
Chapter 6

Black Holes

6.1 Introduction

In Chapters 2 and 3 we first derived, and then investigated, the Schwarzschild solution

for the static, spherically symmetric spacetime exterior to a star of (Newtonian) mass,

M . We found that the line element for the Schwarzschild metric was given by

ds2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dθ2 + r2 sin2 θdφ2 (6.1)

We noted in passing that this metric ‘misbehaves’ at r = 2M , since the grr component

becomes infinite. However, since e.g. for a solar mass star, M ' 1.5km in geometrised

units, it was clear that – for any ‘normal’ star – one would reach the physical surface of

the star (where in any case one would have to replace the Schwarzschild solution for the

exterior metric by the interior solution, considered in Chapter 4, derived from solution

of the Oppenheimer-Volkoff equation) before reaching the ‘misbehaving’ coordinate

radius of r = 2M . Moreover, as a kind of “insurance policy” against the misbehaviour

of the Schwarzschild metric, in Chapter 4 we considered Buchdahl’s Theorem. This
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tells us that, for a star with finite central density, we cannot have a static solution with

radius, R < 9M/4, since such a star would require an infinite pressure gradient at the

centre to support itself against its own gravity.

Thus, provided that a star has finite central density and pressure, then the minimum

allowed coordinate radius of its surface is still large enough to exceed the troublesome

value of r = 2M in the Schwarzschild metric.

6.2 Beyond white dwarfs and neutron stars?

Should we always assume a finite central density and pressure? In Astronomy A1Y

we considered the internal structure of stellar remnants after they have left the Main

Sequence. These stars are no longer supported by thermal pressure, since they are no

longer producing heat from fusion reactions. Instead, they collapse and shrink under

their own gravity until quantum degeneracy pressure becomes large enough to

support them.

Simple arguments based on the Heisenberg Uncertainty Principle allowed us to

estimate the maximum remnant mass which degeneracy pressure can support. For a

white dwarf – where electron degeneracy pressure dominates – this maximum mass is

M ' 1.3M�, and is known as the Chandrasekhar Limit. For a stellar remnant with

a mass greater than the Chandrasekhar Limit, electron degeneracy pressure cannot

support its weight and the collapse continues until neutron degeneracy pressure

becomes large enough to halt it – we then have a neutron star. The astrophysical

properties of white dwarfs and neutron stars will be left to other honours courses to
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discuss further. What interests us is simply the question: is there a maximum allowable

neutron star mass?

For a stellar remnant of mass greater than about 2 solar masses, even neutron degen-

eracy pressure is insufficient; according to current physics, nothing can then halt the

star’s collapse under its own gravity, and the star shrinks to a singular point of infinite

density – a black hole.

Does this singularity actually occur in nature? The current answer would have to be

“nobody knows for sure”. Many physicists believe that a (thus far incomplete) theory

of quantum gravity would provide a new source of ‘pressure’ (from e.g. superstrings) to

halt the star’s collapse before reaching infinite density as r → 0. Whether the central

singularity does exist, at the very least it seems clear that the collapse of the stellar

remnant can proceed beyond the point where the coordinate radius of the star satisfies

r = 2M : the surface known as the Schwarzschild radius. We, therefore, need to

consider carefully what exactly is going on in the Schwarzschild metric at r = 2M .

6.3 The nature of the Schwarzschild surface

Specifically, we want to know whether the misbehaviour of grr at r = 2M is the result

of a real, physical problem with the geometry of spacetime at the Schwarzschild radius,

or is simply a consequence of our choice of coordinate system – what is referred to as

a ‘coordinate singularity’.

A more familiar example of a coordinate singularity is the North (or South) pole of the

Earth. The poles are singular points in the latitude and longitude coordinate system
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because their longtiude is not uniquely defined. However, there is nothing physically

different about these points (apart from being rather cold!) compared with any other

on the Earth’s surface.

