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Who am I?..

N University
7 of Glasgow

!

Jim Hough and Ron Drever, 1978

Institute for Gravitational Research

~40 research staff and students, with activity

spanning advanced materials, optics and
interferometry, data analysis, for ground-
and space-based GW detectors.
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My Research Interests:

Cosmology: galaxy distance indicators
galaxy redshift surveys
cosmological parameters

Gravitational wave data analysis:

Bayesian inference methods
LISA data analysis

Multi-messenger astronomy

A University
o of Glasgow
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HENDRY, WOAN: GRAVITATIONAL ASTROPHYSICS

bszrvational astrophysics is often pre-
sented as the ultimare remote-sensing
problem, There is no possibility of rav-

elling to the majority of targets to inferact with
them and ca
many of our me

out experiments. Furthermuore,
closely smudied rargets have
long sinee entirely ceased to exist, and can be
studied only by reconstrucrion via their radi
fields. The tonls at our disposal, though powerful,
are limited in scope. Indeed, the vast majogicy of
whar we know abour the universe comes from

ion

studying a single measure: the seoond moment
(variance ) of the electric companent of the elecrro-

magnetic radiation field. This single statistic has
delivered nearly all the imaging, spectroscopy
and multiwavelength astrophysics thar shapes
our current view of the universe, We gi
names, such as apparent magnirude, fringe vis-
ihiliey and pheton connes, but essentially w
studying a statistic of the ensemble electric field
from many independent charged particles ina
ant. Aserophysics basad on the
electromagnetic field will always be so. Although
large-scale coherent ehectromay
exist (i, for example, astrophy

ane

remate environm

palsar radio emission) the majority of whar we

Gravitational
astrophysics

Martin Hendry and Graham Woan survey the astrophysical problems
that may be illuminated by the detection of gravitational waves - and
how planned instruments will do so.

Like the surface of a busy swimming pool, spacetime is ith waves g by the
lo<al and distant motions of mass and, in principle, much of this activity can be reconstructed
by analysing the wavetorms. However, instrumentation with a reasonable chance of directly
delecling these gravitational waves has only become available within the pastysar, with the

see 15 the result of the random motions of charged
particles in similar environments and the nature
of the electromagnetic mteraction means that
small-scabe emission mechanisms dommare. The
field itself is also random bot can be character-
ized by its statistics, themselves dependent on the
distribution of environmental conditions in the
source, I is from these staristics, rather than the
fiedd ivself, that we learn about the environment.

This may scem a perverse way of describing
observational astre 538, but it highlights limi-
rations of our techniques and gives a flavour of
whar we may be missing. Forms of non-elecrro-
magnetic astronomy exist, notably basad on
cosmic-ray and neurrino-particle counts, but

the last (as far as we know) truly great challense
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ctic provesses du Liso deteclorsw ing 'dEigl.\ ith HE.I'E b “' geoning field of
masers and g physics: using clors as

to help answer a wide range of ical ions from neut tar physics to
cosmology. The next genaration of ground-based should be able to mal
gravitational ob f somee of the getic events in our local universe, Looking
only slightly further ahead, the space-based LISA chservatory will reveal the gravitational
unierss in p detail, supplying high-quality data on perhaps of sources,
and tackling some of the maost fascinati ions i .

enherent gravitational waves thar divectly reflect  abour 380 000 vears afrer the Big Bang, the cos-
the motion. Electromagnetic radiation is wsually  mic gravitational backgroand radiar CGER)
generated by small-scale motions of charged par- — probably did so afrer onk
ticles, bur powerful gravitational radiation can  observations would ther
n stellar scales and with correspondingly — in rime and reveal the mass distriburion in the
wavelengrhs, where the interstellar medium — universe ar this carliest instant, though their
is elecrrom cally epague., desection will be a significant challenge.

Given its clear anractions, why is gravirarional
astronomy not a standard technique o the astro-

arise

Unique view

ST

einstein.
year

University
of Glasgow

Einstein’s “Annus Mirabilis”: 1905

ON THE ELECTRODYNAMICS OF MOVING
BODIES

By A. EINSTEIN
June 30, 1905

It is known that Maxwell’s electrodynamies—as nsually understood at the
present time—when applied to moving bodies, leads to asymmetries which do
not appear to be inherent in the phenomena. Take, for example, the recipro-
cal electrodynamic action of a magnet and a conductor. The observable phe-
nomenon here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction between the twao
cases in which either the one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the neighbour-
heod of the magnet an electric field with a certain definite energy, produeing
a cnrrent at the places where parts of the conductor are situated. But if the
magnet is stationary and the conductor in motian, na electric field arises in the
neighbourhood of the magnet. In the conductor, however, we find an electro-
motive force, to which in itself there is no corresponding energy, but which gives
rise—assuming equality of relative motion in the two cases discussed—to elec-
tric currents of the same path and intensity as those produced by the electric
forees in the former case.

Examples of this sort, together with the unsuccessful attempts to discover
any motion of the earth relatively to the “light medium” suggest that the
phenomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest. They suggest rather that, as has
already been shown to the first order of small quantities, the same laws of
electrodynamics and optics will be valid for all frames of reference for which the
equations of mechanics hold good.! We will raise this conjecture (the purport
of which will hereafter be called the “Principle of Relativity”) to the status
of a postulate, and also introduce another postulate, which is only apparently
irreconcilable with the former, namely, that light is always propagated in empty
space with a definite velocity ¢ which is independent of the state of motion of the
emitting body. These two postulates suffice for the attainment of a simple and
consistent theory of the electrodynamics of moving bodies based on Maxwell's
theory for stationary bodies. The introduction of a “luminiferous ether” will
prove to be superflucus inasmuch as the view here to be developed will not
require an “absclutely stationary space” provided with special properties, nor

TThe praceding memoir by Lorentz was not at this time known to the author
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518 A Elreiin. Anmakn der Py, Baed 45, 1916

1918, M7

ANNALEN DER PHYSIK.
VIEETE FOLGE. BAND 49,

1, ITHe Grundlege
der allgemeinen Relativdidistheorie;
wom d, FHinstedn.

