
Chapter 2

Static Models with Spherical

Symmetry

2.1 Orthogonal metrics

In almost all astrophysical situations that we will consider in GRG-II, we can generally

work with the metric tensor in orthogonal form. This means that, in a particular

coordinate system, the components, gαβ, of the metric tensor satisfy

gαβ = 0 for all α 6= β (2.1)

This implies that there are no ‘cross terms’ in the expression for the invariant interval;

i.e. we can write (with somewhat clumsy notation)

ds2 = gαα(dxα)2 (2.2)

Note that the components of a metric will not be orthogonal in any coordinate system.

We can prove this as follows.

Suppose that gαβ are the metric components in a particular coordinate system, such
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that eq. (2.1) holds. Let g′µν denote the metric components in another coordinate

system. Since g is a (0, 2) tensor, we have

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (2.3)

Eq. (2.1) implies that

g′µν =
∂xα

∂x′µ
∂xα

∂x′ν
gαα (2.4)

but it does not follow that

g′µν = 0 for all µ′ 6= ν ′ (2.5)

In fact the question of whether the metric components are orthogonal in a particular

coordinate system is closely related to the question of whether the basis vectors are

orthogonal in that coordinate system. (Although we often choose a coordinate basis

with this property, we do not have to make such a choice). Consider, for example, a

coordinate system with basis vectors {~ei}, and two vectors ~A = Ai~ei and ~B = Bi~ei.

The scalar product ~A · ~B was defined in GRG-I as

~A · ~B = (Ai~ei) · (Bj~ej) = AiBj(~ei · ~ej) (2.6)

from which it follows that

gij = ~ei · ~ej (2.7)

Thus, in particular, gij = 0 if and only if ~ei and ~ej are orthogonal.

2.1.1 Contravariant components for an orthogonal metric

It is generally in our interests to choose a coordinate system in which the metric

coefficients are orthogonal in form. This is because it simplifies the expressions for

certain tensors and other geometrical objects in which we are interested.
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For example, the contravariant metric components will also be orthogonal, and the

diagonal terms are simply given by the reciprocal of the covariant diagonal terms. We

can prove this as follows. We know that

gαβgαγ = δβγ (2.8)

But from eq. (2.1) it follows that

gγβgγγ = δβγ (2.9)

i.e.

gγβ = 0 ifγ 6= β (2.10)

and

gγγ = 1/gγγ (2.11)

2.1.2 Christoffel symbols for an orthogonal metric

One can show that the Christoffel symbols also take a simple form for an orthogonal

metric:-

Γλµν = 0 for λ, µ, ν all different

Γλλµ = Γλµλ = gλλ,µ/2gλλ

Γλµµ = −gµµ,λ/2gλλ

Γλλλ = gλλ,λ/2gλλ (2.12)

(Note: the summation convention does not apply in these equations). The proof of

these results is left as an exercise; see Examples Sheet I-6.
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2.1.3 Geodesic equations for an orthogonal metric

We can find another (and potentially more useful) form of the geodesic equation (1.26).

For affine parameter1, p, this takes the form

d

dp

(
gλν

dxν

dp

)
− 1

2

∂gµν
∂xλ

dxµ

dp

dxν

dp
= 0 (2.13)

For an orthogonal metric this reduces further to

d

dp

(
gλλ

dxλ

dp

)
− 1

2

∂gµµ
∂xλ

(
dxµ

dp

)2

= 0 (2.14)

The proof of equations (2.13) and (2.14) is left as an exercise; see Examples Sheet II.1.

2.2 Geometrised units

In GRG-I we adopted units in which the speed of light, c = 1. This effectively means

that we are measuring time in units of length – specifically, the distance travelled by

light in that time. Thus

1 second ≡ 3× 108 m

At the end of GRG-I we derived the weak field limit of Einstein’s equations, which

allowed us to determine the constant, k, in equation (1.52) in terms of the gravitational

constant, G. Now, in SI units

G ' 6.67× 10−11 N m2 kg−2

but the Newton is a composite SI unit; in fact

1 N = 1 kg m s−2

1An affine parametrisation of a geodesic curve is one such that the parametric equations for the curve

satisfy the geodesic equation (1.26).
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so that

G ' 6.67× 10−11 m3 kg−1 s−2

Replacing our unit of time with the unit of length defined above, we obtain

G ' 7.41× 10−28 m kg−1

In GRG-II we will, in turn, find it useful to set G = 1; this effectively means that

we will measure mass also in units of length. This approach is often referred to as

geometrised units. It follows that, in these new units

1 kg = 7.41× 10−28 m

In summary, our geometrised units take the form

Unit of length: 1 m

Unit of time: 1 m ≡ 3.33× 10−9 s

Unit of mass: 1 m ≡ 1.34× 1027 kg

2.3 Spherically symmetric metrics

A large part of GRG-I was concerned with formulating Einstein’s equations – having

first developed a lot of necessary mathematical machinery to make this possible. In

