
Chapter 4

Einstein’s Equations for Static

Spherically Symmetric Stars

In Chapter 3 we derived the Schwarzschild metric to describe the spacetime exterior

to a star of mass, M by setting the components of the Ricci tensor identically equal

to zero. We now turn our attention to the interior of a star, and derive within the

framework of General Relativity differential equations to describe its structure.

In Newtonian theory one can derive the equation of hydrostatic equilibrium to de-

scribe the internal structure of a static, spherically symmetric star. We will, therefore,

seek a GR solution which is also static and spherically symmetric, and will investigate

how GR effects change this internal structure.
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4.1 Components of the Einstein tensor

We begin by noting that the metric describing the stellar interior will again take the

form of equation (2.23), namely:-

ds2 = −eνdt2 + eλdr2 + r2
(
dθ2 + sin2 θ dφ2

)
(4.1)

where ν and λ are functions of the radial coordinate, r. This means that we can make

use of the results which we already derived in Chapter 2 for the components of the

Ricci tensor for a static, spherically symmetric metric. These were

Rtt =
1

2
eν−λ

(
ν ′′ +

1

2
ν ′2 − 1

2
ν ′λ′ +

2

r
ν ′
)

(4.2)

Rrr = −1

2

(
ν ′′ +

1

2
ν ′2 − 1

2
ν ′λ′ − 2

r
λ′
)

(4.3)

Rθθ = 1− e−λ
[
1 +

r

2
(ν ′ − λ′)

]
(4.4)

Rφφ = Rθθ sin2 θ (4.5)

and all other terms of the Ricci tensor are identically zero.

Moreover, since the metric of equation (4.1) is orthogonal, it follows that the con-

travariant components of the metric are

gtt = −e−ν (4.6)

grr = e−λ (4.7)

gθθ =
1

r2
(4.8)

gφφ =
1

r2 sin2 θ
(4.9)

and all other components are zero.
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Due to the orthogonality of the Ricci and metric tensors, the curvature scalar, R, is

given by

R = gµνRµν = gttRtt + grrRrr + gθθRθθ + gφφRφφ (4.10)

Substituting from equations (4.2) – (4.9), and after some algebraic reduction, this gives

R = −e−λ
[(
ν ′′ +

1

2
v′2 − 1

2
ν ′λ′

)
+
ν ′ − λ′

r

]
+

2

r2

[
1− e−λ

(
1 +

(ν ′ − λ′)r
2

)]
(4.11)

The Einstein tensor, in its fully covariant form, is given by

Gµν = Rµν −
1

2
gµνR (4.12)

Substituting from equations (4.1) – (4.5) and equation (4.11) one finds that

Gtt =
eν

r2

[
1 + e−λ (rλ′ − 1)

]
(4.13)

Grr =
ν ′

r
− eλ

r2

(
1− e−λ

)
(4.14)

Gθθ = r2e−λ
[
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

]
(4.15)

Gφφ = sin2 θ Gθθ (4.16)

and all other components are zero.

4.2 Components of the energy-momentum tensor

Recall from equation (1.32) that, for a perfect fluid, the components of the energy-

momentum tensor in its fully contravariant form are given by

T µν = (ρ+ P )uµuν + Pgµν (4.17)

and in fully covariant form

Tµν = (ρ+ P )uµuν + Pgµν (4.18)
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where ρ and P are the mass-energy density and pressure respectively, and uµ and uµ

are the contravariant and covariant components respectively of the four velocity of a

fluid element. Since we are seeking a static solution, we have that ur = uθ = uφ = 0

and ur = uθ = uφ = 0. From equation (1.28), it then follows that

gtt
(
ut
)2

= −1 ⇒ ut = e−ν/2 (4.19)

and

ut = gtµu
µ = gttu

t = −eν/2 (4.20)

Substituting in equations (4.18) then yields the following non-zero components of the

energy-momentum tensor in its fully covariant form

Ttt = ρeν (4.21)

Trr = Peλ (4.22)

Tθθ = Pr2 (4.23)

Tφφ = Pr2 sin2 θ (4.24)

and all other components are zero.

4.3 Einstein’s equations

Recall from GRG-I that Einstein’s equations have solution, in fully covariant form

Gµν = 8πTµν (4.25)

where the constant 8π is derived by requiring that we recover the laws of Newtonian

gravity (with G = 1) in the limit of a weak gravitational field and non-relativistic

motion.

