. The steady-state wind from a hot star consists of fully ionised hydrogen gas moving radially
outwards with constant velocity vg. By considering the mass per second passing through
a spherical surface of radius r outside the photosphere (of radius R.), show that np(r),

the number density of protons at radius r satisfies
M = 4mr? vonp(r)mp

where M is the mass loss rate of the star and mp is the proton mass. (This is known as

the mass continuity equation; see also Dr Woan’s Stellar Atmospheres and Winds course).

. Hence, show that the source emission measure function, {(T'), for the wind is given by
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. If the temperature of the wind outside of the photosphere varies with radius according to

o= (7)"

where « and T are constants, derive an expression for r(7"), and hence show that £(7") = 0
for T' > Ty and

the formula

M?
¢(T) = 7 Ta'  for T<T,
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. Determine the integrated source emission measure, Z, first by integrating £(7") over tem-

perature, i.e.
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and then via the volume integral
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showing that these two expressions are equivalent. Thus verify the relation
d
T)=— 2dV
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. Assuming that the X-ray emission from the hot wind is thermal bremsstrahlung, show

that the differential luminosity of the star is given by
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. Applying the substitution x = ¢/kT, or otherwise, show that the above expression may be
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reduced to

. Hence, explain why — for large X-ray photon energies — the shape of the differential photon

luminosity is independent of a.