We will determine the nature of the r = 2M singularity by considering a material

particle falling radially (i.e. with dθ = dφ = 0) towards the Schwarzschild radius from

some finite coordinate radius, R > 2M . Suppose that the particle is released from rest

at coordinate time t = 0 and proper time τ = 0 in the particle’s frame. Recall from

equation (3.11) that

(
dr

dτ

)2

= k2 − 1− h2

r2
+

2M

r

(
1 +

h2

r2

)
(6.2)

Also, from equation (3.9)

dφ

dτ
=

h

r2
(6.3)

Hence, for a radial trajectory, h = 0 and

(
dr

dτ

)2

= k2 − 1 +
2M

r
(6.4)

Since the particle is released from rest, it must follow that

k2 − 1 = −2M

R
(6.5)

i.e. (
dr

dτ

)2

=
2M

r
− 2M

R
(6.6)

or, given that the particle is falling inwards

dτ = − dr√
2M
r
− 2M

R

(6.7)

and the elapsed proper time experienced by the particle as it falls from r = R to
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r = 2M is given by

∆τ =
∫ R

2M

dr√
2M
r
− 2M

R

(6.8)

We can see that this integral is clearly finite, since 2M/r tends to the (perfectly well

behaved) value unity as r → 2M . Hence, the particle reaches the Schwarzschild radius

in a finite proper time.

What about the interval of coordinate time for the particle to reach the Schwarzschild

radius? This follows from equation (3.8)

dt

dτ
=

k

1− 2M/r
=

√
1− 2M/R

1− 2M/r
(6.9)

or, using, equation (6.7)

dt = −

(√
1− 2M/R

)
dr√

2M
r
− 2M

R

(
1− 2M

r

) (6.10)

i.e.

∆t =
∫ R

2M

(√
1− 2M/R

)
dr√

2M
r
− 2M

R

(
1− 2M

r

) (6.11)

This rather ugly-looking integral diverges as r → 2M ; i.e. the particle takes an infinite

amount of coordinate time to reach the Schwarzschild radius. It is straightforward to

show that the same result is true for a photon emitted radially at r = R; it appears,

to a distant observer (whose clock essentially measures coordinate time) to take an

infinite time to reach the Schwarzschild radius.

Thus, we have shown that the misbehaviour of the Schwarzschild metric at r = 2M is

only a coordinate singularity; the proper time experienced by a particle as it reaches

the Schwarzschild radius is perfectly well-behaved, and the misbehaviour of grr in the

Schwarzschild metric is purely a consequence of the coordinate system breaking down
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at r = 2M . Below we discuss briefly an alternative coordinate system in which the

coordinate singularity at r = 2M is removed.

What are the physical consequences for a material particle or photon crossing the

Schwarzschild radius? Superficially, the answer is “nothing much”. For example, as-

tronauts free-falling in their spaceship towards the black hole would not be aware of

any sudden, dramatic changes in the laws of physics as they reach r = 2M . In the as-

tronaut’s Local Inertial Frame, the results of any experiment would still agree with the

predictions of Special Relativity – exactly as the strong equivalence principle requires1.

Crossing the Schwarzschild radius has profound consequences for the ultimate fate of

the astronaut, however, and is the reason why the r = 2M surface is also known as the

Event Horizon of the black hole.

Provided that the astronauts are at coordinate radius r > 2M , they can always fire their

spaceship rockets and escape to infinity; as the spaceship approaches the Schwarzschild

1Depending on the mass of the black hole, however, the astronauts may have begun to experience the rather

unpleasant phenomenon of ‘spaghettification’ by the time the spaceship crosses the Schwarzschild radius. This

phenomenon arises because of the intense gradient in the gravity field of the black hole: if the astronauts are

falling in feet first, then the gravitational pull is significantly different between their heads and feet. This

tidal difference would stretch out the astronauts (and probably their spaceship too!) like a piece of spaghetti.

