, k)

= dθ(j′ × T, k)

=
dθ

|k× T |
[
(k, T )2 − 1

]
,

since (k, k) = |T |2 = 1. Thus, writing dT = (u× T )dh, Note: angvel
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ϕ̇ =
dϕ

dt
=

(u× T, k× T )

|k× T |2
ḣ(16a)

θ̇ =
dθ

dt
=

(u× T, k)|k× T |
(k, T )2 − 1

ḣ.(16b)

Thus for a given rotation angle h about the equatorial axis, we can calculate Sh
by Eq. (14), and hence u; we can use this to calculate the expected pointing, Tt,
by Eq. (15), and the expected velocities in azimuth and co-elevation at that point
using Eq. (16a) and Eq. (16b), where the T in these expressions is the Tt calculated
for the expected or actual position of the telescope.

The inner product of two vectors, (a, b), requires three multiplications and two
additions, and the cross products a× b require six multiplications and three addi-
tions. On the same theme, the ordinary quaternion product, for two quaternions
not necessarily in VecH, requires 16 multiplications and 11 additions; a little alge-
bra allows rotation Eq. (12) to be done more directly, asNote: rotation

rqr = q0(r20 + r21 + r22 + r23)

+ i
[
q1(r20 + r21 − r22 − r23) + 2q3(r0r2 + r1r3) + 2q2(r1r2 − r0r3)

]
+ j
[
q2(r20 − r21 + r22 − r23) + 2q1(r0r3 + r1r2) + 2q3(r2r3 − r0r1)

]
+ k

[
q3(r20 − r21 − r22 + r23) + 2q2(r0r1 + r2r3) + 2q1(r1r3 − r0r2)

]
.(17)

With suitable reusing of intermediate results, this requires a little less than twice
the above number of operations, at 23 multiplications and 24 additions.

3.2. Composition of velocities. Suppose we have two rotations rσ = bσ + uσdσ
and rρ = bρ+ uρdρ, and we wish to identify a single rotation rh = bh+ uhdh which
has the same effect as rρ followed by rσ. For finite angles, this is straightforward:

rh = rσrρ = bσbρ+ dσbρuσ + bσdρuρ + dσdρuσuρ.

If we instead rotate by infinitesimal angles dρ and dσ, then the composite rotation
is

rh = 1 + uh
dh

2
=

(
1 + uσ

dσ

2

)(
1 + uρ

dρ

2

)
.

Much as above, this rotation will rotate T into T ′, where

T ′ = rhTrh = T + (uhdh)× T(18)

=

(
1 + uσ

dσ

2

)(
1 + uρ

dρ

2

)
T

(
1− uρ

dρ

2

)(
1− uσ

dσ

2

)
= T + (uσdσ + uρdρ)× T,(19)

and comparing Eq. (18) and Eq. (19) we can see thatNote: vcompose

uhḣ = uσσ̇ + uρρ̇,

where ḣ is obtained by the demand that uh be unit. This can be decomposed into
longitudinal and latitudinal velocities as in Eq. (16).

3.3. Rotating one quaternion into another. Consider A,B ∈ VecH, with
AA = BB = 1. We wish to calculate the rotation which will bring A into B,
paying some attention to numerical efficiency.
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3.3.1. Direct ‘trigonometric’ method. Write a = A × B ∈ VecH. If we define
â = a/|a|, and note |a × b| = |a||b| sinα, then the rotation from A to B is about
the axis â, by an angle α = arcsin |a× b|, and we can perform this rotation by
constructing the generator rα = bα+ âdα. Note: rotations

We can also find bα and dα without using the trigonometric functions by noting
that cosα = (1− |a× b|2)1/2, and that

(20)
bα = cosα/2

dα = sinα/2

}
=

(
1± cosα

2

)1/2

.

3.3.2. ‘No-trig’ method. Alternatively – requiring more algebra but less arithmetic
– we can proceed as follows. Write

(21) r = r0 + ρa,

where rr = 1, so r20 − ρ2aa = 1. What are r0 and ρ so that

A′ ≡ rAr = B ?

We have

A′ = rAr

= (r0 + ρa)A(r0 − ρa)

= r20A+ 2ρr0a×A− ρ2aAa.(22)

Using the vector triple product formula, Eq. (10),

a×A = (A×B)×A
= −A(A,B) +B(A,A) = B +A(AB +BA)/2

= (B +ABA)/2 since AA = −1.