65



Thus, it follows that

eν

r2

[
1 + e−λ (rλ′ − 1)

]
= 8πρeν (4.26)

ν ′

r
− eλ

r2

(
1− e−λ

)
= 8πPeλ (4.27)

r2e−λ
[
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

]
= 8πPr2 (4.28)

The ‘φφ’ Einstein equation is indentically equal to the ‘θθ’ equation, multiplied by

sin2 θ.

4.4 Solution of the first Einstein equation

Cancelling eν from either side of equation (4.26) and re-arranging, it is easy to show

that this equation may be re-written as

d

dr

[
r(1− e−λ)

]
= 8πρr2 (4.29)

To solve this equation it is convenient to introduce a new function, m(r), defined by

the differential equation

dm

dr
= 4πρr2 (4.30)

from which it follows that

d

dr

[
r(1− e−λ)

]
= 2

dm

dr
(4.31)

Equation (4.30) has a Newtonian analogue: dm is equal to the mass contained within

a thin shell of radius r and thickness dr. Hence, in GR m(r) is usually referred to as

the mass function, although its simple Newtonian interpretation no longer holds in

GR, since one cannot describe the mass-energy in a frame-independent way solely in

terms of a single scalar function. Nevertheless, the introduction of the mass function

leads to some useful simplification.
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Integrating equations (4.31)

r(1− e−λ) = 2m+ C (4.32)

where C is a constant, which is equal to zero unless the star is singular at r = 0. We

will consider such a case later in the chapter on Black Holes. Thus

e−λ = 1− 2m

r
(4.33)

This is, of course, reminiscent of the equation (2.38) which we derived for the Schwarzschild

metric exterior to the star. In that case, however, we identified the constant, M , as

the total mass of the star, from considering the Newtonian far-field limit in which the

Schwarzschild metric reduces to that of Minkowski spacetime. In the case of the inte-

rior metric, we must remember that m is not a constant but an (as yet unspecified)

function of the coordinate radius, r.

4.5 The Oppenheimer-Volkoff equation

Re-arranging equation (4.27) we obtain, after some straightforward algebra

dν

dr
= eλ

[
8πPr +

1

r

(
1− e−λ

)]
(4.34)

Substituting from equation (4.33) this reduces to

dν

dr
=
(

1− 2m

r

)−1 [
8πPr +

2m

r2

]
= 2

[
4πPr3 +m

r(r − 2m)

]
(4.35)

Rather than attempting to re-arrange the third Einstein equation (4.28), which is rather

messy in form, we can use the conservation of mass-energy to obtain a differential

equation for the function ν.
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Recall from GRG-I that

Tαβ ;β = 0 (4.36)

i.e. [
(ρ+ P )uαuβ + Pgαβ

]
;β

= 0 (4.37)

We apply the product rule for covariant differentation (see Example Sheet I.5, question

4) to obtain

(ρ+ P ),β u
αuβ + (ρ+ P )(uα);βu

β + (ρ+ P )uα(uβ);β + P,βg
αβ + Pgαβ ;β = 0 (4.38)

Note that here we have used the fact that ρ and P are scalar functions, and the

covariant derivative of a scalar is simply its usual partial derivative. Moreover, in this

case partial derivatives with respect to r are, in fact, total derivatives. This is because ρ

and P depend only on r, as we are considering a static, spherically symmetric solution.

Equation (4.38) is, in fact, four equations, since α is a free index. Let us consider only

the α ≡ r term, so that

(ρ+ P ),β u
ruβ + (ρ+ P )(ur);βu

β + (ρ+ P )ur(uβ);β + P,βg
rβ + Pgrβ ;β = 0 (4.39)

The first and third terms on the left hand side of equation (4.39) vanish because ur = 0

for a static solution. The fifth term also vanishes because the covariant derivatives of

the metric tensor are always identically zero (see Example Sheet I.5, questions 5 and

6). In the second term only the t component is non-zero because ur = uθ = uφ = 0.