Die im nechfolgenden dargelegte Theoris bildet die denk
bar weitgehendste Verallgemeimerung der hemle allgsmain sls
wlalativithtstheorie" Bezpichnoter Theorie; die letzlare nenne
ieh im ru-':pyrl!tr. zurF Tntersehsid TEgE Vo der arstaram nEaialls
Eslstivititetheorte™ und sstze gis aln bokanst worawms, Dia
Vernllgemeinerung  der  Belativititatheorts  wurde  sshr er.
ledehtert dureh die Gestalt, welche der speziellen Belativitfis-
theorin durels Minkowski gegeben wurde, weleher Matha-
matiksr zmeet din formals Glachwartighedt der riomlichin
Evordinaten und der Bebtkocrdinste klar arbanmte and. far
den Aufban der Theorie nulelnr machte, Ihe fir dis all-
gamaing  Halativitktstheorie moligen mathemstischen  Hilfs-
miittal kagn beetig barait in demn |, absclaten Differentialksllal™,
woleher anfl den Porschu vom Gauss, Bismann umd
Christoffe] dbar niahley e .ila:hll-.:f*-"-'glndft‘u rubit
vor Rieei und Levi-Tivila in e Bwlem gebracht umnd
haraits an! Problema der theoretiseben Fhysik sogewended
worde. Tih habe im Absebmitt B der vorliggonden Ahhand-
lung alls fiir une nitlgen, bed dem Physiker nicht als belnent
voramsmseizenden malhesmibehen  Hillimittal in moglichst
winfuchar und durchsichiiger Weise enfwickelt, e daf sim
Btudine Eathesatiseber Literatur fér das Verslindeas dec
voglisgeniden Abbandlng kbt erforderlSels isi. Endlich sei
an dieser Biells dankbar melned Froundes, des Mathametikars
Grossmann, gedscht, der mir durch seing Hilds nizht nur
dap Stediom der ainschligigen mathemaslischen Literatur ar-
aparls, pomdern mwish aeth taim Suchen neeh den Feldgleichon-
gem der Gravitalion anferstitzte,

dsibie dar Thyek. 17, Fage. &5 B
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University
of Glasgow
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Colleague: "Professor Eddington, you must be one of only three persons in the
world who understand relativity!"

Eddington: " oh, I don't know..."

Colleague: " Don't be modest Eddington.”

Eddington: " On the contrary, | am trying to think who the third person is.

Universi .
o Glasgow Cacroy,
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Gravity in Einstein's Universe

KSpace‘l'ime tells ma'r'rer'\
how to move, and
matter tells spacetime

\how to curve )

B University @
o of Glasgow -
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“...Joy and amazement at the
beauty and grandeur of this
world of which man can just
form a faint notion.”

uv HV
\\ !
Spacetime Matter
curvature (and energy)
B University
o of Glasgow
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Gravity in Einstein's Universe

“Since the mathematicians
have invaded the theory of
relativity, | do not understand
it myself anymore.”

University
of Glasgow

b
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We are going to cram a lot of mathematics and
physics intfo one morning.

Two-pronged approach:

» Comprehensive lecture notes, providing a
‘long term’ resource and reference source

» Lecture slides presenting “highlights” and
some additional illustrations / examples

Copies of both available at

http://www.astro.gla.ac.uk/users/martin/teaching/vesf/

University
of Glasgow

b
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What we are going to cover

Foundations of general relativity
Introduction to geodesic deviation
A mathematical toolbox for GR

Spacetime curvature in GR

Introduction to GR
a N W N P

Einstein’s equations

A wave equation for gravitational radiation
The Transverse Traceless gauge

The effect of gravitational waves on free particles

© 0 N O

The production of gravitational waves

Gravitational Waves
and detector principles

A University @ PB
) y
e of Glasgow s‘:’_ﬂ
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Websites of my Glasgow University Courses

Part 1: Introduction to General Relativity.

http://www.astro.gla.ac/users/martin/teaching/gri/gri_index.html

Part 2: Applications of General Relativity.

http://uww.astro.gla.ac.uk/users/martin/teaching/gr2/gr2 index.html

Both websites are password-protected, with username and password ‘honours’.

Recommended textbooks

LUETSUI  “A First Course in General Relativity" GRAVITATION eVl
general relativity

Charles Misner, Kip Thorne,
John Wheeler

Bernard Schutz
ISBN: 052177035
ISBN: 0716703440
Excellent introductory textbook.
Good discussion of gravitational wave
generation, propagation and detection.

The 'bible’ for studying GR

A University @ PB
Cary A58 3y
i’ of Glasgow s‘:’..
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1. Foundations of General Relativity (pgs. 6 - 12)

GR is a generalisation of Special Relativity (1905).

In SR Einstein formulated the laws of physics to be valid
for all inertial observers

— Measurements of space and time relative
to observer’s motion.

B Universit
J—’ qulasgoxg @
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Classical Physics:
James Clerk Maxwell’s theory of light

- ™

Light is a wave caused

by varying e/ectric and

magnetic fields

University
o of Glasgow

4
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—
But what if I travelled

alongside a light beam?
Would it still wave?

] University
< of Glasgow
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50mph

In Special Relativity, the
speed of light is unchanged
by the motion of the train

> Measurements of space
and time are relative
and depend on our motion

ON THE ELECTRODYNAMICS OF MOVING
BODIES

» Unified spacetime - only
measurements of the
spacetime interval are
invariant

> Equivalence of matter and
energy

A Universit
J—’ q;"Glang\g @
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1. Foundations of General Relativity (pgs. 6 - 12)

GR is a generalisation of Special Relativity (1905).

In SR Einstein formulated the laws of physics to be valid
for all inertial observers

— Measurements of space and time relative
to observer’s motion.

Minkowski
metric

ds? = —2dt? + da® + dy2 1+ d?
N

Invariant interval

B University @
o of Glasgow -
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Intervals between neighbouring events:

timelike  ds? < 0

spacelike  ds® > 0

lightike  ds* =0

BA University @
o of Glasgow
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Spacetime diagrams

Time

A University @
< of Glasgow SuU
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Space

Spacetime diagrams

Time

/

Stationary physicist
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Space




Spacetime diagrams

Time

Physicist moving at/v

a constant speed

Space

& Universit
* c}f‘Glang\g @

i
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Spacetime diagrams N e
£
Causal future
Event A cannot C
cause Event B
Spacer
Event B cannot A.

cause Event C

B Universit
+ c}f‘Glang\g @

s
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Newtonian gravity is incompatible with SR

Law of Universal Gravitation

Every object in the Universe attracts
every other object with a force directed
along the line of centers for the two
objects that is proportional to the
product of their masses and inversely
proportional to the square of the
separation between the two objecis.

r

Isaac Newton:
1642 -1727 AD
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/

Moon’s orbit

But how does the Moon
know to orbit the Earth?

