8 The energy momentum tensor

We have now developed the necessary mathematical machinery to describe the curvature
of spacetime in a manner which can be expressed tensorially, i.e. independently of one’s
choice of coordinate system. In Section 9 we will define the Riemann Christoffel tensor,
which provides this geometrical description of curvature. Before we do that, however,
in this section we first consider the source of this spacetime curvature — the gravitating

matter content of spacetime.

The energy momentum tensor (also known as the stress energy tensor) describes the
presence and motion of gravitating matter. In this section we will discuss the energy
momentum tensor for the particular case of a ‘perfect fluid’, which is a mathematical
idealisation but one which is a good approximate description of the gravitating matter in
many astrophysical situations. We will derive the form of the energy momentum tensor
for a perfect fluid in special relativity; this form is easily generalised to GR. Finally we

will prove an important result about the divergence of the energy momentum tensor.

8.1 Perfect fluids

Many Newtonian gravitational problems can be considered simply as the interaction of
a small number of point-like massive particles — e.g. the 2-body interaction between
the Earth and the Moon can be accurately modelled in this way. Even in Newtonian
theory, however, there are many contexts (e.g. the motion of stars in the Galaxy) where
the number of gravitating ‘particles’ is too large to follow their individual trajectories.
Instead we treat the system as a smooth continuum, or fluid, and describe its behaviour
in terms of the locally averaged properties (e.g. the density, velocity or temperature)
of the particles in each fluid element — by which we mean a small region of the fluid
surrounding some point in the continuum within which the behaviour of the particles is

fairly homogeneous.

This fluid description is also useful for many-particle systems in special relativity, although
we must be careful about defining quantities such as density and velocity which are frame-
dependent —i.e. we need to find a covariant description of the fluid (which, we will see, is

why we require a tensor to describe the gravitating matter).

The simplest type of relativistic fluid is known as ‘dust’. To a physicist, a fluid element
of dust means a collection of particles which are all at rest with respect to some Lorentz
frame. Many textbooks (including Schutz) refer to this Lorentz frame as the momentarily

comoving rest frame (MCRF) of the fluid element. This name helps to reinforce the point
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that the fluid element as a whole may possess a bulk motion with respect to the rest of
the fluid, and indeed this relative motion may not be uniform — i.e. the fluid element may
be accelerating. At any moment, however, the instantaneous velocity of the fluid element
allows us to define its MCRF, although the MCRF of neighbouring elements will in general
be different at that instant, and the MCRF of the fluid element will also in general be
different at different times. If the fluid element is dust, however, then at any instant in the
MCRF of the fluid element the individual particles possess no random motions of their

OWIl.

Generally, however, the particles within a fluid element will have random motions, and
these will give rise to pressure in the fluid (c.f. motions of the molecules in an ideal gas).
A fluid element may also be able to exchange energy with its neighbours via heat con-
duction, and there may be viscous forces present between neighbouring fluid elements.
When viscous forces exist they are directed parallel to the interface between neighbouring

fluid elements, and result in a shearing of the fluid.

A relativistic fluid element is said to be a perfect fluid if, in its MCRF, the fluid element
has no heat conduction or viscous forces. It follows from this definition that dust is the

special case of a pressure-free perfect fluid.

8.2 Definition of the energy momentum tensor

We can define the energy momentum tensor, T, in terms of its components in some
coordinate system, {z!,z2, ..., 2"}, for each fluid element. Thus we define T*# for a fluid
element to be equal to the flux of the a component of four momentum of all

gravitating matter across a surface of constant 7. 2

Thus, the change, Ap®, in the a component of the four momentum due to the flux through

a surface element, AS,, at constant z”, is given by
Ap® =T*AS, (200)

(Note the use of the summation convention).

Mathematical aside: although we will not discuss the details of why T transforms as a

(2,0) tensor, note that this type of tensor is suggested by the definition of T given above. We

*By ‘gravitating matter’ we mean here all material particles, plus (from the equivalence of matter and
energy) any electromagnetic fields and particle fields which may be present, although in both this course
and Gravitation IT we will generally consider only material particles in the form of ordinary baryonic

matter
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require T to operate on two one-forms in order to produce a scalar quantity, the flux: the first
one-form selects the component, «, of the four momentum; the second one-form selects the
coordinate surface, ¥ = constant, across which the flux is measured. This surface is defined
by a one-form. To see this note that in general a surface will be defined by an equation of
the form ¢(x!,z?,...,2™) = constant, for some scalar function, ¢. (xﬁ = constant is simply
a special case of this). The surface may, therefore, equivalently be defined by the gradient of
¢ —i.e. the one-form, J¢>. This is why we write the surface element, AS,, with a subscript,

since it transforms as a one-form.