However, this stretching is due to the tidal effect of the black hole’s gravity field (which for a stellar mass

black hole is very large for r ∼ 2M) and does not directly have anything to do with crossing the Schwarzschild

radius. Putting this another way, a LIF still exists at the Schwarzschild radius; it is simply that the LIF may

be very small (and in particular much smaller than the astronauts!) due to the tidal gravitational field. For a

supermassive black hole at the heart of a quasar, on the other hand, the Schwarzschild radius is much larger –

e.g. if M ' 106M�, then RS = 3× 106km. In this case the tidal stresses are small enough that the astronauts

would cross the Schwarzschild radius without any noticeable discomfort.
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radius this would require ever-increasing amounts of fuel, but it remains possible in

principle. As soon as the Schwarzschild radius is crossed, however, it is impossible for

the spaceship to escape from the black hole’s clutches. All trajectories must inevitably

carry the spaceship to smaller coordinate radii – i.e. it cannot even remain at fixed r, no

matter how much fuel it uses up trying to do so. The spaceship proceeds inexorably to

r = 0 where (at least in classical General Relativity) there is a true, physical singularity

of infinite density which will crush the astronauts and spaceship out of existence.

Once inside the Schwarzschild radius, the astronauts cannot even send a message – e.g.

a single photon – to explain their fate to anxious friends waiting outside; even light

emitted inside the Schwarzschild radius must follow a trajectory that inevitably leads

inwards to the singularity2.

The astronauts can, however, receive messages – and even food parcels! – from outside

the Schwarzschild radius, although as seen by a distant observer they would appear to

take an infinite time to reach the Schwarzschild radius. Thus, the astronauts are truly

‘beyond the horizon’ of any observer outside the Schwarzschild radius, which justifies

the use of the terminology ‘Event Horizon’.

6.4 Inside the event horizon

How can we prove these remarkable claims about crossing the Event Horizon? In

fact they follow fairly straightforwardly from the Schwarzschild metric for r < 2M .

2We will later see that, when quantum effects are included, it is not strictly true that light cannot escape

from inside the Schwarzschild radius, but in purely classical terms this statement is true
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(Although we have seen that a coordinate singularity exists at r = 2M , we can still

use the Schwarzschild metric to describe the spacetime interior to the Event Horizon).

First, recall that the interval, ds2, between any two neighbouring events – which we

label (t, x, y, z) and (t + dt, x + dx, y + dy, z + dz) in some coordinate system – in

spacetime can be null (in which case ds2 = 0), spacelike, (ds2 > 0), or timelike,

(ds2 < 0). If the interval is spacelike, then one can find a Lorentz frame (S ′, say) in

which the events occur at the same coordinate time – i.e. dt = 0 and
√
ds2 is the proper

distance between them. Thus, if ds2 > 0, the two events cannot lie on the worldline of

a material particle, since an observer in S ′ would then see the particle in two places at

the same time – violating causality.

Now let us suppose that a particle is at rest inside the Event Horizon of a Schwarzschild

black hole, and consider neighbouring events with (in spherical polar coordinates)

dr = dθ = dφ = 0 and dt 6= 0. From equation (6.1),

ds2 = −
(

1− 2M

r

)
dt2 (6.12)

Since r < 2M , it follows that ds2 > 0 – i.e. the interval between the events is positive,

and so cannot lie on the worldline of the particle.

Thus, no particle can be stationary inside the Event Horizon. This is essentially be-

cause, for r < 2M the roles of our coordinate labels r and t are in the opposite sense to

their familiar interpretation far outside the Schwarzschild radius. Intervals with only

dt 6= 0 behave as spacelike, instead of timelike, intervals, with the reverse being the

case for intervals with only dr 6= 0. Consequently, just as in the exterior spacetime, far
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from the black hole, we can move freely through space but not through time, inside

the Event Horizon we lose our ability to move freely in coordinate radius.

