9 The Riemann Christoffel tensor

GR explains gravitational effects as consequences of the curvature of spacetime, which
arises from the presence and motion of gravitating matter. In the previous section we
outlined how the matter content of spacetime could be described by the energy momentum

tensor, T. Thus our remaining objective is to relate T to the curvature of spacetime.

The curvature of a metric space is described by the Riemann Christoffel tensor (often
also referred to simply as the Riemann tensor). One would expect any tensorial quantity
that describes the curvature at least to depend on the second order derivatives of the metric
tensor, as for a suitable choice of coordinates (geodesic coordinates) we saw previously that
the first order derivatives can always be made zero. Thus we should expect the Riemann

Christoffel tensor to depend on gu., guv,e and gy - (N.B. in future we shall simply

Write guap fOr guvap)-

The form of the Riemann Christoffel tensor can be derived in several different ways,
although we shall discuss here only one derivation — which follows on from our preliminary

discussion of spacetime curvature in Section 1.

9.1 Riemann Christoffel tensor from the geodesic deviation

We consider two free falling test particles above the Earth and measure their separation
in a frame free-falling with the particles (i.e. a LIF). In the free falling frame the particles
will accelerate towards one another, albeit almost imperceptibly. Their worldlines are
geodesics in spacetime, and the geodesic deviation is the separation of these geodesics.

The acceleration of the geodesic deviation tells us that spacetime is curved.

Consider then two test particles (labelled 1 and 2) moving along nearby geodesics (see
Figure 16). Let £#(7) denote the (infinitesimal) separation of the particles at proper time

T, so that

(1) = 24 (1) + €(7) (227)

Now the worldlines of the two particles are described by the Geodesic equation, viz:-

d2at da$ daf
I =17 22
dr2 + O‘ﬂ(wl) dr dr (228)
and ) 5
d*xh " dz§ dxy
272 72 22
dr? tlap (w2 dr dr 0 (229)
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Figure 16

Note that we may write

Ths(z2) = Thg(z1+&) =Thy(x1) +Ths &7 (230)

Subtracting equation (229) from equation (228) and keeping only up to first order terms
in £ yields the following equation for the acceleration of £# (dropping the subscript 1)

d2er deP

—> 4+ TH 7+r“ ﬂ‘f +TH, %P = (231)
-

aByy

Equation (231) can be put into covariant form by introducing the covariant operator

D/Dr.

9.1.1 Definition of D/Dr

Consider an arbitrary vector field, A¥, and a worldline defined by z® = z®(7). We define

DAF  dAH u dzP
= Aa 232
Dt dr dr (232)

D/Dr is essentially the covariant derivative along the worldline. To see how equation
(232) is obtained, we displace A(7) through parallel transport from the event at proper

time 7 on the worldline of a particle to the event at 7 4+ dr. Thus

DA# . AK(T +dt) — DAP(T)
= 2
Dr dlrlgo dr (233)
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Since
DAF = A¥ —Th ; A%daf (234)

substitution into equation (233) yields

DA*  dAF dzP
=—— 4+ TH A* " 235
DT dr + of dr (235)
Writing
da?
B _ 2 236
vl = (236)
we have
DA*  dA*
= +Thy A% 237
DT dr (237)
or in operator form
D d
D—T = d— + Faﬁv (238)
Exercise: Show that the geodesic equation may be written as
Doy#
— =0
Dr
9.1.2 Covariant differential equation for the Riemann Christoffel tensor
From equation (238) it follows that
D2§“ D D¢+ d ,DEH u DE7 5
- = 2
D2 ~ Dr' Dr )= dT( D~ ) 7 Dr v (239)
Substituting for DX/ DT in equation (239) we obtain
D2¢r d  d&+ dee
TH 20P) 4+ T (= + 194 %P )0° 24
D7-2 d’r(dT + ﬁé. )+ (d'r + aﬂé- v )U ( 0)
Now
d dé® 3
dT( g&%v f) = Fgﬂ'y dr §a f+ FaﬂTU +FH5§Q7 (241)
Since each particle’s worldline is a geodesic we have
dv?  d?zP 3 s
F = d7'2 = —I‘UJ’UG’U (242)
where we have written
() —

dr
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Substituting equations (241) and (242) into (240) and reordering we obtain