How does gravity act at a
distance across space?




Principles of Equivalence

Inertial Mass FI

Gravitational Mass FG

Weak Equivalence Principle [ m, — mG ]

Gravity and acceleration are equivalent

University F\E
of Glasgow
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The WEP implies:

/A object freely-falling in\
a uniform gravitational
field inhabits an
Inertial frame in which
all gravitational forces

have disappeared.
\_ PP J

But only LIF: only local over
region for which gravitational
field is uniform.

University F\E
of Glasgow
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The WEP explains why
gravitational acceleration of
a falling body is independent
of its nature, mass and
composition.

c.f. Galileo
Apollo 15

Eotvos experiment

o
=
o
o
o
g
=
2
&
o
2
&
@
=
o
a3
w
&
]
w

s
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Newton’s Laws of Motion and Gravitation

Aristotle’s Theory: Galileo’s Experiment:
1. Objects move only as 1. Obijects keep moving
long as we apply a after we stop applying a
force to them force (if no friction)
2. Falling bodies fall at 2. Falling bodies
a constant rate accelerate as they fall
3. Heavy bodies fall 3. Heavy bodies fall at the
faster than light ones same rate as light ones

W Universit
+ c}f‘Glang\g @

s

‘e [
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Strong Equivalence Principle

/Locally (.,e.in a LIF)\ o Sl . ....,.,
all laws of physics '- B/
reduce to their SR I
form — apart from b

gravity, which simply | [E= 1 )

\ disappears. /

A Universit
+4 c_)fGlasgovg @

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

The Equivalence principles

also predict gravitational at time t=0
||g ht deerCtion ves ]E,]n]igorm gravitational
ield, g
Light path A B l
Light enters lift horizontally at X, at - i ﬁ
[ ]

instant when lift begins to free-fall.

Observer Ais in LIF. Sees light
reach opposite wall at Y (same J after time t=L/c
height as X), in agreement with SR. 5

To be consistent, observer B ’_é_‘

outside lift must see light path as R
curved, interpreting this as due to ﬁ —Y
the gravitational field

B Universit
> c}f‘Glang\g @
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The Equivalence principles B at time t=0
also predict gravitational é

' Unif vitational
redshift... niform gravitationa

.

Light enters lift vertically at F, at instant ﬁ
when lift begins to free-fall.

Light path

»m| F —

Observer Ais in LIF. Sees light reach
ceiling at Z with unchanged frequency, in
agreement with SR.

B
Observer B outside lift is moving away |_é—_l
z
T
A

after time t=h/c

from A (and Z); sees light as redshifted,
interpreting this as due to gravitational
field.

A University g
J_, of Gl 1sg0\g

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

The Equivalence principles
also predict gravitational

redshift...
Ad _gh
A c

Measured in Pound-
Rebka experiment

Also measured in
white dwarf spectra

See e.g. Barstow et al.
(2005)

-

B University €
.J_, of Ghng\g
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From SR to GR...

How do we ‘stitch’ all
the LIFs together?

Can we find a
covariant description?

University &q 1D
of Glasgow s‘-!m
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Ptolemy proposed a
model which could
explain planetary
motions - including
retrograde loops

Ptolemy: 90 - 168 AD

A University &1 JP
& of Glasgow s‘-!m
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2. Introduction to Geodesic Deviation (pgs.13 - 17)

In GR trajectories of freely-falling particles are geodesics — the
equivalent of straight lines in curved spacetime.

Analogue of Newton I:  Unless acted upon by a non-gravitational
force, a particle will follow a geodesic.

A Universit '
L of Glasgmg @
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The curvature of spacetime is revealed by the behaviour of

neighbouring geodesics.

Consider a 2-dimensional analogy.

Zero curvature: geodesic deviation unchanged.
Positive curvature: geodesics converge
Negative curvature: geodesics diverge

[ University
Z of Glasgow
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Non-zero curvature

N

Acceleration of geodesic deviation

N

Non-uniform gravitational field

University

oS

o of Glasgow @ () {&N):
b -

s
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4

We can first think about geodesic deviation and curvature in a

Newtonian context :
]:; 0

By similar triangles \ 5] /

£ _ &

5

>\ >k
r(t) 7o
Hence
o i — kc;;w
r

4

University B
o, of Glasgow ‘) 8 A
R
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We can first think about geodesic deviation and curvature in a
Newtonian context
P; :ﬂ P

or \ s / |

. EGM GME
§=—= -3

which we can re-write as

e GM ¢
d(ct)2 R3¢

T

At Earth’s surface this equals 2x 10723 m™

2

BA University 3
& of Glasgow SuU
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Another analogy will help us to interpret this last term

£(s) =acosbdp =E&ycost =Eycoss/a N Spr_lere of
radius a

Differentiating:  d*¢ 1

ds? a?

Comparing with previous slide:
GM |
R= { R3c2 }

represents radius of curvature of
spacetime at the Earth’s surface

- R ~2x 104 m

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009
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At the surface of the Earth R ~ 2x 10" m

The fact that this value i1s so much larger than the physical

radius of the Earth tells us that spacetime is ‘nearly’ flat in

the vicinity of the Earth — 1.e. the Earth’s gravitational field
is rather weak. (By contrast, if we evaluate R for e.g. a
white dwarf or neutron star then we see evidence that their

gravitational fields are much stronger).

& Universit
* c}f‘Glang\g @
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3. A Mathematical Toolbox for GR (pgs.18 - 32)

Riemannian Manifold

A continuous, differentiable
space which is locally flat

and on which a distance, or
metric, function is defined.

