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Marginalisation

This extends to the continuum limit :

X can take  infinitely many values

is no longer a probability, but a  probability density

with obvious extension to continuum limit for  Y
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Marginalisation

This extends to the continuum limit :

X can take  infinitely many values

Also
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Some important pdfs: Discrete case

1) Poisson pdf

e.g. number of photons / second counted by a CCD,

number of galaxies / degree2 counted by a survey
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Some important pdfs: Discrete case

1) Poisson pdf

e.g. number of photons / second counted by a CCD,

number of galaxies / degree2 counted by a survey
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Some important pdfs: Discrete case

2. Binomial pdf

number of ‘successes’ from  N observations, for two mutually
exclusive outcomes (‘Heads’ and ‘Tails’)

e.g. number of binary stars, Seyfert galaxies, supernovae…

r   =  number of ‘successes’

=   probability of ‘success’ for single observationθ
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Some important pdfs: Continuous case

1) Uniform pdf
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Some important pdfs: Continuous case

1) Central, or normal pdf
(also known as Gaussian )
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Cumulative distribution function (CDF)
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Measures and moments of a pdf

The  nth  moment of a pdf is defined as:-
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Measures and moments of a pdf

The  1st moment is called the  mean or expectation value:-
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Measures and moments of a pdf

The  2nd moment is called the  mean square:-
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Measures and moments of a pdf

The  variance is defined as:-

and is often written as

is called the standard deviation 
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Measures and moments of a pdf

The  variance is defined as:-

In general
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Measures and moments of a pdf

pdf mean variance

2σ

Poisson

Binomial

Uniform

Normal
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Measures and moments of a pdf

The  Median divides the CDF into two equal halves
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Measures and moments of a pdf

The  Mode is the value of  x  for which the pdf is a maximum

p(x)

5.0=σ
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For a normal pdf,  mean  =  median  =  mode  = µ
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Bayesian probability theory is simultaneously a very 
old and a very young field:-

Old : original interpretation of Bernoulli, Bayes, Laplace…

Young: ‘state of the art’ in (astronomical) data analysis

But BPT was rejected for several centuries.

Probability  ≡ degree of belief was seen as too 
subjective

Frequentist approach
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Probability  =  ‘long run relative frequency’ of an event
in principle can be measured objectively

e.g. rolling a die. What is          ? 

If die is ‘fair’ we expect

These probabilities are fixed (but unknown) numbers.

Can imagine rolling die  M  times.

Number rolled is a random variable – different outcome each time.
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Probability  =  ‘long run relative frequency’ of an event
in principle can be measured objectively

e.g. rolling a die. What is          ? 

If die is ‘fair’ we expect

These probabilities are fixed (but unknown) numbers.

But objectivity is an illusion:

assumes each outcome equally likely

(i.e.  equally probable)
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Probability  =  ‘long run relative frequency’ of an event
in principle can be measured objectively

e.g. rolling a die. What is          ? 

If die is ‘fair’ we expect

These probabilities are fixed (but unknown) numbers.

But objectivity is an illusion:

Also assumes infinite series of identical trials;

why can’t probabilities change?
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Probability  =  ‘long run relative frequency’ of an event
in principle can be measured objectively

e.g. rolling a die. What is          ? 

If die is ‘fair’ we expect

These probabilities are fixed (but unknown) numbers.

But objectivity is an illusion:

What can we say about the fairness of the die after
(say)  5 rolls, or 10, or 100 ?
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In the frequentist approach, a lot of mathematical machinery is 
defined to let us address this type of question.

Random sample of size M , drawn from underlying pdf

Sampling distribution, derived from underlying pdf

Define an estimator – function of sample used to 
estimate properties of pdf

Hypothesis test – to decide if estimator is ‘acceptable’,
for the given sample size

How do we decide what makes an ‘acceptable’ estimator?

In the frequentist approach, a lot of mathematical machinery is 
defined to let us address this type of question.