6.4.1 Removing the coordinate singularity

To proceed further we need to get round the problem of the misbehaving coordinate

radius at r = 2M . We do this by introducing a new time coordinate, t̃, defined by3

t̃ = t+ 2M ln
∣∣∣∣ r2M

− 1
∣∣∣∣ (6.13)

We can show (see Examples sheet II.5) that, in the coordinate system (r, t̃), and for

simplicity taking dθ = dφ = 0,

ds2 = −
(

1− 2M

r

)
dt̃2 +

4M

r
drdt̃+

(
1 +

2M

r

)
dr2 (6.14)

which has no coordinate singularity at r = 2M . Note, however, that there is still

a singularity at r = 0, as there should be as this is a true, physical singularity. A

more general coordinate transformation which is similarly well-behaved at r = 2M is

discussed in some detail in Green Schutz, pg 292: it is known as Kruskal – Szekeres

coordinates. We do not consider Kruskal – Szekeres coordinates further here, however.

We obtain the equations of the null cones – i.e. the trajectories in spacetime which are

the geodesics of photons – by setting ds2 = 0 in equation (6.14), dividing through by

dr2 and solving for dt̃/dr. This gives us a quadratic equation, with roots (see Examples

3Remember that the coordinate time is only a convenient label and not of itself a meaningful, invariant

physical quantity, so we are not altering any fundamental physical property of the spacetime geometry – only

providing an easier way to visualise it

113



sheet II.5)

dt̃

dr
= −1 or

dt̃

dr
=

1 + 2M/r

1− 2M/r
(6.15)

Figure 11 (following Berry – Principles of Cosmology and Gravitation) shows how

these null cones change with coordinate radius. For r >> RS, the null cones have an

approximate slope of ±1, i.e. as for flat Minkowski spacetime. As r approaches RS,

however, the null cones begin to ‘tip over’ and lean inwards. For r = RS one side of the

null cone is vertical, while the other side (as at all other coordinate radii) has slope of

exactly −1. Hence, at r = RS the timelike geodesics (which are the possible worldlines

of material particles, and lie within the forward null cone) all point inwards towards

r = 0. Moreover, for r < RS the null cones continue to tip over, so that even photons

are inevitably carried to smaller coordinate radius. Thus, both material particles and

photons, once inside the Event Horizon, cannot escape again, nor indeed can they

avoid the fate of being pulled towards the singularity at r = 0. We can see from Figure

12, however, that our intrepid astronauts could indeed still receive messages and food

parcels as they head towards their doom, inside the Event Horizon.

114



115



116



6.5 How black are black holes?

Since the region inside the Event Horizon of a Schwarzschild black hole is cut off

from the outside Universe, we see the justification of the term ‘hole’: the interior of

the Event Horizon really is like a ‘hole’ in spacetime. Is the name ‘black hole’ also

justified, however? Does a collapsing simply star ‘switch off’ and become completely

black?

At first we might think that the black hole would not switch off in this manner. We

saw earlier that a material particle infalling radially towards the Schwarzschild radius

takes an infinite amount of coordinate time to get there. Doesn’t this mean, therefore,

that as a massive star undergoes spherical collapse, a distant observer would see the

light emitted from the star just before it collapses through the Schwarzschild radius,

forever ‘frozen’ at the Event Horizon?

An answer to this question is provided when we realise that the light from the collapsing

star is also redshifted, as it ‘climbs out’ of the star’s gravity field. In Chapter 3 we

derived equation (3.75) for the redshift, z, of light emitted at coordinate radius, re,

and observed at coordinate radius, ro.

z ≡ λo − λe
λe

=

√√√√1− 2M/ro
1− 2M/re

− 1 =

√√√√re(ro −RS)

ro(re −RS)
− 1 (6.16)

(Note that z → ∞ as re → RS). Consider the bolometric luminosity of the star as

it collapses, compared with the (constant) luminosity, LC , which the star would have

if we ignored General Relativistic effects. Suppose the light from the star is emitted

radially at coordinates (te, re), and is then observed by a distant observer who is at
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coordinates (to, ro). Then

L(to) =
LC

(1 + z)2 (6.17)

We can understand equation (6.17) as follows. Firstly the energy of each photon

received by the observer is redshifted by a factor of (1 + z); secondly the arrival times

of the photons are also increased by the same factor, so that the luminosity, L, is

reduced by a factor of (1 + z)2.

