Astronomy A3/A4M, Physics P4M Gravitation and Relativity II: Example Sheet 4

1. Following Section 5.5 .1 of your GR-II notes, show that two test particles initially separated by ϵ in the y-direction, have a geodesic deviation vector which obeys the differential equations

$$
\frac{\partial^{2}}{\partial t^{2}} \xi^{x}=\frac{1}{2} \epsilon \frac{\partial^{2}}{\partial t^{2}} h_{x y}^{T T}
$$

and

$$
\frac{\partial^{2}}{\partial t^{2}} \xi^{y}=-\frac{1}{2} \epsilon \frac{\partial^{2}}{\partial t^{2}} h_{x x}^{T T}
$$

as they are disturbed by a plane gravitational wave propagating along the z-axis.
2. More generally, show that the geodesic deviation vector of two particles - one at the origin and the other initially at coordinates $x=\epsilon \cos \theta, y=\epsilon \sin \theta$ and $z=0-$ as a gravitational wave propagates in the z-direction, has components ξ^{x} and ξ^{y} which obey the differential equations

$$
\frac{\partial^{2}}{\partial t^{2}} \xi^{x}=\frac{1}{2} \epsilon \cos \theta \frac{\partial^{2}}{\partial t^{2}} h_{x x}^{T T}+\frac{1}{2} \epsilon \sin \theta \frac{\partial^{2}}{\partial t^{2}} h_{x y}^{T T}
$$

and

$$
\frac{\partial^{2}}{\partial t^{2}} \xi^{y}=\frac{1}{2} \epsilon \cos \theta \frac{\partial^{2}}{\partial t^{2}} h_{x y}^{T T}-\frac{1}{2} \epsilon \sin \theta \frac{\partial^{2}}{\partial t^{2}} h_{x x}^{T T}
$$

3. Show further that

$$
\xi^{x}=\epsilon \cos \theta+\frac{1}{2} \epsilon \cos \theta B_{x x}^{T T} \cos \omega t+\frac{1}{2} \epsilon \sin \theta B_{x y}^{T T} \cos \omega t
$$

and

$$
\xi^{y}=\epsilon \sin \theta+\frac{1}{2} \epsilon \cos \theta B_{x y}^{T T} \cos \omega t-\frac{1}{2} \epsilon \sin \theta B_{x x}^{T T} \cos \omega t
$$

are solutions to the differential equations of Q. 2
4. Does a similar analysis to that considered in Q. 1 and Q.2, but now for two test particles - one at the origin and the other at $z=\epsilon-$ lead to the conclusion that the particles will be unaffected by the passage of the gravitational wave along the z-axis?
5. A particle is released from rest at coordinate radius $r=R_{0}$ and falls radially inwards towards a Schwarzchild black hole. Show that equation (6.8) of your lecture notes may be re-written in the form

$$
\Delta \tau=\sqrt{\frac{R_{0}}{R_{S}}} \int_{R_{S}}^{R_{0}} \frac{r^{1 / 2} d r}{\left(R_{0}-r\right)^{1 / 2}}
$$

Hence, show that the proper time taken for the particle to reach the Event Horizon is given by

$$
\Delta \tau=\left(\frac{R_{0}{ }^{3}}{R_{S}}\right)^{1 / 2}\left(\frac{1}{2} \pi-\theta_{0}+\sin \theta_{0} \cos \theta_{0}\right)
$$

where

$$
\theta_{0}=\sin ^{-1} \sqrt{\frac{R_{S}}{R_{0}}}
$$

Dr. Martin Hendry

Room 607, Kelvin Building
Ext 5685; email martin@astro.gla.ac.uk