Random sample of size M , drawn from underlying pdf

Sampling distribution, derived from underlying pdf

(depends on underlying pdf, and on M )
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In the frequentist approach, a lot of mathematical machinery is 
defined to let us address this type of question.
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Example: measuring a galaxy redshift
True redshift =             (fixed but unknown parameter)

Compute sampling distribution for       and        , modelling errors

1. Small telescope
low dispersion spectrometer

Unbiased:
Repeat observation a
large number of times
⇒ average estimate is

equal to

BUT is large

ISYA.  Ifrane, 2nd – 23rd July 2004
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Example: measuring a galaxy redshift
True redshift =             (fixed but unknown parameter)

Compute sampling distribution for       and        , modelling errors

2. Large telescope
high dispersion spectrometer

but faulty astronomer!
(e.g. wrong calibration)

Biased:
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( )2ẑp
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Better choice of estimator (if we can correct bias)?
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The Sample Mean

=  random sample from  pdf            with mean
and variance

= sample mean

Can show that unbiased estimator

But bias is defined formally in terms of an infinite 
set of randomly chosen samples, each of size M.

What can we say with a finite number of 
samples, each of finite size?
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The Sample Mean

=  random sample from  pdf            with mean
and variance

= sample mean

Can show that unbiased estimator

as sample size increases, sample 
and mean increasingly concentrated

near to true mean
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The Central Limit Theorem

For any pdf with finite variance      ,  as  M →
follows a normal pdf with mean      and variance  
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The Central Limit Theorem

For any pdf with finite variance      ,  as  M →
follows a normal pdf with mean      and variance  

2σ 8

µ) µ M/2σ

Explains importance of normal pdf in statistics.

But still based on asymptotic behaviour of an 
infinite ensemble of samples that we didn’t 
actually observe!

No ‘hard and fast’ rule for defining ‘good’ 
estimators. FPT invokes a number of principles –
e.g. Maximum likelihood, least squares

See later………        
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In the Bayesian approach, we can test our model, in the light of
our data (i.e. rolling the die) and see how our degree of belief in 
its ‘fairness’ evolves, for any sample size, considering only the 
data that we did actually observe

)|model(),model|data()data,|model( IpIpIp ×∝

Likelihood PriorPosterior

What we know now Influence of our 
observations

What we knew 
before
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Astronomical example:

Probability that a galaxy is a Seyfert 1
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A.
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We want to know the fraction of Seyfert galaxies which are type 1.

How large a sample do we need to reliably measure this?

Model as a  binomial pdf: =   global fraction of Seyfert 1s

Suppose we sample  N  Seyferts, and observe  r  Seyfert 1s

θ

rNr
N rp −−∝ )1()( θθ

Likelihood  =
probability of obtaining
observed data, given 
model
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Likelihood PriorPosterior

What we know now Influence of 
our 

observations

What we 
knew before
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What do we choose as our prior?

Good question!!

Source of much argument between
Bayesians and frequentists

If our data are good enough, it shouldn’t matter!!

Blood on the walls

)|model(),model|data()data,|model( IpIpIp ×∝

Likelihood PriorPosterior
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Can generate ‘fake’ data:-

1. Choose a ‘true’ value of  θ

2. Sample a uniform random number, x, from [0,1]
(use e.g. calculator, or see Numerical Recipes)

3. Prob( x < θ )  = θ

Hence,  if   x < θ ⇒ Seyfert 1

otherwise ⇒ Seyfert 2

ISYA.  Ifrane, 2nd – 23rd July 2004

…
.

Take
θ = 0.25

4. Repeat from step 2



Consider two different priors
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Flat prior; all values of θ equally probable

Normal prior;
peaked at θ = 0.5



After  observing  0 galaxies 
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After  observing  1 galaxy:  Seyfert 1
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After  observing  2 galaxies:  S1 + S1
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After  observing  3 galaxies:  S1 + S1 + S2
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After  observing  4 galaxies:  S1 + S1 + S2 + S2
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After  observing  0 galaxies 
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After  observing  4 galaxies:  S1 + S1 + S2 + S2
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After  observing  5 galaxies:  S1 + S1 + S2 + S2 + S2
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After  observing  10 galaxies:  5 S1 + 5 S2
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After  observing  0 galaxies 
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After  observing  10 galaxies:  5 S1 + 5 S2
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After  observing  20 galaxies:  7 S1 + 13 S2
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After  observing  50 galaxies:  17 S1 + 33 S2
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After  observing  100 galaxies:  32 S1 + 68 S2
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After  observing  200 galaxies:  59 S1 + 141 S2