The light ray, being a null geodesic, satisfies

∫ to

te
dt =

∫ ro

re

dr

1− 2M/r
≡

∫ ro

re

dr

1−RS/r
(6.18)

It is easy to verify that the integrand of the right hand side has integral r+RS ln(r−RS),

so that

to − te = ro − re +RS ln
(
ro −RS

re −RS

)
(6.19)

Taking te = 0 and re-arranging

ln
(
re −RS

ro −RS

)
= −

[
to − (ro − re)

RS

]
(6.20)

i.e.

re −RS

ro −RS

∝ exp [−to/RS] (6.21)

However, from equation (6.16)

re −RS

ro −RS

=
ro
re

1

(1 + z)2 (6.22)

so, from equation (6.17), it follows that

L(to)

LC
∝ exp [−to/RS] (6.23)

or, re-introducing the speed of light, c

L(to)

LC
∝ exp [−cto/RS] (6.24)
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Thus, we see that the luminosity of the star falls off exponentially, and on a very short

timescale – equal to the time for light to cross the Schwarzschild radius of the collapsing

star4.

6.6 Rotating black holes

So far in this chapter we have considered only static black holes. The treatment of

more general situations is considerably more difficult, and in fact can usually only

be handled numerically for specific cases. However, we will now briefly discuss one

particular example of a more general black hole for which analytic results have been

derived: a Kerr black hole.

If the collapse of a star is nearly spherical then it can be shown that all of the non-

spherical parts of the star’s mass-energy distribution are radiated away as gravitational

waves – except for some angular momentum. This residual angular momentum

results in a rotating black hole, which can be described by the Kerr metric.

6.6.1 The Kerr metric

This metric is characterised by two constants, M and J , which we can identify by

requiring that in the weak-field limit the behaviour of a test particle reduces to the

predictions of Newtonian dynamics: M is the Newtonian mass of the star and J is the

magnitude of its total angular momentum. Writing a ≡ J/M , the line element for the

4Our analysis here is a little simplistic, since the Schwarzschild metric is a static metric, and yet we are

considering the behaviour of the metric as the star itself is collapsing. However, a more rigorous treatment

would essentially give us the same result: that the luminosity of the collapsing star decreases exponentially
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Kerr metric takes the (rather complicated) form

ds2 = −∆− a2 sin2 θ

ρ2
dt2−4a

Mr sin2 θ

ρ2
dtdφ+

(r2 + a2)
2 − a2∆ sin2 θ

ρ2
sin2 θ dφ2+

ρ2

∆
dr2+ρ2 dθ2

(6.25)

where

∆ = r2 − 2Mr + a2 (6.26)

and

ρ2 = r2 + a2 cos2 θ (6.27)

A detailed discussion of the Kerr metric lies well beyond the scope of this course,

but we note that the metric is not diagonal, because gtφ 6= 0. The presence of this

term produces a quite remarkable effect known as ‘frame dragging’. Before we can

demonstrate this effect, however, we first consider an important result on conserved

quantities along geodesics.