(e.g. the surface of a sphere)
The tangent space in a generic point of an s? sphere

The mathematical properties of a Riemannian
manifold match the physical assumptions of the
strong equivalence principle

W Universit
+ c}f‘Glang\g @
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Vectors on a curved manifold

We think of a vector as an
arrow representing a
displacement.

— a =
AX = AX“€E,
components basis vectors

In general, components of vector different at X and Y, even if the
vector is the same at both points.

A University
J—’ of Glasgox%' @

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

We need rules to tell us how to
express the components of a
vector in a different coordinate
system, and at different points
in our manifold.

e.g. in new, dashed, coordinate
system, by the chain rule

oz’

At =
oxr®

Ax®

We need to think more carefully

about what we mean by a vector.

A University
i’ q;"Cilang\z' @
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Tangent vectors

We can generalise the concept of vectors to curved manifolds.

Suppose we have a scalar function, ¢, defined at a point, P, of
a Riemannian manifold, where P has coordinates {2, 2%, ..., 2"}
in some coordinate system. Since our manifold is differen-
tiable we can evaluate the derivative of ¢ with respect to each

of the coordinates, 2°, forz =1, ..., n.

] VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

Tangent vectors

We can think of the derivatives as a set of n ‘operators’, denoted by
J
o’

These operators can act on any scalar function, ¢, and yield the rate of change of

the function with respect to the 2"
We can now define a tangent vector at point, P, as a linear operator of the form

5, , 0 b J b gan )
“ Oxl “ or? 7 “ oz

al

Ok
This tangent vector operates on any function, ¢, and essentially gives the rate of
change of the function — or the directional derivative —in a direction which is defined

by the numbers (al,a?, ...,a").

] VESF School on Gravitational Waves, Cascina May 25th - 29th 2009




3]

The n operators

can be thought of as forming a set of basis vectors, {€;},

spanning the vector space of tangent vectors at P.

Simple example: 2-D sphere.

Set of curves parametrised by
coordinates

- __ 0
ei:&fri

tangent to ith curve

Basis vectors differentat X and Y.

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

Summary

To sum up, we can represent vectors as tangent vectors of curves in our manifold.
Once we have specified our coordinate system, we can write down the components

of a vector defined at any point of the manifold with respect to the natural basis

} at that point. A vector field can then

generated by the derivative operators { g
TH

Ik

be defined by assigning a tangent vector at every point of the manifold.

Extends easily to more general curves, manifolds

g Upicrsy SUPA Y )
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Transformation of vectors

Suppose we change to a new coordinate system {2/*, 22, ... 2"}, Our basis vectors
are now

- d

e = .

o Qae
How do the components, {a',a?, ...,a"}, transform in our new coordinate system?

Let the vector @ operate on an arbitrary scalar function, ¢. Then

o 15/0)
alg) =a” =
(9) dxrv

By the chain rule for differentiation we may write this as

(o) = a2 00

COav Ok

B University @
o of Glasgow -
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However, if we write @ directly in terms of coordinate basis {eL_} = md_,“ }, we have

o Ao
a(p) = a™-

Ox'H

Hence we see that

Py

o O,

at = ——a

oV

This is the transformation law for a contravariant vector.

Any set of components which transform according to this
law, we call a contravariant vector.

BA University @
o of Glasgow
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Transformation of basis vectors

—

What is the relationship between the basis vectors ¢/, and €, in the primed and

H
- da¥ |
6#_ = Wty

Thus we see that the basis vectors do not transform in the same way as the com-

unprimed coordinate systems?

ponents of a contravariant vector. This should not be too surprising, since the
transformation of a basis and the transformation of components are different things:
the former 1s the expression of new vectors in terms of old vectors; the latter is the

expression of the same vector in terms of a new basis.

B University
o of Glasgow
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ox?
Af

T

Ay

This is the transformation law for a one-form or covariant
vector.

Any set of components which transform according to this

law, we call a one-form.

A one-form, operating on a vector, produces a real
number (and vice-versa)

B University
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Picture of a one-form

Not a vector, but a way of ‘slicing up’ the manifold.

The smaller the spacing, the
larger the magnitude of the
one-form.

When one-form shown acts on

the vector, it produces a real

number: the number of ‘slices’ @ @ ©
that the vector crosses.

Example: the gradient operator (c.f. a topographical map)
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Picture of a one-form
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Extension to tensors

An (I,m) tensoris a linear operator that maps | one-forms and

N vectors to a real number.

Transformation law

1u1 901 q
Ox oz'™ Oz Jxdm Atz
q1 g2 - qm

Al’u1 U2 ... U] _ . .
F1T2 . Tm oxh ozt Ox'™  Ox!™™

If a tensor equation can be shown to be valid in a particular
coordinate system, it must be valid in any coordinate system.

A University
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Specific cases

. 0z oz
2,0) tensor nj _ 27 ki
(2,0) r ozxk Ox! T

1 l
0" 0"

(1,1) tensor
l

1
bi = ok dz'i

dz* ot
(0,2) tensor = 9 57 K
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Example:

. a &)
metric tensor g = 9z% 9z” g
w = Bt o 9P

which justifies ds® = g, datdz”
Invariant interval Contravariant vectors
(scalar) or (1,0) tensors

BA University @
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We can use the metric tensor to convert contravariant vectors to
one-forms, and vice versa.

Lowering the index A; = gg-kAk
Raising the index B = giij

Can generalise to tensors of arbitrary rank.

(this also explains why we generally think of gradient as a vector operator.
In flat, Cartesian space components of vectors and one-forms are identical)

BA University 3
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We are going to cram a lot of mathematics and
physics into (less than) 4 hours.

Two-pronged approach:

» Comprehensive lecture notes, providing a
‘long term’ resource and reference source

» Lecture slides presenting “highlights” and
some additional illustrations / examples

Copies of both available at

http://www.astro.gla.ac.uk/users/martin/teaching/vesf/
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Covariant differentiation

Differentiation of e.g. a vector field involves subtracting vector
components at two neighbouring points.

This is a problem because the transformation law for the components
of A will in general be different at P and Q.

DA’ A (x+dx)

[ — Partial derivatives are not tensors ]

To fix this problem, AR Q(x+dx)

we need a procedure for
transporting the components
of A to point Q.