(Note that, even though ur = 0 it does not necessarily follow – and indeed we will see

later is not the case here – that its covariant derivative is zero). Finally, in the fourth

term only the r component is non-zero, because of the orthogonality of the metric.
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Hence, equation (4.39) simplifies to

(ρ+ P )(ur);tu
t +

dP

dr
grr = 0 (4.40)

The covariant derivative of ur is given by

ur;t = ur,t + Γrtju
j (4.41)

The first term is zero and only the j ≡ t contravariant component of the four velocity

is non-zero, so that

ur;t = Γrttu
t =

1

2
ν ′eν−λe−ν/2 =

1

2
e−λν ′eν/2 (4.42)

Substituting in equation (4.40) finally yields the differential equation

1

2
(ρ+ P )e−λ

dν

dr
+ e−λ

dP

dr
= 0 (4.43)

or

dν

dr
= − 2

(ρ+ P )

dP

dr
(4.44)

We can use equation (4.44) to eliminate ν ′ from equation (4.35), giving

dP

dr
= −(ρ+ P )(4πPr3 +m)

r(r − 2m)
(4.45)

Equation (4.45) is known as the Oppenheimer-Volkoff equation and is the General

Relativistic equivalent of the Newtonian equation of hydrostatic equilibrium. We can

see this by considering the weak-field limit of the Oppenheimer-Volkoff equation, taking

P << ρ, which in turn implies that 4πPr3 << m. Moreover, since the weak-field metric

must be nearly flat, it follows that m << r, and equation (4.45) simplifies to

dP

dr
= −ρm

r2
(4.46)

which is identical in form to the Newtonian hydrostatic equilibrium equation.
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4.6 Solving the Oppenheimer-Volkoff equation

The Oppenheimer-Volkoff equation involves three unknown functions: P (r), ρ(r) and

m(r). We also have equation (4.30), which relates m(r) and ρ(r). To solve for the

internal structure of the star requires a third equation linking the three functions,

however. This usually comes from the Equation of state, which is a relation between

the pressure and density, i.e.

P (r) = P (ρ(r)) (4.47)

For a fluid in local thermodynamic equilibrium, there always exists a relation between

the pressure, density and entropy , S, such that

P = P (ρ, S) (4.48)

Equation (4.47) is the particular case where the entropy can be considered constant.

This case is a valid approximation for most astrophysical situations (and, indeed, the

adoption of an equation of state is the usual method for solving the non-relativistic

equations of stellar structure).

How would these three equations for P , ρ and m be solved in practice? Equations

(4.30) and (4.45) are first order differential equations; hence we must adopt boundary

conditions in order to solve them.

Suppose we take P = P0 and m = 0 (i.e. no singularity) at the centre of the star. We

can then integrate the equations outwards, taking small increments in radial coordinate

distance, r, until we reach P = 0, which defines the surface of the star – at, say, r = R

and m = M . We then identify M as the constant in the Schwarzschild metric for the

spacetime exterior to the star; this ensures that the metric coefficients are continuous
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across the surface of the star.

Having thus integrated to obtain m, P and ρ as functions of r, we can use e.g. equations

(4.33) and (4.44) to obtain ν(r) and λ(r), which specifies completely the form of the

interior metric.

We will consider the exact solution of the Oppenheimer-Volkoff equation for a particular

case in the next section. Before we do so, however, we can see from equation (4.45) that

– for normal matter with ρ, P and m ≥ 0, the effect of GR must always be to steepen

the pressure gradient inside the star, compared with the pressure gradient required to

maintain a static solution in a purely Newtonian treatment.

4.7 Exact solution for a constant density star

Suppose we assume that ρ = ρ0 = constant. This assumption is certainly not ap-

propriate for a star like the Sun (since, for one thing, it implies an infinite sound

speed, cS ∝ dP/dρ) but theoretical modelling of the internal structure of neutron stars

suggests that it is a reasonably good approximation in their case.

Under this assumption we can integrate equation (4.30) immediately to give

m(r) =
4

3
πρ0r

3 (4.49)

Substituting into the Oppenheimer-Volkoff equation, it is easy to see that this gives us

dP

dr
= −4

3
πr

(ρ0 + P )(ρ0 + 3P )(
1− 8πρ0r2

3

) (4.50)

which we can re-arrange as

dP

(ρ0 + P )(ρ0 + 3P )
= − 4πrdr

3
(
1− 8πρ0r2

3

) (4.51)
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We can simplify the left hand side using the method of partial fractions, which leads

to

1

2ρ0

[
3dP

(ρ0 + 3P )
− dP

(ρ0 + P )

]
= −4π

3

rdr(
1− 8πρ0r2

3

) (4.52)

