
NOTES ON THE KALMAN FILTER

NORMAN GRAY

These notes discuss the specific Kalman filter used in the ‘qp’ program. It is not
intended to be a general introduction to Kalman filters, since there exist multiple
such introductions, including the valuable [?] and [?]. Instead, this document de-
scribes the way in which the general technique described there is specialised to the
particular case being modelled. We here use the notation of [?].

In the case of the SRT, the longitudinal and latitudinal degrees of freedom are
independent, and so we can manage them completely separately. Therefore we
handle both directions using a 1-d filter. Because of this, in this application we
don’t have to care about the sense of these coordinate – east of north/south – and
beyond noting that ω, below, is dimensionless, we don’t have to care about their
units.

The angles that are provided to the filter are the actual angles in radians. The
‘speed’ that is provided to the filter is the speed as a fraction of a reference speed
which is chosen to be the maximum speed of the corresponding motor (that is,
the speed at which it moves in fact, when commanded to move at speed 255). The
occasional ‘measurements’ arise from the telescope driving moving past one or other
of a sequence of reed switches, at each of which we produce a ‘click’.

1. The filter

The state vector is

x =

(
θ
V

)
,

where θ is one or other of the angular coordinates, and V is the maximum motor
speed in the corresponding axis. Specifically, V is the speed in rad/s corresponding
to commanded speed 255.

At each step, we require the commanded speed in the preceding timestep to have
been constant. Refer to the commanded speed as ω ∈ [−1, 1], so that the actual
speed is V ω (rad/s).

1.1. The predictor step. The state transition matrix Ft is such that

x̂t|t−1 =

(
θt|t−1
Vt|t−1

)
= Ftx̂t−1|t−1 =

(
1 ω∆t
0 1

)(
θt−1|t−1
Vt−1|t−1

)
(this assumes that the drive motors are strong enough that we can ignore the time
taken to accelerate to the commanded speed).
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The covariance matrix is updated similarly

Pt|t−1 = FtPt−1|t−1F
>
t + Qt

=

(
1 ω∆t
0 1

)(
p00 p01
p10 p11

)
t−1|t−1

(
1 0

ω∆t 1

)
+

(
δθ2 0
0 δV 2

)
= Pt−1|t−1 +

(
ω∆t(p01 + p10 + ω∆tp11) + δθ2 ω∆tp11

ω∆tp11 δV 2

)
.

There are no control inputs, so no control vector ut, and consequently no control
matrix B. The state parameters θ and V are independent, so the noise matrix Q
is diagonal.

1.2. The corrector step. There are two cases here, where we do and where we
don’t make a measurement of angle.

We only ‘measure’ the position of the telescope drives when the drive passes one
of the reed switches, and the system receives a ‘click’. Nonetheless, the system
is updated periodically, either with or without a change in speed. These can be
handled easily as a notional measurement with infinite Rt, for which the Kalman
gain Kt = 0, so that

x̂t|t = x̂t|t−1 (‘missing’ measurements)

Pt|t = Pt|t−1.

For the steps which include a click, we can update the state vector and covariance
using

x̂t|t = x̂t|t−1 + Kt(zt −Htx̂t|t−1)

Pt|t = Pt|t−1 −KtHtPt|t−1.

Here, we compare the measured ‘click’ coordinate zt (which will be an integer
multiple of the interval in radians between reed switches) with the predicted state
position zt|t−1, via

ẑt|t−1 = Htx̂t|t−1 =
(
1 0

)( θ
V

)
t|t−1

= θt|t−1.

The ‘matrix’ zt is therefore simply a 1 × 1 matrix. The uncertainty in position –
arising from perhaps drive slop or other systematic positioning errors – will be a
constant δz, resulting in the 1 × 1 error matrix Rt = δz2. With this, the Kalman
gain is

Kt =
1

A
Pt|t−1H

>,

=
1

A

(
p00 p01
p10 p11

)
t|t−1

(
1
0

)
=

1

A

(
p00
p10

)
,
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where the denominator A is

A = HtPt|t−1H
>
t + Rt

=
(
1 0

)(p00 p01
p10 p11

)
t|t−1

(
1
0

)
+ δz2

= p00|t−1 + δz2.

Thus, the correction step for the state vector is given by(
θ
V

)
t|t

=

(
θ
V

)
t|t−1

+
1

A

(
p00
p10

)
(zt − θt|t−1),

and that of the covariance matrix is(
p00 p01
p10 p11

)
t|t

= Pt|t−1 −KtHtPt|t−1

= Pt|t−1 −
1

A
Pt|t−1H

>
t HtPt|t−1

= Pt|t−1 −
1

A

(
p00 p01
p10 p11

)(
1 0
0 0

)(
p00 p01
p10 p11

)
t|t−1

= Pt|t−1 −
1

A

(
p200 p00p01

p10p00 p10p01

)
t|t−1


