6 Covariant differentiation

Any dynamical physical theory must deal in time varying quantities, and if this theory is
also to be relativistic, spatially varying quantities too. Since GR is a covariant theory, we
are confronted with the problem of constructing quantities that represent rates of change,
but which can be defined in any coordinate system. In other words, we need to define
a derivative which transforms covariantly under a general coordinate transformation: we

call this the covariant derivative.

For any scalar function, say ¢, defined on the manifold, the partial derivative
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transforms as a (0,1) tensor, i.e.
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Mathematical Aside: the notation in equation (128) may appear a little awkward. A
scalar function simply maps each point, P, of the manifold to a real number. If the coor-
dinates of P are {z!,z2,...,2"} in an unprimed coordinate system and {z'',z?,...,2"} in
another, primed, coordinate system, then the form of the scalar function may be different
in the two coordinate systems, although ¢(z!,z?,...,z") = ¢'(z'*, 2%, ...,z'™™). (We saw this
in equation (87) of Section 4 above). Consider, for example, ¢(z,y) = z* + 32, defined on
E2. Then ¢(z,y) = ¢'(r,0) = r2.

If we take the second derivatives of ¢, however, the quantities ¢ ,, do not have the

transformation properties of a tensor. Indeed in general if T;T]n]; is a tensor, 1}%’; , will

usually not be. Consider for instance Afj.
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Evidently the presence of the second term of equation (129),
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is the reason why Afj does not transform as a tensor. Under linear transformations Afj
will behave like a tensor, since for linear transformations
82 :L"i
ozlozk ~

However, under nonlinear transformations this will not be the case.

The question is how can we design a derivative-like quantity that does transform

as a tensor?

6.1 Parallel transport

The root of the problem is that in obtaining the derivative of A* with respect to some
coordinate, z, say, we compute the difference between the components A’ (z) at P, and

Ai(z + dz) at neighbouring point Q.

Mathematical note: we have simplified our notation here a little for clarity. Suppose the
coordinate with respect to which we are differentiating is * = z'. In fact we compute the
difference between the components A%(z!,z2,...,z") at P and A'(z! + dz',2?,...,2") at Q
—i.e. with all other coordinates held fixed. For simplicity we write these expressions simply

as A%(x) and A’(z + dz) respectively.

Now this difference, A*(z+dx)— A¥(x), is not a vector (i.e. a (1,0) tensor), since A*(z+dz)
transforms as a vector component at () and A’(x) as a vector component at P. To overcome

this problem we need to introduce the important notion of parallel transport.

Figure 12
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The idea (see Figure 12) is to displace or transport the vector from P to . We require
this displaced quantity to transform as a vector at (). How can this be done? We wish
to construct a vector, D_:4, at () which is somehow related to A at P. We shall think of
this as a transport, or displacement, of A from P to Q). We write the displaced vector
DA at Q in component form as DA*(z + dx). From the linearity of tensors the difference,
AY(x + dx) — DA(z + dz) will then transform as a vector at Q.

For this displacement to fit in with the notion of ‘paralle]’” which we carry over from our
everyday experience of flat space we should like the process or mapping to be linear.
Hence, if A and B are transported into DA and DB respectively, then aA + bB should be
transported into aDA +bDB. We would also like the mapping to be unique — i.e. no two
different vectors at P are mapped into the same vector at (). Later, when we consider the
particular case of Riemannian manifolds, we shall impose some further conditions on this
transport — e.g. that it preserves the magnitude of vectors and angles between vectors —

but for the time being we only demand that it is linear and unique.

If we write

DA (z + dz) = A'(z) + 5 A% (z) (130)

then linearity requires §A*(x) to be linearly dependent on the components A’. We should
also expect it to depend linearly on the coordinate displacement, dz*, between P and Q.

From these considerations, we can in fact guess the form of §A%(x) to be
§A (z) = —T%, Alda* (131)

(The minus sign here is just to accord with future definition of what are called the affine
connections or Christoffel symbols. Usually the term Christoffel symbol is reserved for the
particular case of a Riemannian space, where — as we shall see — they can be expressed in

terms of the metric tensor).