A Universit
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P(x)
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Covariant differentiation

We call this procedure Parallel Transport

A vector field is parallel transported along a curve, when it mantains a

constant angle with the tangent vector to the curve

1x )

A(r)

BA University @
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Covariant differentiation

A(x)
We can write

DA (z + dz) = A*(z) + 6 A%(x)

P(x)
where -
0¢€;

[ §A (z) = —T%, Aldz" ]

A2

Christoffel symbols, connecting the basis
vectors at Q to those at P

BA University 3
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Covariant differentiation

We can now define the covariant derivative (which does
transform as a tensor)

Vector A?ﬁ; — Ai‘ 1+ F;&AJ’

b

One-form B = Bi,k _ F‘ngj
(with the obvious generalisation to arbitrary tensors)
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Covariant differentiation

We can show that the covariant derivatives of the metric tensor
are identically zero, i.e.

Gapn =0 and g‘fd =0

From which it follows that

, 1 .
= 5911(953‘,;: + Gikg — Gjka)
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Geodesics

We can now provide a more mathematical basis for the
phrase “spacetime tells matter how to move”.

One can define a geodesic as a curve along which the tangent vector to the
curve is parallel-transported. In other words, if one parallel transports a tangent

vector along a geodesic, it remains a tangent vector.

The covariant derivative of a tangent vector, along the

geodesic is identically zero, i.e.

v,U=0

A Universit
+4 qulasgovg @

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

Geodesics

Suppose we parametrise the geodesic by the proper time, T,
along it (fine for a material particle). Then

u a B
dfo0) L, 0 b
drl dr dr dr
I.e.
d72 B dr dr

with the equivalent expression for a photon (replacing 7~ with 4 )
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4. Spacetime curvature in GR (pgs.33 - 37)

This is described by the Riemann-Christoffel tensor, which
depends on the metric and its first and second derivatives.

We can derive the form of the R-C tensor in several ways

[1. by parallel transporting of a vector around a closed loop in our manifold \

2. by considering the commutator of the second order covariant derivative of a

vector field

3. by computing the deviation of two neighbouring geodesics in our manifold

\_

A University g
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(a) (b)
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PX ()

w7 >

9%2

In a fat manifold, parallel transport does not rotate vectors, while
on a curved manifold it does.

S2

B Universit
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After parallel transport around a
X closed loop on a curved manifold,
the vector does not come back to its
@ original orientation but it is rotated
Y through some angle.

The R-C tensor is related to this
angle.

I T TH o T I 7
R afbdy T ch’;ﬁraﬁ o Faﬁraﬁf + Fa“d o F&ﬁ__}'

If spacetime is flat then, for all indices R . =0
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5. Einstein's Equations (pgs.38 - 45)

What about “matter tells spacetime how to curve™?...

The source of spacetime curvature is the Energy-momentum tensor
which describes the presence and motion of gravitating matter (and

energy).

We define the E-M tensor for a perfect fluid
In a fluid description we treat our physical system as a smooth

continuum, and describe its behaviour in terms of locally averaged
properties in each fluid element.

A University
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Each fluid element may possess a bulk motion

with respect to the rest of the fluid, and this relative

motion may be non-uniform. @ @
Momentarily comoving rest frame (MCRF)

of the fluid element — Lorentz Frame in which Q
the fluid element as a whole is

instantaneously at rest.

At any instant we can define

Particles in the fluid element will not be at rest:

1. Pressure (c.f. molecules in an ideal gas)
2. Heat conduction (energy exchange with neighbours)
3. Viscous forces (shearing of fluid)

A University
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Each fluid element may possess a bulk motion

with respect to the rest of the fluid, and this relatlve
motion may be non-uniform. @

Perfect Fluid if, in MCRF, each fluid
element has no heat conduction or

viscous forces, only pressure. Q @Q

Dust = special case of pressure-free perfect fluid.

0 \Joiveniy “SUPA NGTPY ()
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Definition of E-M tensor

We can define the energy momentum tensor, T, in terms of its components in some

coordinate system, {2}, 27, ..

, 2"}, for each fluid element. Thus we define 7% for a
fluid element to be equal to the lux of the a component of four momentum

of all gravitating matter? across a surface of constant z”.

2By ‘gravitating matter’ we mean here all material particles, plus (from the equivalence of

matter and energy) any electromagnetic fields and particle fields which may be present

Components of T in the MCRF for dust

only non-zero component is 7% = p, the energy density of the fluid element.

8 Foligon SUPA NGy ()
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Components of T in the MCRF for a general perfect fluid

/ p 0 0 (ﬁ)\
0O P 0 0

T = ) ) Pressure due to random motion
0O 0 P 0 of particles in fluid element

\ 0 0 0 PJ

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

Components of T in a general Lorentz frame

Extending our expression for 7% from the MCREF to a general Lorentz frame is
fairly straightforward, but the interested reader is referred e.g. to Schutz for the
details and here we just state the result. If @ = {u®} is the four velocity of a fluid

element in some Lorentz frame, then '

T = (p+ P)u“u-ﬁ + P-r]aﬁ,

where 7 is the Minkowski metric of SR,

Conservation of energy and momentum requires that

W Universit
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Extending to GR

In Section 1 we introduced the strong principle of equivalence which stated that, in
a LIF, all physical phenomena are in agreement with special relativity. In the light
of our discussion of tensors, we can write down an immediate consequence of the

strong principle of equivalence as follows

Any physical law which can be expressed as a tensor equation in SR

has exactly the same form in a local inertial frame of a curved spacetime

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

How is this extension justified? From the principle of covariance a tensorial de-
scription of physical laws must be equally valid in any reference frame. Thus, if a
tensor equation holds in one frame it must hold in any frame. In particular, a tensor
equation derived in a LIF (i.e. assuming SR) remains valid in an arbitrary reference

frame (i.e. assuming GR).

Hence

T = (p+ P)u'u” 4+ Pg"”

i Covariant expression of
| L/ .
and 2 } — “ energy conservation in
WV a curved spacetime.
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So how does “matter tell spacetime how to curve?...

Einstein’s Equations

BUT the E-M tensor is of rank 2, whereas the R-C tensor is of rank 4.

Einstein’s equations involve contractions of the R-C tensor.