We can now integrate both sides, yielding

ln (ρ0 + 3P )− ln (ρ0 + P ) =
1

2
ln

(
1− 8πρ0r

2

3

)
+ constant (4.53)

or

ρ0 + 3P

ρ0 + P
= A

(
1− 8πρ0r

2

3

)1/2

(4.54)

When r = 0 we take P = P0 (i.e. the central pressure), so that we can express the

constant A in terms of the density and central pressure

A =
ρ0 + 3P0

ρ0 + P0

(4.55)

Hence we may write

ρ0 + 3P

ρ0 + P
=
ρ0 + 3P0

ρ0 + P0

(
1− 8πρ0r

2

3

)1/2

(4.56)

Using equation (4.49) we see that we may re-write equation (4.56) as

ρ0 + 3P

ρ0 + P
=
ρ0 + 3P0

ρ0 + P0

(
1− 2m

r

)1/2

(4.57)

At the surface of the star, P = 0 and the left hand side of equation (4.56) reduces to

unity, so that

ρ0 + 3P0

ρ0 + P0

(
1− 2M

R

)1/2

= 1 (4.58)

where M is the Schwarszchild mass and R is the coordinate radius of the star.

By re-arranging equation (4.57) we can obtain an expression for P as a function of

r, in terms of ρ, m(r) – which is in turn given by equation (4.49) – and the central
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pressure, P0. Moreover, from equation (4.58) we can also obtain an expression for the

central pressure, P0, in terms of the Schwarzschild mass and radius of the star, namely

P0 =
ρ0

[
1−

(
1− 2M

R

)1/2
]

3
(
1− 2M

R

)1/2
− 1

(4.59)

Having obtained expressions for P (r) and m(r), and given that we are assuming ρ is

constant, we can plug our expressions for these three functions into equations (4.33)

and (4.44) to obtain ν(r) and λ(r), which specifies completely the form of the interior

metric. This is left as an exercise. (See Examples sheet II.2).

4.8 Buchdahl’s theorem and limits on the radius of static stars

We can see from equation (4.59) that

P0 →∞ when 3
(

1− 2M

R

)1/2

→ 1, i.e. when
M

R
→ 4

9
(4.60)

Hence, this tells us that there can be no static stars of uniform density which have

radius, R < 9M/4, since these would require pressures greater than infinite!

Note that, if we require the exterior metric to be ‘well-behaved’, then we could already

exclude static stars of radius R < 2M . We can see this by considering the exterior

metric at the surface of the star (i.e. for r = R) which takes the Schwarzschild form

ds2 = −
(

1− 2M

R

)
dt2 +

dr2(
1− 2M

R

) +R2dθ2 +R2 sin2 θdφ2 (4.61)

From this equation it follows that when R < 2M the metric ‘misbehaves’ because:

• intervals for which dr 6= 0 and dt = dθ = dφ = 0 (which should be spacelike for

a well-behaved spacetime) give ds2 < 0, i.e. the interval is timelike.
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• intervals for which dt 6= 0 and dr = dθ = dφ = 0 (which should be timelike for

a well-behaved spacetime) give ds2 > 0, i.e. the interval is spacelike.

(In Chapter 6 we will consider the implications of allowing these misbehaving solutions

when we investigate black holes).

Hence, equation (4.59) means that we can also rule out the existence of a static star of

uniform density for R < 9M/4. A theorem due to Buchdahl (1959), which we do not

prove here, extends this result to stars of non-uniform density: no static, spherically

symmetric solutions exist for R < 9M/4.

We note, finally, that this result is not merely of academic interest. Suppose, for

example, we take a neutron star of mass equal to 2 solar masses. Expressed in units

of length then

MNS ' 3 km (4.62)

Hence, Buchdahl’s theorem implies that static neutron stars cannot exist with radii

less than about 7km. Since neutron stars are actually thought to have radii of about

10km, then we see that these stars approach rather closely the GR limit implied by

Buchdahl’s theorem.

Of course many neutron stars are rapidly spinning pulsars, which means that their in-

ternal structure is not static. To determine a limit on the allowed radius of a spinning

pulsar, one must go beyond the simple assumption of a static solution to Einstein’s

equations. We will not attempt such an extension in this course, although (time per-

mitting) we will consider the metric of a rotating black hole in Chapter 6.
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