
Astronomy A3/A4M, Physics P4M

Gravitation and Relativity II: Example Sheet 4

1. Following Section 5.5.1 of your GR-II notes, show that two test particles initially separated by ε in the
y-direction, have a geodesic deviation vector which obeys the differential equations
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as they are disturbed by a plane gravitational wave propagating along the z-axis.

2. More generally, show that the geodesic deviation vector of two particles – one at the origin and the other
initially at coordinates x = ε cos θ, y = ε sin θ and z = 0 – as a gravitational wave propagates in the
z-direction, has components ξx and ξy which obey the differential equations
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3. Show further that
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are solutions to the differential equations of Q.2

4. Does a similar analysis to that considered in Q.1 and Q.2, but now for two test particles – one at the
origin and the other at z = ε – lead to the conclusion that the particles will be unaffected by the passage
of the gravitational wave along the z-axis?

5. A particle is released from rest at coordinate radius r = R0 and falls radially inwards towards a
Schwarzchild black hole. Show that equation (6.8) of your lecture notes may be re-written in the form
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Hence, show that the proper time taken for the particle to reach the Event Horizon is given by
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