5 Spacetime and the metric

5.1 The spacetime metric

Spacetime is a 4 dimensional manifold. The points of this manifold are called events.
We can also define a distance, or interval, between neighbouring events — i.e. spacetime is
a Riemannian manifold. If the interval between these events in timelike, we define the
distance between them as the proper time recorded by a particle on whose worldline the

events lie.

Suppose now that the separation between the events is spacelike. If the separation
between the events is sufficiently small, one can choose as one’s coordinate system a local

inertial frame in which the ‘distance’ between the events is simply be given by (with ¢ = 1).
ds? = —dt? + daz? + dy? + dz2? (118)

However, because spacetime is curved, no coordinate system can be constructed in which
the distance between any two arbitrary events can always be expressed by equation (118).
Ouly a local Lorentz frame can be found. The line element given by equation (118) cannot

be valid throughout spacetime if the spacetime is curved.

(In exactly the same way, no coordinate system can be found in which the line element
for the sphere embedded in 3D Euclidean space reduces everywhere to the Cartesian form
dI* = da? + dy?)

Suppose a coordinate system has been set up in spacetime. Each event, P, is provided

2 23}. These coordinates can be quite general, and

with 4 coordinate values, say {z°, 2!,z
are not necessarily assumed to represent time and spatial coordinates. A neighbouring
event, @, has coordinates {z° + dz°, 2! + dz', 2% + dz?, 23 + dz3}. We shall write the

(invariant) distance between these events as
ds® = G dxtdz” (119)

guv is called the metric tensor (stricly speaking g, in coordinate-free notation, is the
metric tensor and gy, is just the metric tensor components, but this distinction is rarely

made in practice).

To say that spacetime is locally Minkowskian (sometimes loosely stated as ‘locally flat’)
means that there exists a coordinate transformation that reduces equation (119) to the
form of equation (118) in the neighbourhood of event P. The assumption that spacetime
locally reduces to Minkowski form is tantamount to assuming that it is possible to trans-

form to a coordinate system such that g,, = 7, at event P. (We shall see that in fact
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we can also find a transformation such that g,, o = 0 at P. Such a coordinate system is

called a geodesic coordinate system at P.)

If ds? is not positive definite, it is called a pseudo-Riemannian space. (A metric is
positive definite if ds? is always greater or equal to zero, and equal to zero only when

dzt = 0).

We can choose g, to be symmetric in 4 and v, which means that it has 10 independent

components. Remember that in general g,,, are functions of the coordinates (20, 2!, 22, 23).

5.2 Transformation law for the metric

At any event, P, the value of g, will depend on the coordinates used. It is easy to see that
the metric must, in fact, transform as a (0,2) tensor, since ds? is invariant, and dz*dz”
transforms as a (2,0) tensor. Thus we have the transformation law

/ dz* Oz
I = g g 9o

(120)

which generalises, and justifies, equation (47).

5.3 Role of the metric tensor in GR

The metric tensor, g,.,, describes the geometric properties of spacetime. GR, the theory
of spacetime, must describe how the intrinsic properties of spacetime are affected and

determined by the presence and movement of gravitating matter.

How will g,,,, enter the field equations of GR? There are several clues. We saw in Section 1
that the equivalence of gravitational and inertial mass could be explained by insisting that
test particles move along geodesics in spacetime. We further argued that the acceleration
of the deviation of test particles (geodesic deviation, £) was determined by the ‘curvature’
of spacetime. Hence one should expect second order derivatives of g,, to play a key role
since these are necessary to express the curvature. So if the field equations are to be
covariant, we must find a tensorial quantity involving second order derivatives of g, that
describes the geometry of spacetime and that can be related to the matter and energy
content of the Universe (which we will describe by another tensor, the energy-momentum

tensor). There should evidently be further constraints on the theory.
e In the non-relativistic limit Newtonian gravity should be regained.

e The theory should also be consistent with SR in the limit of low matter density.

These constraints mean that the theory should be consistent with energy and momentum

conservation.
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5.4 Contravariant components of the metric tensor

The components g;; transform as covariant components. We can also define contravariant

components of the metric tensor g/* by requiring
girg™* = 8] (121)

¢7% defined in this way must be unique, since gij is nonsingular. ¢’* transforms as a (2,0)

tensor, since g; transforms as a (0,2) tensor and (52 as a (1, 1) tensor.

Exercise: The line element in 2-D Euclidean space is given by
di* = dz” + dy?
Show that
g*r = g% =1, g% = g¢¥ =0

Write down the line element in terms of the coordinates {u,v} where u = az + by and
v = cx + dy, where a,b,c,d are constants. Using the fact that g;; and g% respectively

transform covariantly and contravariantly, determine them in the coordinate system {u, v}.

Exercise: Write down the contravariant and covariant components of the metric tensor

for E2 in polar coordinates, i.e. {r, 8}, defined by z = rcosf, y = rsin6.

5.5 Raising and lowering indices and contraction

Given any contravariant vector A’ it is possible to define, via the metric tensor, an asso-

ciated one-form, which we denote as A; and which is defined by
A; = gipAF (122)
This operation is often called lowering the indez.

Similarly by using ¢” we can raise the index of a covariant quantity B; to obtain a
contravariant quantity B?, viz.

B' = ¢" B, (123)
An example of raising the index would be to obtain the components of the vector gra-

dient, d:b, from the one-form gradient, d¢, defined in equation (111). Thus

—_

(do)* = g (d9); (124)
In elementary courses on vector calculus, the gradient is usually introduced as a vector:

equation (123) establishes the relationship between the gradient as a one-form (as we
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have introduced it in this course) and as a vector. Note that from equation (123) it
follows immediately that for Euclidean space with a Cartesian basis (for which the metric
tensor is equal to the identity matrix) the components of a contravariant vector and its
associated one-form are, in fact, identical. Thus, we see that in this particular case no
distinction need be made between the one-form and vector description of the gradient (but
see Problem Sheet 2 for an example of where, even for Euclidean space, the distinction

between one-forms and vectors is non-trivial).

The role of the metric in connecting one-forms and vectors is crucial. We can see this
qualitatively by considering again the topographic map of Figure 11. Our intuitutive idea
of the vector gradient involves an arrow pointing in the direction in which the contours
of the map are changing most rapidly. In order to define this, we need a measure of how
many contours are crossed per unit length in a particular arrow direction. Thus, we see
that the vector gradient is larger in magnitude at position (1) than at positions (2) or (3).
However, the crucial point in this picture is the phrase per unit length — i.e. in order to
define a vector gradient we first need to define the notion of what we mean by length: in

other words we need a metric.

The process of raising or lowering indices can be carried out with tensors of any rank and
type. For example
Digy” = Gipgmg DV (125)

Some care must be taken in positioning the indices. The dots have been placed here to
indicate the indices over which contraction has taken place, although in general we shall

omit the dots and just write D’ﬁ; Note that Di;ﬁljk defined by

Dt]k — glpgmquqijk (126)

Ilm

ijk..

Im unless D%kPa possesses some symmetry.

is not the same as D
Exercise: T"" is symmetric. Show that 7, =T",.

The magnitude of a vector A’ is g;; A’ A7, which is of course invariant, since g;; is a (0, 2)

tensor and A* and A7 are both (1,0) tensors. Notice
gi AN = A AT = g A A, (127)

gijA'B7 may be regarded as the scalar product of two vectors.
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