The term ‘surface element’ merits some further explanation for the particular case of Minkowski
spacetime. Since we are considering a 4-dimensional manifold, the components of the surface
element, AS,, are in fact 3-dimensional volume elements. Suppose we have three linearly
independent small displacement vectors, ﬁw(l), Eac@) and 5$(3). (Here the subscript (7) is
merely a label denoting which displacement vector one is referring to). Then AS,, is defined
to be

AS, = €apy Ay Axly Azl

where €,43, is known as the alternating symbol and is a (0,4) tensor which takes the
value 1 if {vafv} is an even permutation of {0123}, and —1 if it is an odd permutation,
and zero if any two (or more) subscripts are equal. We will have no further need to discuss
the alternating symbol in this course, but we introduce it here for completeness, since it

helps to explain why AS, transforms as a (0,1) tensor.

Suppose we choose Ew(l), 5.’1?(2) and Ez(g) to be parallel to the z!, z2 and z3 axes, and

write

{z()} = {0,Az,0,0}
{z(} = {0,0,Ay,0}
{z(5} = {0,0,0,Az}

then it follows from the properties of the alternating symbol that
{AS,} = {AzAyAz,0,0,0}

Similarly, if we take

{afy} = {At,0,0,0}
{"Elé)} = {0’ A.T,0,0}
{ml(l3)} = {0’ 0’ Aya 0}

then in this case
{AS,} ={0,0,0, AtAzAy}

from which the emergent pattern should be clear.
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8.3 Components of the energy momentum tensor

Having defined T using equation (200) we now examine the individual components of T

and consider what they each represent.

Recall from Section 3 that the z° component of the four momentum of a particle is

where m is the rest mass of the particle. Thus, the z° component of the four momentum, as
measured in a particular Lorentz frame, is the total energy of the particle. (Remember that
in relativistic physics energy and momentum are equivalent, so that all four components
of the four momentum together specify the total energy and momentum of a particle, with
the relative amount of each dependent the Lorentz frame in which they are measured).
The total energy is the sum of the rest mass energy (i.e. mc? with ¢ = 1) and kinetic
energy, thus
Total energy = m+m(y—1)

where the second term reduces to the familiar Newtonian expression for kinetic energy in

the limit of v << 1

Consider first the components of T in the MCRF of a fluid element. We begin with
the ¢(0,0)’ component. Taking small displacement vectors parallel to the spatial axes we
obtain {AS,} = {AzAyAz,0,0,0}. (See the mathematical aside above for details). Thus,
from equation (200) it follows that

Ap® = TYAzAyAz (201)
Hence T is the energy density of the fluid element. Similarly
Ap' = TPAzAyAz (i =1,2,3) (202)

from which we see that 7% is the i*" component of the momentum density of the fluid

element.

Consider now T%, for i = 1,2,3. Taking 7! first, by a similar argument to that given
above we choose small displacement vectors parallel to the 20, 22 and z® axes, to obtain

{AS,} = {0, AyAzAt, 0,0}, from which it follows that
Ap® = T AyAz AL (203)

But AyAz is the area of the face of our volume element perpendicular to the z! axis.

Thus, T°' denotes the energy flux (i.e. energy per unit area per unit time) from the
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fluid element in the z! direction. Clearly the obvious corresponding interpretations follow

for T92 and 793,

Finally, consider T%, for i, j = 1,2, 3. Taking T*! as our illustration, we again choose small
displacement vectors parallel to the 20, 22 and z® axes, to obtain the same components

of AS, as above, so that
Ap' = T AyAzAt (i=1,2,3) (204)

Thus T is the flux of the i*" component of the momentum in the z! direction, with the

corresponding meaning for 7% and T*3.