6.2 Parallel transport in E?

To justify the form of equation (131) consider parallel transport in E2. In E2 the displaced
vector DA is, in fact, equal to A (see Figure 13).
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Figure 13

Q(r+dr, 8+d8)
P(r,0)

However, even in E2, the components of DA at @, in an arbitrary coordinate system,
will not necessarily be the same as those of A at P. In a Cartesian coordinate system we
expect that DA? = A?, but this will not be true for all coordinate systems. Consider, for
example, polar coordinates {r,8}. We can define basis vectors {€y, €.} by

_or _or

g = Er = — 132
“To0 T ar (132)
where
F=rcosf i+ rsinf j (133)
and {;, j} are the Cartesian basis vectors for E2. Tt is then easy to show that
€ =—rsinf i+ rcosf j (134)
€ =cosf i + sinf j (135)
Now since DA = fT, we must have
(DAY) &(x +dz) = A’ &(x) (136)

where {€;(z)} are basis vectors at P and {€;(x + dz)} are basis vectors at @ (in general

different from those at P). Writing

o - O¢ . 1
éi(z+dz) = €(x) + axkdac (137)
and
DA' = A'(z) + 5A'(z) (138)
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and substituting into equation (136) yields, to first order,

0€;

L _—
0A'(z) € + &CkA’dx =0 (139)
Evidently the vector
0¢;
dzk
can itself be expressed in terms of the basis vectors at P, and we write (with foresight)
oé: .
o =Th g (140)

Substituting equation (140) into equation (137) we obtain
(047 (z) + 1%, AldzF) & = 0 (141)
This is a vector equation, and necessarily each component must be zero. Thus we obtain
§A (z) = —TY, Alda® (142)
Reorganising the indices we can write this precisely in the form of equation (131).

Consider, as an example, the case of polar coordinates. We have

o€, - -

% = —rcosfi—rsingj=—ré =T =0, Tj=—r (143)
350 . ird ird é‘0 1

B = —sm02+c050]=7 =>1“2,,=;, or =0 (144)
0¢€, . - ird 50 1

8; = —s1n02+c0s03=7 él"fez;, Ie=0 (145)
9¢

a‘jj" 0=T¢ =0, T, =0 (146)

Notice that here I‘;k = I‘};j, i.e. the Christoffel symbols are symmetric in their lower

indices.

Of course the Christoffel symbols, I‘;,g, will be different when evaluated in different co-
ordinate systems. In the above example we evaluated the Christoffel symbols in polar
coordinates; for Cartesian coordinates, on the other hand, they will all be zero. However
we want the components DA? to transform as vector components at Q. This obviously
imposes certain constraints on the transformation properties of the Christoffel symbols.
In particular I‘;'.k do not transform as tensor components (see Tutorial Sheet 4). The
transformation law for the Christoffel symbols is given by
i ox'* 9z°* ozt . 0x'* 0%
Ik 9zr 9’ Bkt T fal Balidz*

(147)
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6.3 Parallel transport for general manifolds

The preceding section showed how we may define parallel transport from an arbitrary
point P to neighbouring point @ in E2. In fact we defined parallel transport in the obvious
way, by requiring that the parallel transported vector, ﬁA, at @ is identically equal to
the original vector, /I, at P. Equation (139) then expressed the difference between the
components, A, at P and the parallel transported components, DA?, at Q, with respect

to an arbitrary basis, in terms of the connection symbols, I‘;k

As a consequence of how we defined parallel transport, the connection symbols ensure
that the DA? transform as contravariant components at Q when the A? transform as
contravariant components at P. Connection symbols which have this property define what
is known as an affine connection, and a general manifold on which we have defined an

affine connection is called an affine manifold.