GRG-II we now face the (perhaps more interesting) challenge of trying to solve Ein-

stein’s equations. This is far from trivial, however, and indeed exact solutions have been

obtained for a (fairly small) number of special cases only. Fortunately however, these

cases include some examples which are excellent approximations to real astrophysical

situations.
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Here we first consider the case of a spherically symmetric solution, which we will

then use to model the spacetime outside and inside a star. What exactly do we mean

by spherical symmetry in curved spacetime, however? In the flat Minkowski spacetime

of SR we can change our spatial variables to the usual polar coordinates, to give an

invariant interval

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θ dφ2

)
(2.15)

Thus, surfaces of constant r and t have the geometry of a 2-sphere, with interval

d`2 = r2
(
dθ2 + sin2 θ dφ2

)
(2.16)

We can also use this property to define spherical symmetry in a curved spacetime:

A spacetime is spherically symmetric if every point in the

spacetime lies on a 2-D surface which is a 2-sphere

If we label the coordinates of our spacetime by (r′, t, θ, φ) – the reasons for our choice of

labels will become clear shortly – then every point in a spherically symmetric spacetime

lies on a 2-D surface which is a 2-sphere, with interval given by

d`2 = f(r′, t)
[
dθ2 + sin2 θ dφ2

]
(2.17)

where
√
f(r′, t) is the radius of curvature of the 2-sphere.

Unlike flat spacetime, where transforming to ordinary polar coordinates immediately

reveals the radius of curvature to be simply our radial polar coordinate, r, in curved

spacetime no such trivial relation always exists between the angular coordinates of the

2-D sphere and the remaining two coordinates at each point in spacetime.
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We can, however, simply define a new radial coordinate, r, which satisfies

r2 = f(r′, t) (2.18)

and we can ‘line up’ the origins of our 2-sphere coordinate systems, (θ, φ), for points

in spacetime with different values of r.

Spherical symmetry also requires that any radial path in the space is orthogonal to

the 2-D spheres on the which the points along that radial path lie, since otherwise this

would allow us to define a preferred direction in the space. This implies that, in the

metric of our spherically symmetric spacetime

grθ = grφ = 0 (2.19)

Hence, we have restricted the form of the spacetime metric to

ds2 = gttdt
2 + 2gtrdrdt+ 2gtθdθdt+ 2gtφdtdφ+ grrdr

2 + r2
(
dθ2 + sin2 θ dφ2

)
(2.20)

Consider now the curve r = const., θ = const., φ = const. This is the wordline of a

particle in the spacetime which has constant spatial coordinates. This curve must also

be orthogonal to the 2-spheres on which each point on the curve lies, since otherwise

we could define a preferred direction in spacetime. This means that we can further

restrict our metric coefficients to be

gtθ = gtφ = 0 (2.21)

So we can write the general form of the metric for a spherically symmetric spacetime

as

ds2 = gttdt
2 + 2gtrdrdt+ grrdr

2 + r2
(
dθ2 + sin2 θ dφ2

)
(2.22)

where gtt, gtr and grr are arbitrary functions of r and t.
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2.3.1 The case of a static spacetime

We now consider the special case of a static spherically symmetric spacetime

(which we henceforth refer to as S4 for short). This means that we can find a time

coordinate, t, for which

1. all metric components are independent of t

2. the metric is unchanged if we apply the transformation t→ −t (i.e. if we undergo

time reversal)

It is fairly easy to see that property (2) implies that gtr = 0, which means that we can

write the interval for S4 as

ds2 = −eνdt2 + eλdr2 + r2
(
dθ2 + sin2 θ dφ2

)
(2.23)

which is orthogonal in form. Note that we have introduced the functions ν(r) and λ(r)

in replacing gtt and grr. Since the exponential function is strictly positive for all r,

this replacement is legitimate provided that gtt < 0 and grr > 0 for all points in our

spacetime. We will consider carefully later whether these conditions are satisfied, and

under what circumstances they break down.