The transfer of momentum across the interface between neighbouring fluid elements indi-
cates that the elements exert a force on each other. If the forces are directed perpendicular
to the interface between neighbouring fluid elements, then we see that such forces are rep-
resented by the diagonal T% components, i.e. with i = j. If, on the other hand, the forces
are directed parallel to the interface between neighbouring fluid elements, then they are

represented by the off-diagonal T¥ components, i.e. with i # j.

8.4 Symmetry of the energy momentum tensor

An important property of the energy momentum tensor which we will state here, but
not prove, is that T is symmetric — i.e. in any coordinate system T = T8« (a, 8 =
0,1,2,3). (See Tutorial Sheet 3 for a proof that the symmetry of a tensor must hold
under any coordinate transformation). To see a proof that the energy momentum tensor
is symmetric, in the MCRF of a fluid element and hence in any frame, refer to e.g. Schutz,

p- 102 et. seq.

8.5 Energy momentum tensor for a perfect fluid
8.5.1 Components of T in the MCRF for dust

In this case the energy momentum tensor takes a very simple form. Since the particles in
the fluid element are at rest, there is no momentum transfer. (For a general fluid, even
if the particles are at rest there can be a flux of energy and momentum through heat
conduction, but not for dust, which is a perfect fluid). Also there is no momentum flux,
which means that 7% =0, (4,5 = 1,2,3). In fact the only non-zero component is 7% = p,

the energy density of the fluid element.
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8.5.2 Components of T in the MCRF for a general perfect fluid

This case is only slightly less straightforward than that of dust. Again the 7% component
is equal to the energy density, p. Since there is no bulk motion of the fluid element and
there is no heat conduction for a perfect fluid, the energy flux 7% = 0 for s = 1,2,3.
Moreover, from the symmetry of T we also have that the momentum density, T°° = 0, for
i = 1,2,3. For the spatial components, T% = 0 if 4 # j, since these terms correspond to
viscous forces parallel to the interface between fluid elements and these forces are zero for
a perfect fluid. Thus T% is a diagonal matrix. But 7% must be diagonal in all reference
frames — e.g. under all possible rotations. This is possible only if 7% is a scalar multiple

of the identity matrix, i.e. T = T%2 =T33,

Thus, T% is the flux of the i*® component of momentum in the z? direction, perpendicular
to the fluid element interface. Equivalently, it is the force per unit area, perpendicular to
the interface. This is just the pressure, P, exerted by the random motions of the particles

in the fluid element. Hence we can write T as

p 0 0 0

0P 0 0
(205)

00 P O

00 0 P

8.5.3 Components of T in a general Lorentz frame

Consider now the components of T in an arbitrary Lorentz frame. We again begin with
the case of dust. If we suppose that all particles in the fluid element have equal rest mass

(energy), m, then we can write the energy density as
p=mn (206)

where n is the number density of particles in the fluid element.? Suppose , in the MCRF,
the fluid element is a cuboid with spatial dimensions Az, Ay and Az parallel to the !,
22 and z3 axes (see Figure 15). Then the number of particles in the fluid element in the
MCREF is simply

N = nAzAyAz (207)

3Even if the particles have different rest masses, we can still write an equation of the same form as

(206), replacing m with a weighted average over the fluid particles
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Figure 15

Az AV

Ay By’
Ax Ax’

in MCRF ) in moving frame

Now suppose that we view the fluid element in a primed Lorentz frame which is moving
parallel to the z! axis with velocity, v. Assuming fluid particles are neither created nor
destroyed, then N will be constant but Az will be Lorentz contracted. (Ay and Az are

unchanged). Thus, the number density measured in the primed frame will be
n' = ny(v) (208)

but the energy of the particles measured in the primed frame will also be increased by a
factor of . Thus the energy density measured in the primed frame will be

1 o0 _ 14 9
p - ()2 (209)

It is straightforward, though tedious, to show that the same expression holds when the
velocity, v, is not parallel to any of the coordinate axes and has arbitrary 3-velocity

components {v!,v2, v3}.