Dxr e e d&” s
a8 u P
Dr? = arz T LapaV €70+ Top g + T
+(DYsTh, — Th T0 Jv7v’e (243)
However from equation (231)
e —(Thgv 2 e’ +Thgv pd” | Th s &%) (244)
dr? dr dr
and substitution into equation (243) yields
D .
5.5 = —R, 5 v PV (245)

where

RM 5 =TGgTh —T T +Th, —Th

ay” o ay, (246)

The (1, 3) tensor, R, is the Riemann Christoffel tensor. Notice that if the spacetime is flat
then
b
R, =0

i.e. all components of the Riemann Christoffel tensor are identically zero.
9.1.3 Fully covariant form of the Riemann Christoffel tensor and its symme-
tries

We may obtain the components of the (0,4) tensor corresponding to R* apy Py using the

covariant components of the metric tensor to lower the index, viz.

Ra,@"yé = gaaRUInyJ (247)

R.p4s has the following important symmetries, which reduce the number of indepen-

dent components in 4d to 20.

Raﬁ'y& = _RaBJ'y (248)
Rpoys = —Rapys (249)
Raﬂfyé' + chéﬁfy + Ra’yé',B =0 (250)

In equation (250) we have simply taken a cyclic permutation on the last three indices.
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It is fairly straightforward, though tedious, to derive the above symmetry relations if we

work in a geodesic coordinate system, in which it follows from equation (173) that

1
Ragys = 5(9as,6v = a6 + 98,08 — 985,0) (251)

Since the symmetries hold in geodesic coordinates, we argue that they hence must generally
be valid. Note also that equation (251) shows the Riemann Christoffel tensor to depend

on second derivatives of the metric tensor, as predicted.

9.2 The Bianchi identities

The Bianchi identities, for the derivatives of the Riemann Christoffel tensor, state that
Raﬂ’yts;)\ + Raﬁ)\'y;é + Ra,ﬁ’&)\;'y =0 (252)

Note that the three terms cyclically permute the final three indices. We will not discuss
in any detail the proof of the Bianchi identities in this course, although the proof is again
quite straightforward if one chooses first a geodesic coordinate system and then generalises
to any frame by appealing to the tensorial nature of equation (252). For completeness, a

summary of the proof is appended at the end of this section.

9.3 Riemann tensor via parallel displacement

Another geometrically instructive method for deriving the form of the Riemann Christoffel
tensor involves parallel transporting a vector around a closed curve in spacetime. If the
spacetime is flat, then the vector is mapped back onto itself when the loop is completed
— i.e. when we return to the starting point (see Figure 17a). In a curved spacetime,
however, the parallel transported vector will not in general be mapped onto itself when
we return to the starting point (see Figure 17b). We can express the net change in the
components of the vector, after transport around the closed loop, in terms of the Riemann
Christoffel tensor. We will not discuss this approach any further here, but the interested
reader is referred to e.g. Schutz, Chap. 6, for more details. Obviously, one obtains the
same form for the Riemann Christoffel tensor when one derives it by considering parallel

displacement in this way.

73



Figure 17a

S

Figure 17b

9.4 Proof of the Bianchi identities

The left hand side of equation (252) is a (0,5) tensor. Hence if we can show that its

components are zero at an arbitrary point on the manifold in a given coordinate system,
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then they must be zero in all coordinate systems. We choose geodesic coordinates at

arbitrary point, P. From the definition of the Riemann Christoffel tensor
Rﬂﬂfyd = ngrgé o Fgrfrgv + Fg'y,é - FEM
Now, since gau;n = 0 (see tutorial 5, Qs. 5,6), we can write

Rapysy = (gauR#ﬂ'y&);A = gwa#ﬂ'yJ;)\

Now all the Christoffel symbols are zero at P in geodesic coordinates, so from the above
two equations (changing covariant back to partial derivatives, which are interchangeable

at P in geodesic coordinates)
Rapysin = gau(rgy,w\ - Fga,w\)
Substituting for the Christoffel symbols using
Ies = 97" (9vap + 9up,e = Jap.v)
and also using the fact that in geodesic coordinates gog, = g"‘g = 0 one obtains
1
Raﬁ'y&;)\ = E(ga'y,ﬂw\ + 9as,ByA — 9By,adX — gﬂé,a'y)\)

Writing out the corresponding expressions for the other two terms on the left hand side

of equation (252) and adding gives the required result, i.e.
Raﬂ’yé;)\ + Raﬁ)«y;é + Raﬁ&)x;'y =0

in geodesic coordinates at P. Hence the Bianchi identities must hold in all coordinate

systems because of their tensorial nature.
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