6.4 Parallel transport of a scalar

We can also define the parallel transport of a scalar from P, with coordinates z, to @,
with coordinates x 4+ dz. Thus if ¢ is a scalar function on the manifold, we define
D¢(x + dx) = ¢(z) (148)
With this trivial definition we have
¢ . &

¢(z + dx) — Dé(z + dx) = ¢p(x + dz) — ¢(z) ~ Wd:c (149)
This quantity is evidently a scalar. No matter what coordinate system it is evaluated in it
is always the same — it is simply the difference between the value of the scalar function at
P and at Q. It follows that the quantity % must therefore transform as a (0, 1) tensor,
since dz* transforms as a (1,0) tensor and the LHS of equation (149) is an invariant. (In
2

59? transforms as a (0,1) tensor in equation (128) above, from

the chain rule for partial differentiation).

fact we already saw that

6.5 Parallel transport of a tensor

The notion of parallel transport can easily be extended to tensors of arbitrary rank, al-
though the algebra becomes somewhat messier for higher rank tensors. However, once we
have defined parallel transport of a contravariant vector through equations (138) to (142),
and a scalar through equation (148), parallel transport of an arbitrary tensor can only

take one form.
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6.5.1 Parallel transport of (0,1) tensor

To see how this generalisation works let us first consider the covariant components, B;, of
a (0,1) tensor — i.e. a one-form. In a similar manner to our treatment of vectors, let us
write the parallel transport of an arbitrary one form in terms of its covariant components
B;, viz.

DB;(z + dz) = B;i(z) + 6 Bi(z) (150)

Now since B; A’ is a scalar, for arbitrary A%, it must be displaced as a scalar. Thus, from
equation (148)
D(B;AY) = (B;AY) + §(B;AY) = B; A* (151)

Thus
§(B;AY) =0 (152)

from which it follows that

BidA' + 6B;A" = 0 (153)
From equations (142) and (153) we obtain
§B; = T, Bjdz* (154)

from which an expression for DB;(x + dx) then follows.

6.5.2 Parallel transport of a (2,0) tensor

Consider now the parallel transport of a (2,0) tensor, whose components are 7% in some

coordinate frame. In a similar manner to our treatment of vectors and one-forms, we write
DT (z + dz) = T (z) + 6T () (155)

Now take two arbitrary (0,1) tensors with (covariant) components B; and C;. Since

BiCjTij is a scalar, we must have
D(B;C;TY) = B;C;TY + §(B;C;TY) = B;C;TY (156)

Thus it follows that
B;Ci0TY + B;6C;TV + 6 B;C;TV = 0 (157)

Now from equation (154),
0B; = ', B, dz*

and

6C; =T} Crmda”
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Substituting into equation (157) we obtain
B;C;6T" + BT Cryda* T + T}, B, dz*C;T" = 0 (158)
Rearranging and changing the dummy indices we get
BiC;(6T% + 1Y  T"™dgk 4 T, T dz*) = 0 (159)
Since B; and C; were arbitrary (0, 1) tensors, the term in the bracket must be zero. Thus
8T = -7 T™dgh — T, T dz* (160)

Exactly the same reasoning can be applied to a tensor of arbitrary rank. Thus for the

tensor D} we have

§DY = Tt Dpida? —T9 Dimde? +TgDY da? + DI de?  (161)

Exercise: Write down an expression for § Pf'™

6.6 Covariant derivative

Having defined the parallel transport of scalars, vectors one-forms and general tensors, we
now have a means to define a derivative-like quantity which transforms like a tensor — i.e.

the covariant derivative.

6.6.1 Covariant differentiation of a scalar

We have already noted above in equation (128) that d¢/0x* transforms as a (0, 1) tensor.
(We also obtained the same result in equation (149), after applying a parallel displacement
to ¢). Thus we define the covariant derivative of ¢ simply to be equal to the partial

derivative of ¢.