A similar argument then shows that the energy fluz across the z surface in the primed

frame is given by

. pvj
705 — =2 (210)

and the i*" component of momentum flux across the 7 surface by

.. pviv‘]
T = —— 211
1 _ (’U)2 ( )
We can collect together all of these terms into the general expression
7% = pu'®u/P (212)
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where @' = {u’®} is the four velocity of the fluid element in the primed frame. (Compare

with equations (52) - (55) to see this).
For a perfect fluid, with non-zero pressure, equation (212) further generalises to
T*? = (p + P)u*u® + Pn*? (213)

(where for clarity we have dropped the primes). Here n®? are the contravariant components
of the metric tensor for Minkowski spacetime (see Section 3). It is easy to see that when
v = 0, equation (213) reduces to equation (205).

8.6 Conservation of Energy and Momentum

Conservation of momentum and energy requires that
T =0 (214)

To see this, consider again the 3-d spatial volume of Figure 15, with dimensions Az, Ay

and Az, and consider the energy passing into and out of the volume in time At = AzC.

The energy through the 2-d surface AA,, perpendicular to the z! axis, in time At is given
by
AEy, = Apd =T (t,z,y, 2) A A, At (215)

The energy out of the 2-d surface AA, Az, perpendicular to the z! = 2 axis, in time At

is similarly given by
AEqy = ApY . = Ttz + Az, y, 2) AA At (216)
Thus the net energy into the volume in the z! direction is
AE(z) = TV (t,z,y, 2) AA At — TON(t, 2 + Az, y, 2) AA, At (217)
which can be approximated as
o1 o1

AV At (218)

Similarly the net energy into the volume element AV in time At in the 22 = y direction
and z3 = z direction respectively is given by

oT"?

AE(y) = ——5AVA 21
W)= -2 Avar (219)
and o3

oT
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The total increase in energy inside the volume AV in time At is thus given by

6T0 1 8T02 8T03

AE = —( 5 + 92 + 923 YAV At (221)

On the other hand the increase in energy within AV is also simply

AE =1 Oo(t + At x,y, 2)AV —1 Oo(t,x, Y, z)AV (222)
which is approximately
—8 ” AV A 223
t
oz0 (223)

Equating (221) with (223) yields

or T 91"  9T%
820 T ot T oa? T 0a3 =0 (224)

This establishes equation (214) for the case where y = 0. A similar procedure, considering
the change in momentum flux across AV, will yield the remaining equations for y = 1,2, 3.

Thus, the divergence of the energy momentum tensor is equal to zero.

8.7 Extending to GR

In Section 1 we introduced the strong principle of equivalence which stated that, in a local
inertial frame, all physical phenomena are in agreement with special relativity. In the light
of our study of tensors in this course, we can write down an immediate consequence of the

strong principle of equivalence as follows

Any physical law which can be expressed as a tensor equation in SR

has exactly the same form in a local inertial frame of a curved spacetime

This statement holds since, in the LIF, physics — and hence the form of physical laws
— is indistinguishable from the physics of SR. This is a very important result because
it allows us to generalise the form of physical laws which are valid in SR to the case of
GR, with semi-colons (denoting covariant derivatives) replacing commas (denoting partial

derivatives) where appropriate.

How is this extension justified? From the principle of covariance a tensorial description
of physical laws must be equally valid in any reference frame. Thus, if a tensor equation
holds in one frame it must hold in any frame. In particular, a tensor equation derived in a

LIF (i.e. assuming SR) remains valid in an arbitrary reference frame (i.e. assuming GR).
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Hence, the energy momentum tensor for a perfect fluid in GR takes the form
T = (p + P)utu” + Pg*” (225)

where g*” denotes the contravariant metric tensor for a general curved spacetime (which

of course reduces locally to n#).

We can extend to GR in this way the result of equation (214), on the conservation of

energy and momentum. Thus, for a fluid element in a general curved spacetime
Ty =0 (226)

If this were not the case — i.e. if there existed some point, P, at which T%} # 0 — then
we could construct a LIF at P (e.g. by changing to geodesic coordinates) in which all
Christoffel symbols are zero. In this new frame covariant derivatives reduce to partial

derivatives, implying that T*; # 0, which contradicts equation (214).

The general technique of using the principles of covariance and equivalence to extend the
validity of tensor equations from SR to GR, usually by evaluating their components in
the LIF where Christoffel symbols vanish, is a very powerful one and is commonly met in
the relativity literature. It is sometimes referred to informally as the ‘comma goes to semi

colon rule’.
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