ISYA.  Ifrane, 2nd – 23rd July 2004

p(
θ

| d
at

a,
 I 

)

θ



After  observing  500 galaxies:  126 S1 + 374 S2
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After  observing  1000 galaxies:  232 S1 + 768 S2
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What do we learn from all this?

o As our data improve (i.e. our sample increases), the 
posterior pdf narrows  and  becomes less 
sensitive to our choice of prior.

o The posterior conveys our (evolving) degree of belief in 
different values of θ , in the light of our data

o If we want to express our belief as a  single number we 
can adopt e.g. the mean, median, or mode

o We can use the  variance of the posterior pdf to assign an
error for θ

o It is very straightforward to define  confidence intervals
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Bayesian confidence intervals
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θ1 θ2

We are 95% sure that
lies between     and

Note: confidence interval
not unique, but can 
define e.g.  shortest  C.I.
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What do we learn from all this?
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o As our data improve (i.e. our sample increases), the 
posterior pdf narrows  and  becomes less 
sensitive to our choice of prior.

o The posterior conveys our (evolving) degree of belief in 
different values of θ , in the light of our data

o If we want to express our belief as a  single number we 
can adopt e.g. the mean, median, or mode

o We can use the  variance of the posterior pdf to assign an
error for θ

o We can equivalently define the posterior after 1st

observation as the prior for our 2nd observation, and 
so on.



Bayesian versus Frequentist statistics

is a  parameter of the binomial distribution.

Preceding example illustrates  Bayesian Parameter Estimation.

Frequentist approach: different philosophy

A parameter is a fixed (but unknown) constant of nature

No fundamental conflict here, however:-

Bayesian approach:

There is a distribution in our  degree of belief about the value of the 
parameter,  not  a distribution in the actual value of the parameter itself.

θ
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Bayesian versus Frequentist statistics

is a  parameter of the binomial distribution.

Preceding example illustrates  Bayesian Parameter Estimation.

Frequentist approach: different philosophy

A parameter is a fixed (but unknown) constant of nature

e.g. the true redshift,     , of
a Galaxy is a unique number

generated by considering
(infinite) ensemble of samples, with
random errors, but all for the same

.

θ

);( 0zzp )

Actual data  ⇒ Likelihood,  L
(same as in Bayes’ theorem)
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Bayesian versus Frequentist statistics

Frequentist approach: different philosophy

A parameter is a fixed (but unknown) constant of nature

Actual data  ⇒ Likelihood,  L
(same as in Bayes’ theorem)

Now define  likelihood function:  family of curves generated by
regarding  L as a function
of    , for data fixed.

Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 

θ

θ

0=
∂
∂
θ
L

02

2

<
∂
∂
θ
L



Bayesian versus Frequentist statistics
Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 

θ
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θ = θ1

Observed value

x
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Bayesian versus Frequentist statistics
Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 
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θ = θ2

Observed value

x
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Bayesian versus Frequentist statistics
Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 

θ
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∂
∂
θ
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θ = θ3

Observed value

x
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Bayesian versus Frequentist statistics
Principle of Maximum Likelihood

A good estimator of      maximises  L -

i.e. and 

θ
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θ
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θ = θML

Observed value

x
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Bayesian versus Frequentist statistics: Who is right?

Frequentists are correct to worry about subjectiveness of 
assigning probabilities – Bayesians worry about this too!!!
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Probability is subjective; 
it depends on the available 
information

Subjective ≠ arbitrary

Given the same background 
information, two observers should 
assign the same probabilities

‘MaxEnt’ - See later

Ed Jaynes
(1922 – 1998)

See also

http://bayes.wustl.edu/etj/science.pdf.html



Bayesian versus Frequentist statistics: Who is right?
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If we adopt a uniform prior, Bayesian estimation is formally 
equivalent to maximum likelihood

But underlying principle is different.
(and often we should not  assume a uniform prior – see later)

Important to understand both Bayesian and Frequentist
approaches, and always to think carefully about their 

applicability to your particular problem.
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