2.3.2 Christoffel symbols for S4

Using equations (2.12) it is straightforward to calculate the Christoffel symbols for this

metric (see Examples Sheet II.1). Denoting by dashes differentiation with respect to

r, the Christoffel symbols are given by
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Γtrt = Γttr = 1
2
ν ′ Γθrθ = Γθθr = 1

r

Γrtt = 1
2
ν ′eν−λ Γθφφ = − sin θ cos θ

Γrrr = 1
2
λ′ Γφrφ = Γφφr = 1

r

Γrθθ = −re−λ Γφθφ = Γφφθ = cot θ

Γrφφ = −re−λ sin2 θ

All others zero (2.24)

2.3.3 Ricci tensor for S4

We can write the Ricci tensor (Eq. 1.36) as

Rλν = ΓτλνΓ
σ
τσ − ΓτλσΓστν + Γσλν,σ − Γσλσ,ν (2.25)

Substituting the results of equations (2.24) into equation (2.25) we find that

Rtt =
1

2
eν−λ

(
ν ′′ +

1

2
ν ′2 − 1

2
ν ′λ′ +

2

r
ν ′
)

(2.26)

Rrr = −1

2

(
ν ′′ +

1

2
ν ′2 − 1

2
ν ′λ′ − 2

r
λ′
)

(2.27)

Rθθ = 1− e−λ
[
1 +

r

2
(ν ′ − λ′)

]
(2.28)

Rφφ = Rθθ sin2 θ (2.29)

and all other terms of the Ricci tensor are identically zero. (See Examples Sheet II.1)

2.4 Derivation of the Schwarzschild metric

We now seek to apply the general S4 metric to derive the spacetime exterior to a

spherically symmetric star; this is known as the Schwarzschild solution. If the star

is in an isolated region of space, then we can assume that all components of the Ricci
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tensor exterior to the star are identically zero. Hence the right hand side of equations

(2.26) – (2.29) are all zero. Thus

eλ−νRtt +Rrr =
ν ′ + λ′

r
= 0 (2.30)

which in turn implies that

ν + λ = constant (2.31)

At large distances from the star we want the Schwarzschild metric to reduce to SR.

Hence, as

r →∞ , eν → 1 and eλ → 1 (2.32)

Thus, as

r →∞ , ν → 0 and λ→ 0 (2.33)

which implies that

ν + λ = 0 (2.34)

so that

eν = e−λ (2.35)

This allows us to eliminate ν from equation (2.28), giving

e−λ (1− λ′r) = 1 (2.36)

i.e.

d

dr

(
re−λ

)
= 1 (2.37)

which we can integrate to give

eν = e−λ = 1 +
α

r
(2.38)

where α is a constant.
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To evaluate α, suppose we release a material ‘test’ particle (i.e. a particle of so little

rest mass that it does not disturb the spacetime metric) from rest. Thus, initially

dxj

dτ
= 0 for j = 1, 2, 3 (2.39)

where τ is proper time, and

dx0

dτ
≡ dt

dτ
6= 0 (2.40)

Applying equation (1.28) and after some reduction we see that

dt

dτ
= e−ν/2 (2.41)

We now apply the first of the geodesic differential equations (1.26). At the instant

when the particle is released this reduces to

d2r

dτ 2
+ Γrtt

(
dt

dτ

)2

= 0 (2.42)

Substituting from equations (2.24) and (2.41) we obtain finally

d2r

dτ 2
=

α

2r2
(2.43)

In the limit of a weak gravitational field this result must reduce to the prediction of

Newtonian gravity, which predicts

d2r

dt2
= −GM

r2
(2.44)

whereM is the mass of the star. If we adopt convenient units such that the gravitational

constant, G = 1 (see below), this means that

α = −2M (2.45)

We can now write down the invariant interval for the Schwarzschild metric:

ds2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dθ2 + r2 sin2 θdφ2 (2.46)
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2.5 The Schwarzschild radius and the event horizon

The quantity 2M in equation (2.46) is known as the Schwarzschild radius. The Sun

(which has a mass of about 2 × 1030 kg) has a Schwarzschild radius of about 3 km.

(Note: this formula agrees with that given in A2 relativity when since c = G = 1).

We can see from equation (2.46) that the metric ‘misbehaves’ when r = 2M , since gtt =

0 and grr → ∞. We refer to this surface as the event horizon of the Schwarzschild

metric, and we will discuss its physical significance in greater detail later in the course

when we consider black holes. For now, we need only note that – provided r > 2M –

the metric is perfectly well behaved. For most stars (like the Sun, for example!) the

Schwarzschild radius is much smaller than the physical radius (i.e. the photosphere) of

the star. When this is the case we can certainly apply the Schwarzschild metric in the

form of equation (2.46) to describe the spacetime exterior to the surface of the star;

we do exactly this in the next chapter.
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