Define the Riccitensor b — PH
g Rﬂ’?" o Rr:x,u.’;r
and the curvature scalar by R = Q&'BRQS

B University
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o : pr o v
We can raise indices via R = g"%¢q Raﬁ

1

and define the Einstein tensor GHY — RHY _ _gﬂ-b’R
[

2

We can show that G-“‘f’; — []

iy [Ly
so that T v G ‘v

B University
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Einstein took as solution the form G,u.y p— A‘.T‘uy

where we can determine the constant & by requiring that we should recover the laws
of Newtonian gravity and dynamics in the limit of a weak gravitational field and

non-relativistic motion. In fact & turns out to equal 87G /c*,

Solving Einstein’s equations

Given the metric, we can compute the Chirstoffel symbols, then the
geodesics of ‘test’ particles.

We can also compute the R-C tensor, Einstein tensor and E-M tensor.

9 pierity “SUPA Cacry e
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What about the other way around?...

Highly non-trivial problem, in general intractable, but given E-M
tensor can solve for metric in some special cases.

e.g. Schwarzschild solution, for the spherically symmetric

static spacetime exterior to a mass M

2M dr?
ds® = — (1= 2= ) dr? + — o + 12d6% + 12 sin® 0de”
\7‘ (1==7)

Coordinate singularity at r=2M

B iy SUPA Ny (
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Geodesics for the Schwarzschild metric

e\ 2 2 1 2
Radial geodesic (d? ) — k21— h_2 + 2M (1 + }?"2)

dr r r r

Changing the dependent variable from » to u and the independent variable from 7 to ¢,

our radial geodesic equation reduces to

_ 2

d? M
of il + + 3Mu?

do? h?
AN

Extra term, only in GR

9 pierity “SUPA Cacry e

VESF School on Gravitational Waves, Cascina May 25th - 29th 2009

e.g. for the Earth’s orbit the ratio
3Mu?

 __~3x10°®
M/h2
Newtonian solution:
Elliptical orbit
Fociat F, and F, 7
Ox = @ = semi-lnajor axis P defined by e
. . I+ecos¢
Oy = b = semi-minor axis
= a1-e?
“ ( ¢ ) { = semi-latus rectum
e = eccentricity

= b/a

B iy SUPA Ny (
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GR solution:

Precessing ellipse

| _y " 1_3M’2 .
=73 € cos 12 o

Here

Farihalion

2T ‘
P= = =7

Planet

6w M

A= a(l —e?)

J.'r' Umver';lty
of Glasgow
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GR solution:

Precessing ellipse

- - -
# g = - _‘-‘-."\1... ~ - -
. T -
foA , 3 - -
S Y 5600, 73 =econds
-

i o \ of areiceniury

I ‘_.-""- I I|

i PR

1 -
- Sun i

el -7 omitof
S - Mercury

6w M
a(l —e?)

If we apply this equation to the orbit of Mercury, we obtain a perihelion advance which

A —

huilds up to ahout 43 seconds of arc per century.
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GR solution:

Precessing ellipse

Seen much more
dramatically in the
binary pulsar
PSR 1913+16.
Certer of Diass
Periastron is
advancing at a rate of . Otbit 3
~4 degrees per year!

Orhit 1

BA University @
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Gravitational light deflection in GR

Radial geodesic for a photon

dr\ 2 h2  2Mh2?
<7):y—i+ :

A\ 2 3
d?u
or Ea— —f— U = Bﬂ-‘f{uz
da?
Solution reducesto  u = —- 5
2'7‘111111 T min
. . 4M 4G M
So that asymptotically | A¢ = = —
Tmin CTmin

BA University @
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This is exactly twice the deflection angle predicted by a Newtonian treatment. If we take
Tmin to be the radius of the Sun (which would correspond to a light ray grazing the limb
of the Sun from a background star observed during a total solar eclipse) then we find that

4x15x% 103

Adp=_"—""""""7 862107 radians = 1.77 arcsec
' 6.95 x 108
True posttion A ;
‘¢‘ po;";z:nnfslu

@ Voiersity “SUPA NG (1)
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1919 expedition, led by Arthur Eddington, to observe
total solar eclipse, and measure light deflection.

GR passed the test!

@ Voiersity “SUPA NG (1)
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6. Wave Equation for Gravitational Radiation (pgs.46 - 57)

Weak gravitational fields

In the absence of a gravitational field, spacetime is flat. We define a
weak gravitational field as one is which spacetime is ‘nearly flat’

l.e. we can find a coord system
[ Jas = Taps + h'a-,ii ]

such that
AN

where Nag = diag (—1,1,1,1) This is known as a
| Nearly Lorentz
|has| << 1 for all @ and g coordinate system.

A Universit
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

1) Background Lorentz transformations

—oy 4y 0 0

l.e. Lorentz boost of speed v

B Universit
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

1) Background Lorentz transformations

Under this transformation

) ) oxt Ox¥ )
Joap = Napt 55a5 50w = Nas + Nap

adx’™ O

provided v << 1, then if |has| << 1

for all @ and 3, then |h',3] << 1 also.

B iy S oo, [
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

1) Background Lorentz transformations

Hence, our original nearly Lorentz coordinate system remains nearly Lorentz in the
new coordinate system. In other words, a spacetime which looks nearly flat to one
observer still looks nearly flat to any other observer in uniform relative motion with

respect to the first observer.

B s o, [l
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

2) Gauge transformations

Suppose now we make a very small change in our coordinate system by applying a

coordinate transformation of the form

we now demand that the £* are small, in the sense that

|£Qd| << 1 forall o,

University

J_-.; of Glasgow - ( , _)
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

2) Gauge transformations

Suppose now that the unprimed coordinate system is nearly Lorentz

Then .gfaﬁ = Tag + h'aﬁ — g&.ﬁ — ‘5,5‘._&

and we canwrite A5 = hag — Eas — Epa

Note that if [£ 5| are small, then so too are [, s

‘ Y /
, and hence 7',z

University

J_-.; of Glasgow ( , _)
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If we find a coordinate system in which spacetime looks nearly flat,
we can carry out certain coordinate transformations after which
spacetime will still look nearly flat:

2) Gauge transformations

The above results tell us that — once we have identified a coordinate system which
is nearly Lorentz — we can add an arbitrary small vector £ to the coordinates z®
without altering the validity of our assumption that spacetime is nearly flat. We
can, therefore, choose the components £* to make Einstein’s equations as simple as
possible. We call this step choosing a gauge for the problem — a name which has
resonance with a similar procedure in electromagnetism — and coordinate transfor-
mations of this type given by equation are known as gauge transformation. We

will consider below specific choices of gauge which are particularly useful.