6.6.2 Conservation of four momentum along geodesics

Recall from Chapter 1, equation (1.25) the geodesic equation for a material particle

dvα

dτ
+ Γαβδv

βvδ = 0 (6.28)

We can rewrite this equation as

(
∂vα

∂xβ
vβ + Γαβδv

βvδ
)

= 0 (6.29)

or

vβ vα;β = 0 (6.30)

(This equation basically defines a geodesic as a curve along which the tangent vector

to the curve is parallel-transported.)
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We can obtain another version of equation (6.30) in covariant form using

vα = gασvσ (6.31)

from which it is straightforward to show (see Examples sheet II.5) that

vα vβ;α = 0 (6.32)

If we introduce the contravariant and covariant components of the four momentum,

defined by

pα = mvα and pα = mvα (6.33)

where m is the rest mass of the particle, then it follows from equation (6.32) that

pα pβ;α = 0 (6.34)

or

pα pβ,α = Γγβαp
αpγ =

1

2
gγν (gνβ,α + gνα,β − gαβ,ν) pαpγ (6.35)

After contraction and some index permutation this reduces to

pα pβ,α =
1

2
gνα,β p

νpα (6.36)

or

mvα
∂pβ
∂xα

= m
dxα

dτ

∂pβ
∂xα

= m
dpβ
dτ

=
1

2
gνα,β p

νpα (6.37)

We can see an important result from equation (6.37). If all the components of the

metric are independent of coordinate xβ, then the right hand side of the equation is

zero, which then implies that pβ is a constant along the geodesic.

6.6.3 Frame dragging in the Kerr Metric

If we look again at the Kerr metric interval, equation (6.25), we see that the components

are independent of φ. The results of the previous section then imply that a material
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particle, moving along a geodesic in the Kerr metric, conserves the pφ component of

its four momentum.

The contravariant component, pφ, is given by

pφ = gφαpα = gφφpφ + gφtpt (6.38)

The second term on the right hand side would be zero for an orthogonal metric, but

the Kerr metric is not orthogonal. Similarly, for pt,

pt = gtαpα = gttpt + gtφpφ (6.39)

Consider now a material particle with zero angular momentum – i.e. with pφ = 0. Now

pt = m
dr

dτ
and pφ = m

dφ

dτ
(6.40)

so that

dφ

dt
=
pφ

pt
=
gφt

gtt
6= 0 (6.41)

However, dφ/dt defines the angular velocity of our material particle, as measured by a

distant observer. Thus, we have the remarkable result that a zero angular momentum

particle, dropped in free fall (i.e. in a locally inertial frame) radially inwards from

infinity onto a rotating black hole, nevertheless acquires a non-zero angular velocity.

What is going on here? We can think of the intense gravity of the black hole ‘dragging’

the particle around in the same sense as its own rotation. This effect is known as the

dragging of inertial frames. It will also occur for the metric of any rotating mass,

although in most situations (e.g. the spacetime in the vicinity of the Earth) it is a tiny

effect. Nevertheless, a satellite mission – Gravity Probe B – was recently launched

by Stanford University to measure frame dragging from low Earth orbit. For more
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details see http://einstein.stanford.edu.

6.7 Hawking radiation

In 1974 the Cambridge physicist Stephen Hawking proved the startling result that black

holes are not completely black! When one includes the effects of quantum mechanics,

applied to electromagnetic fields near to a black hole, the classical General Relativistic

result that nothing – not even light – can escape from inside the Event Horizon is no

longer true: black holes leak photons continuously in a process that is now known as

Hawking radiation.

To derive Hawking’s result rigorously requires quantum field theory. However, we

can get a feel for the main features of Hawking radiation by applying the Heisenberg

Uncertainty Principle: whereas up until now we have treated photons (and indeed

material particles) as precise points along a trajectory in spacetime, the Uncertainty

Principle implies that, in fact, photons and material particles are not ‘localisable’ –

their position and velocity cannot be determined to arbitrary precision.

One form of the Uncertainty Principle states that

∆E∆t ∼ h̄ =
h

2π
(6.42)

where ∆E is the minimum uncertainty in the energy of a particle which exists in a

particular quantum state for time ∆t. According to quantum field theory, the vacuum

of empty space is not empty at all, but is filled with quantum fluctuations in the

fields which it contains. For electromagnetic fields, these fluctuations consist of pairs

of ‘virtual photons’, the existence of which violates energy conservation, but provided
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the photons exist for less than ∆t ' ∆E/h̄ this is permissible; the energy which they

borrow from the vacuum is effectively ‘repaid’ before the vacuum has noticed.

