7 Geodesics

Earlier we stated that material particles not acted on by forces other than gravitational
forces have worldlines that are geodesics. Similarly photons also follow geodesics. Yet we

haven’t yet given a complete definition of a geodesic.

One can adopt one of two approaches. Either one can define a geodesic as an extremal
path between two events, in the sense that the proper time along the path joining the two

events is an extremum.

We shall take a different approach here, and define the geodesic in terms of parallel trans-
port. First, recall from Section 4, equation (93), that we defined a curve as a parametrised
path, i.e.

2 = ot () (174)

where 7 is a parameter and y runs over the four indices. We can define a tangent vector

to this path with components
_dzt
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dn

(175)

We now define a geodesic as a curve along which the tangent vector to the curve is parallel-
transported. We do not insist that the length of the transported tangent vector should
have the same length as the tangent vector at the new point (note that this would in
any case only have a meaning for Riemannian spaces, for which a metric is defined). We
demand only that it be parallel. (The magnitude of a tangent vector along a curve will
depend on the parameterisation of the curve. A change in parametrisation gives a different
curve, but the same set of points. A change in parametrisation will change the magnitude

of the tangent vector).

When we parallel transport a tangent vector at an arbitrary point P to a
neighbouring point Q along the geodesic curve, then it is in the same direction

as the tangent vector at Q. (See Figure 14).

Thus if the curve z#* = z#(n) is a geodesic, when the tangent vector, Tp, is parallel
transported from point P (with parameter value 7, say) to point @ (with parameter

value 77) and tangent vector TQ, it follows that
Tp — f(n) T (176)

The scalar function, f(n), depends on the parameterisation of the curve.

54



Figure 14

Q

Consider now a point, @', in the neighbourhood of Q with parameter 1 + dn. Suppose we
parallel transport Tp directly to @'. This will yield

Tp — f(n+dn) Ty (177)

which must be the same as we obtain by first parallel transporting Tp to @ and then
parallel transporting f (n)fQ to Q'. Consider the second step, from @ to Q'. Writing the
parallel-transported vector at @’ in component form, and using equations (138) and (142),

we obtain
f(n+dn) TH(n+dn) = f(n)T*(n) — f()Ths T*(n)T7 (n)dn (178)

where here we have written the term corresponding to dz* in equation (142) as T#(n)dn.

Expanding to first order in dn we obtain the geodesic equation
dTr# df
F) ==+ TH—= + f(Ths T*()TP(n) = 0 (179)
dn dn
In this equation the choice of parameter 7 was arbitrary. The equation can be reduced
to a somewhat simpler form by choosing a new parameter. A tedious, though fairly

straightforward, calculation shows that a change in parameter to A defined by

A= —Co / Fm)~tdn + Ao (180)

where Cy and A\g are constants, gives a new geodesic equation

= 4T

o hgs®s? =0 (181)

where
_dar
o d)

A is called an affine parameter. The above equation can evidently be written as

d2w# _;’_I‘)u' dx_aﬁ J—
d)\2 B gn d\

Notice that any linear transformation of an affine parameter also gives affine parameter.

st

0 (182)
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7.1 Geodesics of material particles

Consider the worldline of a material particle. In a given coordinate system the the world-

line may be written with the proper time, 7, along the worldline as the parameter, i.e.
xt = (1) (183)

The four velocity of the particle is given by

_ dz*

h= T 184
v = (184)

and is the tangent vector to the worldline. In this case the function, f, in equation (176)
is simply a constant and equal to either +1 or —1. We can take it to be +1, and it then
is clear from equation (180) that 7 is an affine parameter. Thus, we obtain the geodesic

equation (182) with 7 as parameter, i.e.

dvo™
dLT + T4 %P =0 (185)

or alternatively
A%zt p dz® da?

Tl pon, A (186)
One can show (see Examples Sheet 5) that
s 7 (187)
is constant along a geodesic, i.e.
4 (g BB (188)

7.2 Geodesics of photons

For photons, the proper time 7 cannot be used to parametrize the worldlines, since dr is

zero. If we use an arbitrary affine parameter A the null geodesics will be described by

A2+ " dz® dzP

Bl et 189
d)\2+0‘5d)\d)\ 0 (189)
and since it is a null geodesic, necessarily
dz® da?
9ap d\ d\ = (190)
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7.3 Examples

Example 1: Consider the almost trivial example
ds® = —dt* + dz* = —dr? (191)

For a material particle we have the geodesic equations

d2
“T _ )
dr?
d?t
— 2 =0
dr?
which have solution
z=Ar+ B
t=Ct+ D

where A, B, C and D are constants of integration. Evidently the velocity of the particle
is given by A/C. Furthermore, since

dz dt

—(5)2 + (5)2 =1

we see that A and C are not independent, but satisfy C? — A2 = 1.

For a photon we cannot use the proper time 7. Introducing an arbitrary affine parameter,

A, we have )
d°x
e =0
d’t
e =0
giving

However we know that
dx dt

EE— 2 J— —_—
(d)\) (d)\
which implies that A2 = C?. Thus null geodesics have the form

)2 =0 (192)

z=A\N+B, t=AN+D

or

2=—-A\N+B, t=A\+D
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Example 2: Consider now the metric
di? = dr? + r2dg? (193)
which obviously corresponds to 2-d Euclidean space in polar coordinates.

The distance, [, along a curve is an affine parameter since

dzt dxd dr do

il etediRN el 2 2 ot 2:
9 g g = () T () =1 (194)
Thus the geodesic equations are
d?r do do do dr dr d@ dr dr
-0 Fr il r 27 r 20 r 227 1
a2 tegagtlegathega T aga =0 (195)
and )
20 _, d0d9 _, dodr _, drdd _, drdr
oy e T e T e T 1
a2t leggtegagthoga g =° (196)

In equations (143) - (146) we derived the values of the Christoffel symbols in polar coor-

dinates. Substituting these values, the geodesic equations simplify to

d?r do
and )

a0 2 ,df.,

a2 + ;(ﬁ) =0 (198)
respectively.

One obvious set of solutions to these equations is » = [, # = constant. In fact any straight

line will satisfy these equations.

7.4 Geodesics as extremal paths

We chose to define a geodesic by using the notion of parallel transport. This did not in
fact depend on the notion of a metric, but only of an affine space. As we have already
mentioned, in a metric space one could also define a geodesic as an extremal path in the
sense that, along the geodesic between two events Eq, and FEo
E2
é dr=0 (199)
By

We shall not prove it here, but equation (199) also yields the geodesic equation (182).
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