B iy S oo, [
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Einstein’s equations for a weak gravitational field

To first order, the R-C tensor for a weak field reduces to

Ra,‘ﬁ’yﬁ — {h&ﬁ?,ﬁ"f + hﬁﬁf,&ﬁ - h-:::*jr-_.,-ﬁc? - h‘,-'ﬁﬁ,ctﬁr-)

o] =

and is invariant under gauge transformations.

. o . 1
Similarly, the Ricci tensor is R, =— (hf“ +h = s — h._.m,)

9 Mo e

— Lo ol
where h= h.& =1 hﬂ.'ﬁ

¥

— nacr (h'.tﬂfsﬂj,cr — .?]thr h‘;m,qg
i, [
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The Einstein tensor is the (rather messy) expression
1 e " JO¥ o3 3
G,uv — 5 [h;m-,v' —+ h‘vcx,;;' - h;w,a’ - h,,uv — TN (haﬂ - h‘,ﬁ" )]

o . - 1
but we can simplify this by introducing hpw = hpw — E'T]';wh'

So that

1 r— o — o o
G.lw = _E {hm",&'. + n.m/h'aﬁ - h’#m,v -

And we can choose the Lorentz gauge to eliminate the last 3 terms

B University
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In the Lorentz gauge, then Einstein’s equations are simply

[ N

_h'ltw,ct =1 G'JT.I;W

And in free space this gives o

7 Nad o

ertlng h‘;w,a . = _”cm h‘;w,aa

or 32 2 T
—ﬁ + V h;m = 0

B University
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Remembering that we are taking ¢ = 1, if instead we write

00

_ 1
T2

0 2v2 \ 7
then (—@—I—CV )h.w, = 0

4 This is a key result. It has the mathematical form of a )
wave equation, propagating with speed C.
We have shown that the metric perturbations — the

‘ripples’ in spacetime produced by disturbing the metric —
\_ propagate at the speed of light as waves in free space. Y

BA University 3
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7. The Transverse Traceless Gauge (pgs.57 - 62)

Simplest solutions of our wave equation are plane waves

Eﬁw = Re [Aiw exp (ik&;z:& )}

S

. Wave vector
Wave amplitude

Note the wave amplitude is symmetric — 10 independent components.

Also, easy to show that A Aﬂ . U
A —

i.e. the wave vector is a null vector

B University 3
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Thus 1/2

w=k =K+ 1 +1)

— Ly

Also, from the Lorentz gauge condition h =0

which implies that A“_ﬂ_ Y= ()

1.e. the wave amplitude components must be orthogonal to the wave vector k.

But this is 4 equations, one for each value of the index AL.

Hence, we can eliminate 4 more of the wave amplitude components,

B University
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Can we do better? Yes

Our choice of Lorentz gauge, chosen to simplify Einstein’s equations,
was not unique. We can make small adjustments to our original Lorentz
gauge transformation and still satisfy the Lorentz condition.

We can choose adjustments that will make our wave amplitude
components even simpler — we call this choice the Transverse
Traceless gauge:

Aﬁ = 'T?“U Aﬂ_y =( (traceless)

A =0 forall o

B University
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Suppose we orient our coordinate axes so that the plane wave is

travelling in the positive Z direction. Then

and

A,. =0 for all o

i.e. there is no component of the metric perturbation in the direction

of propagation of the wave. This explains the origin of the ‘“Transverse’ part

F Umvt‘rclty @
o of Glasgow
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So in the transverse traceless gauge,

ES;T) = AEE,T) cos [w(t — z)]
where / 0 0 0 0 \
0 ATD  ATD g
A(TT) “
v 0 A{TT) AT
\ 0 0 0 0/

h D h.(?,T)

Also, since the perturbation is traceless 03
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8. Effect of Gravitational Waves on Free Particles (pgs.63 - 75)

Choose Background Lorentz frame in which test particle initially at
rest. Set up coordinate system according to the TT gauge.

- . - dUP
Initial acceleration satisfies 7 =10
T 0

l.e. coordinates do not change, but adjust themselves as wave
passes so that particles remain ‘attached’ to initial positions.

Coordinates are frame-dependent labels.

What about proper distance between neighbouring particles?

A Universit
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Consider two test particles, both initially at rest, one at origin and the
otherat =z =€, y =2z =

Al = / |9a,3d113ad:1:-3|1/ ?

i.e. AV :/ \9;1:;1:\1/2 ~  Vgeo(z=0) €
0

Now 9;1:;1:(i13 - ()) = Nezx + ]?E'II‘T)(I = 0)
In general,
this is time-
1 / :
SO Al ~ [1 + 5;1;(£T)(x =0)] ¢ varying

B ooty SUPA Y ()
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More formally, consider geodesic deviation £ between two particles,
initially at rest

e initially with ¢/# = (1, []?(j)?[])T @ = (060,007
Then 02" N a
B Ry, = —€lty,
and R® — R _ 1; (TT)
tot — 1/ rtrt — _5 ?";lf;lf,tt
y o Uy _ L
Rtmt =17 R'yt;trt - _ﬁh’my,tt
82 B 1 82 2 2
Hence v = S pIm d_é—y _ 1 d—h
ot? 2 Otz ot2 2 Ot?
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Similarly, two test particles initially separated by € inthe w-direction
satisfy

xT

oS~ 2o

F 1 o A & L0 am
2 o> T 2%

We can further generalise to a ring of test particles: one at origin, the
other initiallya @ = ecosf) y =esinfl =z =0;

> 1 0? 1 0>

pr = 56(0%9ﬁh{TT + 26%1119ﬁf2(TT
0 - 1o

2 = € cos (-)a zhgT} eqmﬁﬁh
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So in the transverse traceless gauge,

E&I/T) = AEE,T) cos [w(t — z)]

where / 0 0 0 U\
0 AZD 40D

A(TT) _ “
j 0 A(TT) _ AT

\ 0 0 0 0/

h D h.(?,T)

Also, since the perturbation is traceless 3

g Yooty SUPA Y ()
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Solutions are:

. 1 [
£" = ecost + g€ cos 0 ALD coswt + Z€sin 0 AgT) cos wt

1 1

Y = 6b111t9+—6c0b9ATT coswt — —esinf ALY coswt

Suppose we now vary # between 0 and 2w, so that we are considering an initially

circular ring of test particles in the a-y plane, initially equidistant from the origin.