Even close to the Event Horizon of a black hole, spacetime is locally flat and will there-

fore be filled with these quantum fluctuations. Consider a fluctuation which produces

two photons: one of energy, E, and the other of energy, −E. In the flat spacetime of

Special Relativity, the negative energy photon cannot propagate freely, since it would

be moving backwards in time (see Green Schutz, pgs 303-304), and so it must recombine

with the positive energy photon within a time ∆t ≤ h̄/E.

Suppose, however, the pair of virtual photons is produced in the locally flat spacetime

just outside the Event Horizon of a black hole. The negative energy member of the

pair therefore has a chance of crossing the horizon before a time h̄/E has elapsed.

Once inside the horizon, the negative energy photon can propagate freely because the

timelike and spacelike roles of the t and r coordinates are interchanged. The negative

energy photon must move radially inwards, and therefore cannot escape again from

the Event Horizon, but that still leaves the positive energy photon outside the horizon,

free to propagate and to escape to infinity.

Suppose we measure the energy, E , of the photon in a locally inertial frame just outside

the Event Horizon, at coordinate radius r = 2M+ε. Any particle in this locally inertial

frame will begin free-falling towards the Event Horizon, reaching it after a proper time,

∆τ , given by, from equation (6.8)

∆τ =
∫ 2M

2M+ε

dr√
2M
r
− 2M

2M+ε

(6.43)
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For ε << 2M this reduces to

∆τ = 2 (2Mε)1/2 (6.44)

If we set E = ∆E and ∆τ = ∆t in the Uncertainty Principle, we find that

E =
1

2
h̄ (2Mε)−1/2 (6.45)

The energy of the outgoing photon when it reaches infinity can be shown to be

E∞ = E
(

ε

2M

)1/2

=
h̄

4M
=

h

8πM
(6.46)

Hawking derived the more rigorous result that the outgoing photons have a black-

body spectrum with temperature T = h̄/8πkM and typical energy E = kT = h̄/8πM ,

which differs from our result only by a factor of 2π. (The fact that Hawking radiation

is black-body makes sense, even without formal proof, since classically a black hole is

a perfect absorber of radiation).

6.7.1 Lifetime of a black hole

We see that the temperature of a black hole is inversely proportional to its mass. For,

e.g., a black hole of 10 solar masses, we find that

T =
h̄

8πkM
= 1.5× 10−44 K (6.47)

which is an incredibly small, but still formally non-zero, temperature.

The luminosity of the Hawking radiation from the black hole is, according to the

Stefan-Boltzmann law, proportional to AT 4, where A is the area of the Horizon. Since

A = 4πR2 = 4π(2M)2 = 16πM2 (6.48)
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for a Schwarzschild black hole, this means that

L ∝ M−2 (6.49)

This luminosity must come at the expense of a decrease in the mass of the black hole

(remember, the escape to infinity of the positive energy photon is accompanied by the

capture of a negative energy photon, which reduces the mass of the black hole). Hence

dM

dt
∝ M−2 (6.50)

from which it follows that the lifetime, τ , of a black hole satisfies

τ ∝ M3 (6.51)

i.e. the more massive the black hole, the longer it lives, and the cooler its temperature.

Determining the constant of proportionality, it is found that

(
τ

1010 yr

)
=

(
M

1012 kg

)3

(6.52)

So for a stellar mass black hole, Hawking radiation is completely negligible. In some

cosmological theories, however, primordial black holes can form in the very early

Universe; equation (6.52) says that a primordial black hole of mass around 1012 kg

would have ‘evaporated’ on a timescale comparable to the age of the Universe. Since

the black-body temperature of the black hole increases as its mass decreases, the evapo-

ration would end with a very short and violent burst of gamma rays. Detection of such

a gamma ray background would provide a useful observational test for the existence of

primordial black holes.
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