Now, ABA = −ABA is a rotation of B about A by π radians, negated, and
therefore corresponds to a reflection of B in the plane perpendicular to A, thus
ABA = B − 2A(A,B); alternatively

ABA = (ABA+AAB)−AAB
= −2A(A,B) +B since AA = −1.

Since (a, A) = 0, we have aA = −Aa, so that Eq. (22) becomes

A′ = (r20 + ρ2aa)A+ 2ρr0
(
B −A(A,B)

)
=
(
2r20 − 1− 2ρr0(A,B)

)
A+ 2ρr0B.(23)

This is equal to B if 2ρr0 = 1 and r20 =
(
1 + (A,B)

)
/2. This fixes both of the

coefficients in Eq. (21).
The ‘obvious’ route from a to the generator r, using the angle α explicitly, uses

the square-root, arcsine, sine and cosine functions once each. The route using
Eq. (20) uses the square-root function four times (to calculate |a| and cosα, and

twice in Eq. (20)); the route via Eq. (23) uses that only once (to calculate
√
r20). The

speed differences are unlikely to be terribly significant in other than very constrained
environments. There may be some accuracy advantages in the route with less
arithmetic, but these also are unlikely to be important in most circumstances.
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Figure 1. (a, left) A quaternion A being rotated about an axis u
until it reaches a point B on a plane through P with normal b. (b,
right) The same, but where the terminal plane cuts the vector b at
a distance h from the origin.

3.4. Detecting when a rotation crosses a meridian. Consider Fig. (1)a, which
shows a quaternion A being rotated along a great circle about u. Given A, u and b,
we want to find B or, equivalently, the angle θ through which the point A is rotated
until it hits the plane PB. More specifically, we are interested in the meridian drawn
out by rotating P by π about b. All of A, u, b and B are unit quaternions, and all
but u are vectors.Note: meridians

The resulting direction B is

B = (bθ + udθ)A(bθ − udθ)
= bθ2A+ 2bθdθ(u×A) + dθ2uAu
= bθ2A+ dθ2Au + 2bθdθ(u×A),(24)

where we have defined vq ≡ qvq = −qvq, for v, q ∈ VecH. Comparing with Eq. (12),
we can see that vq corresponds to a rotation of v by an angle π about q, which is
equivalent to a reflection of v in the line generated by the vector q. As a special
case, when u is perpendicular to A, then Au = −A (and B = cos θA+sin θ(u×A)).

Define a set of basis quaternions to be k = P , j = b = P̂ ×B and i = −P × b;
it is natural to think of the point P as being the pole, but this is not necessary to
the construction below. We can expand each of the quaternions in the problem in
terms of this basis, thus B = B1i +B2j +B3k. From this,

Bi = −iBi = Bii−B2j−B3k⇒ 1

2i
(B +Bi) = B1,

and similarly for the other basis quaternions.
When B is in the plane in Fig. (1)b, the projection of B onto b will be such that

(B, b) = B2 = h.
When B is in the PB plane, we will have B2 = 0, or

h = B2 =
1

2j
(B +Bj)

=
1

2j

(
bθ2(A+Aj) + dθ2(Au + (Au)j) + 2bθdθ

(
u×A+ (u×A)j

))
.

Restoring j = b in this expression, we note that each of these terms is a multiple
of the vector b, so that we can divide throughout by bθ2, take the inner product of
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each coefficient with b, use 1/bθ2 = (1 + tan2 θ/2), and write

t2 tan2 θ

2
+ 2t1 tan

θ

2
+ t0 = 0,

where

t2 = (Au + (Au)b, b)− 2h

t1 = (u×A+ (u×A)b, b)

t0 = (A+Ab, b)− 2h,

so that

(25) tan
θ

2
=

1

t2

(
−t1 ±

√
t21 − t2t0

)
.

From this point we can obtain the components in Eq. (24) without trigonometry
via

sec2
θ

2
=

1

bθ2
= 1 + tan2 θ

2

cosec2
θ

2
=

1

dθ2
= 1 + cot2

θ

2

1/(2bθdθ)2 =
1

4

(
2 + tan2 θ

2
+ cot2

θ

2

)
where we take the sign of 2bθdθ to match the sign of the corresponding tan θ/2. No-
tice that these require multiplications, divisions and additions, but no trigonometric
functions.

Given the zero, one, or two solutions for tan θ/2, we have corresponding numbers
of values of Eq. (24). Of these, we want the first B which corresponds to a rotation
of P about b by an angle less than π, which is to say that B which is such that
P ×B is in the same direction as b, ie, (P ×B, b) > 0.
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