Astronomy A3/A4M, Physics P4M Gravitation and Relativity II: Example Sheet 3

1. Show that, if the Lorentz gauge condition holds

$$
\bar{h}_{, \alpha}^{\mu \alpha}=0
$$

then it also follows that

$$
\left(\bar{h}_{\mu}^{\alpha}\right)_{, \alpha}=0
$$

where $\bar{h}_{\mu}^{\alpha}=\eta^{\alpha \beta} \bar{h}_{\beta \mu}=\eta_{\sigma \mu} \bar{h}^{\alpha \sigma}$. Show, further that, if

$$
\bar{h}_{\mu \nu}=\operatorname{Re}\left[A_{\mu \nu} \exp \left(i k_{\alpha} x^{\alpha}\right)\right]
$$

then

$$
A_{\mu \alpha} k^{\alpha}=0
$$

i.e. the amplitude components of a gravitational wave must be orthogonal to the wave vector, \mathbf{k}.

Moreover, if the wave is travelling in the is travelling in the positive z-direction, such that

$$
k^{t}=\omega, \quad k^{x}=k^{y}=0, \quad k^{z}=\omega
$$

and

$$
k_{t}=-\omega, \quad k_{x}=k_{y}=0, \quad k_{z}=\omega
$$

show that

$$
A_{\alpha z}=0 \quad \text { for all } \alpha
$$

given also that

$$
A_{\alpha t}=0 \quad \text { for all } \alpha
$$

and given the Transverse - Traceless gauge condition

$$
A_{\mu}^{\mu}=\eta^{\mu \nu} A_{\mu \nu}=0
$$

Show that

$$
\bar{h}_{\mu \nu}^{T T}=A_{\mu \nu}^{T T} \cos [\omega(t-z)]
$$

where

$$
A_{\mu \nu}^{T T}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & A_{x x} & A_{x y} & 0 \\
0 & A_{x y} & -A_{x x} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

2. Show that, in the transverse - traceless gauge, if the (re-scaled) components of the metric perturbation satisfy

$$
\bar{h}_{\mu \nu}^{T T}=A_{\mu \nu}^{T T} \cos [\omega(t-z)]
$$

where the $A_{\mu \nu}^{T T}$ are constants, then the (unscaled) components, $h_{\mu \nu}^{T T}$, of the metric perturbation satisfy

$$
h_{\mu \nu}^{T T}=B_{\mu \nu}^{T T} \cos [\omega(t-z)]
$$

where the $B_{\mu \nu}^{T T}$ are constants. You should recall that

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h
$$

and

$$
h \equiv h_{\alpha}^{\alpha}=\eta^{\alpha \beta} h_{\alpha \beta}
$$

3. The metric perturbation for a particular nearly flat spacetime can be written in the form

$$
h_{y z}=A \sin \omega(t-x), \quad \text { all other } \quad h_{\mu \nu}=0
$$

where A and ω are constants and $|A| \ll 1$. Calculate the components of the Riemann-Christoffel tensor for this metric, and show that they are not all zero; i.e. that the spacetime is not flat.

Show, further, that if the metric perturbation for another nearly flat spacetime can be written in the form

$$
\begin{gathered}
h_{y z}^{\prime}=A \sin \omega(t-x), \quad h_{t t}^{\prime}=2 B(x-t), \\
h_{t x}^{\prime}=-B(x-t), \quad \text { all other } \quad h_{\mu \nu}^{\prime}=0
\end{gathered}
$$

where $|B| \ll 1$, then the components of the Riemann-Christoffel tensor for this metric are identical to the previous one. Can you, therefore, find a small coordinate change, ξ_{μ}, (i.e. a gauge transformation) such that

$$
h_{\mu \nu}^{\prime}=h_{\mu \nu}-\xi_{\mu, \nu}-\xi_{\nu, \mu}
$$

4. One example of a background Lorentz transformation is a 45° rotation of the x and y axes in the $x-y$ plane. Show that, under such a rotation from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$, it follows that

$$
h_{x^{\prime} y^{\prime}}^{T T}=h_{x x}^{T T}
$$

and

$$
h_{x^{\prime} x^{\prime}}^{T T}=-h_{x y}^{T T}
$$

i.e. one can transform from one polarisation state of gravitational radiation to the other via a background Lorentz transformation.
5. By substituting equations (5.101) - (5.103) into equation (5.99) verify equations (5.104) and (5.105), the components of $h_{\mu \nu}$ for a binary neutron star system. Show also that, if R is expressed in km, f in Hz and r in Mpc, the amplitude h is given by equation (5.107).

Dr. Martin Hendry
Room 607, Kelvin Building
Ext 5685; email martin@astro.gla.ac.uk