6.6.2 Covariant differentiation of a one-form

Consider first a (0, 1) tensor, B defined over the manifold. In some coordinate system and
coordinate basis the components may be written B;. Consider two points P and @ with
coordinates z* and z* + dz* respectively. If we have defined parallel transport in terms
of an affine connection, then the quantity B;(x + dx) — DB;(z + dz) also transforms as a

(0,1) tensor. Substituting from equation (150) we obtain
Bi(z + dz) — DB;(z + dz) = B;(z + dz) — B;(z) — § Bi(z) (162)
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We can rewrite the first two terms of the right hand side as

B;
Bi(z + dz) — Bi(z) = g cda* = B; pda” (163)
xZr
Thus
Bi(z + dx) — DB;(x + dz) = (B, — I, Bj)da* (164)

This implies that B; j —I‘ngj transforms as a (0, 2) tensor, since the LHS is a (0, 1) tensor
and dz* is (1,0) tensor. We call B, ) — F{kBj the covariant derivative of the B;, and

denote covariant differentiation by a semi-colon, i.e.
Biy, = By — T}, B; (165)

As an example of covariant differentiation, consider the (0, 1) tensor

We can now define the covariant derivative of ¢ ; to be
bk = bk~ Thd, (166)

It is easy to show (see Tutorial Sheet 4) that ¢ ;i — ¢ x; transforms as a (0,2) tensor. If

we choose the affine connection to be symmetric — i.e. T, =T}, — then

ik — Pk i = Poik — Doki (167)

A space for which this is the case is called torsion free.

6.6.3 Covariant differentiation of a vector

For a (1, 0) tensor, the covariant derivative can be defined in an analogous way to that for a
one-form. Suppose that a vector field A is defined on the manifold. Choosing coordinates

and the corresponding coordinate basis, we have
A'(z + dz) — DA*(z + dz) = A" + Alda® — (A' — T% Alda®) = (A", + T AT)dz" (168)

The LHS of equation (168) transforms as a contravariant vector, as does dz®. Thus

Afk + F;kAj must transform as a (1,1) tensor.

We write

AY = A + T4 A (169)

and refer to Afk as the covariant derivative of A with respect to z*.
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6.6.4 Covariant differentiation of tensor

Since we have defined parallel transport for a tensor of arbitrary rank, it is straightforward
to define covariant differentiation of such a tensor. For example, the covariant derivative

of a (3, 3) tensor is given by

Ty ipda” = Ty (@ + da) — DTJ3% (a + da) = Ty, da? —6T;0.  (170)

Imn;p Imn Imn,p

The last term on the right can easily (if lengthily!) be expressed in terms of the affine

connections, so that equation (170) can be reduced to

Tk =Tk ik i Tk ok pr ik ik o mik o (171)

Imn;p Imn,p lmn Imn p~lmn p-rmn mp~lrn p~lmr

6.7 Christoffel symbols

So far we have defined the Christoffel symbols without any reference to the metric tensor,
gij- We simply assumed that some parallel transport of vectors and scalars was defined
on the manifold, and showed that this notion of parallel transport could naturally be
extended to tensors of arbitrary rank. However, if a metric is defined on the manifold
there is a very natural definition of the Christoffel symbols, or affine connections, in terms

of gi;. The definition is as follows.

Suppose we require that the magnitude of a parallel displaced vector is equal to the
magnitude as the original vector. More generally, suppose that the scalar product of two
arbitrary vectors, A* and B7, is invariant under parallel transport. Then the Christoffel
symbols are immediately and uniquely defined in terms of the metric tensor, g;;. Thus if

we require that
gij(z + dz) DA (z + de) DB (z + dz) = gij(z)A*(z) B’ (z) (172)

for arbitrary A* and B’, then it follows (if we assume that the connections are symmetric

in their lower indices) that

) 1 .
= §gd(glj,k + 9ikj — Gjk1) (173)

Exercise: Prove equation (173).

6.8 Geodesic coordinates

In a Riemannian manifold we can always find a coordinate system in which at a given point
not only does g;; reduce to diagonal form (i.e. space is locally Minkowskian), but the first

derivates of g;; are also zero, i.e. g;jr = 0. In such a coordinate system, equation (173)

52



implies that the Christoffel symbols are all identically zero. We call such a coordinate

system a geodesic coordinate system.

Exercise: Show that the Christoffel symbols, I‘;-}'c, are zero at the point P in the coordinate
system defined by

1
¥ =zt + EI‘ZE (2% — 2%) (2 — 2P)

where FZ 5 are the Christoffel symbols evaluated at P in the unprimed coordinate system.
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