D i SUPA NGy ()
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ATD =

£ 0

£ = ecosf | 1 + ATT) cos wt :

1
Y = esinf | 1 — §A;(1,£T) cos wt

AET) =0 —+ Polarisation
J/ .7 T ~

! \

| 1 -

\ f \

\ ! \ ' S
N e \\ ‘r AN . S ___- -7 “
\-.__-” A ’ ‘-.__-" ~ \w___"
\\ N Jd l’ T

(_fj%u ersity @
w O '1‘)‘-*0\\’
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{TT) £ 0 AE:;TET) — 0

L.
ecosf + g€sin 6 A;(I,?JT) cos wt :

: 1 TT :
&Y = esinf + 56(1059A£.y ) coswt
4700 2 X Polarisation

T ‘\‘ \I”/ A - ‘\\ ! \“J/ 7 ‘\\

’ . ’ 1 4 \ ' N 4 v
:" ! ! ) :" | ' . I" |
f ’ ’ 1 \ \ '
l‘ N ’ z l‘ ' \‘ v l\ '
\\ :‘ Ir ,‘, \\ ,' “ 'I \\ ’:

.. ”ﬂ l‘ ,'1& \‘-‘_-’/" ﬂ\\‘ \‘f \\‘--,"I

il Ulm ersity
< of Glasgow
VESF School on Gravitational Waves, Cascina May 25th - 29th 2009




1
Rotating axes through an angle of —7/4 to define ' = 7 (x —w)

We find that

1
/
v =—(x+w)

: ; 1 m 2

&% = ecos (9 + }) + 3¢ sin (.9 + Il) AgT} coswt \/:
7 1 ™

Mo e r oS Y AT coswt

Y = esin (Q—I— 4) + 5 COS ((;7—|— 4) A, coswt

These are identical to earlier solution, apart from rotation.

BA University F\E
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e The two solutions, for AE};T) # 0 and AgT) =% (0 represent two independent
gravitational wave polarisation states, and these states are usually denoted
by ‘“+ and ‘x’ respectively. In general any gravitational wave propagating
along the z-axis can be expressed as a linear combination of the ‘4" and *x’

polarisations, i.e. we can write the wave as
h = aey + be,

where a and b are scalar constants and the polarisation tensors e, and e, are

0O 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0
e, = e, =

0 0 —1 0 0 1 0 0

0O 0 0 0 0 0 0 0
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» Distortions are quadrupolar - consequence of fact that
acceleration of geodesic deviation non-zero only for tidal
gravitational field.

* At any instant, a gravitational wave is invariant under a rotation of
180 degrees about its direction of propagation.
(c.f. spin states of gauge bosons; graviton must be S=2,
tensor field)

A University
<, of Glasgow
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Design of gravitational wave detectors

o
-
5
g
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30 yrs on - Interferometric ground-based detectors
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Gravitational wave h = he, propagating along z axis.

AL h

Fractional change in proper separation | — — —

L 2
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More generally, for h = he, 4

Detector ‘sees’

test mass

hy = h sin? 6 cos 20 6 O

Maximum response for e .

-

<

-
-

-

0=mn /2 O =0 testmasso//’/ \_{

Null response for
H=0 o=m/4
Incoming wave
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z
More generally, for h = hey s
Detector ‘sees’
_ test mass
h, = h sin®6 sin 20 Lo O
Maximum response for R

<

-
-
-

0= /2 C) - ?1—/4 test mass /’/1/ \_/
N ¢

Null response for

=0 o¢&=0

Incoming wave
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9. The Production of Gravitational Waves (pgs 76 - 80)

We can understand something important about the nature of gravitational radiation
by drawing analogies with the formulae that describe electromagnetic radiation.
This approach is crude at best since the electromagnetic field is a vector field while
the gravitational field is a tensor field, but it is good enough for our present purposes.
Essentially, we will take familiar electromagnetic radiation formulae and simply
replace the terms which involve the Coulomb force by their gravitational analogues
from Newtonian theory.

Net electric
_—dipole moment

2 12
L’electric dipole X € d
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Lmagnetic dipole X [

(o= Z (position of ¢;) x (current due to ¢;)
4i

Gravitational analogues?...

Mass dipole moment: d = Z miX;
A,
But d = Z m;X; = P
A;

Conservation of linear momentum implies no mass dipole radiation
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Lmagnetic dipole X [

L= Z (position of ¢;) x (current due to ¢;)
4i

Gravitational analogues?...

[ = Z (x;) X (myv;) = J

A

Conservation of angular momentum implies no mass dipole radiation
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Also, the quadrupole of a spherically symmetric mass distribution
IS zero.

Metric perturbations which are spherically symmetric don’t produce
gravitational radiation.

2G -

Example: binary neutron star system. how = TI [
ctr

where 1, is the reduced quadrupole moment defined as

1.
I, = /,0(-?_") x,T, — gé“_y?‘z dV

W Universit
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Consider a binary neutron star system consisting of two stars both of Schwarzschild

mass M, in a circular orbit of coordinate radius R and orbital frequency f.

1

I;m? — QJIRQ [C‘OQQ(Q?Tft) o 3]
By 21 - 2/ 1

I, =2MR !sm (2mft) — 3]

Iy = I, = 2M R? [cos(27 ft) sin(27 f1)]
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Thus how = —hyy = hcos (47 ft)

hpy = hyy = —hsin (47 ft)

where 5 — 32?1‘2Gﬂ"fﬁ2f2

)
ctr

So the binary system emits gravitational waves at twice the orbital
frequency of the neutron stars.

R?[km] f*[Hz]

<= Huge
r[Mpc] J

Challenge!

Also h=23x10"%®
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