4 Manifolds

To deal with curved spacetime — and to allow us to define geometrical objects such
as vectors and tensors in a completely general way — we have to introduce the no-
tion of a manifold. A manifold is essentially a continuous space which is locally
flat. More generally we can regard a manifold as any set which can be continu-
ously parametrised: the number of independent parameters is the dimension of the
manifold, and the parameters themselves are the coordinates of the manifold. A dif-
ferentiable manifold is one which is both continuous and differentiable. This means
that we can define a scalar function (or scalar field) — ¢, say — at each point of the
manifold, and that ¢ is differentiable. We describe this more explicitly, in terms of

coordinates, in the next section.
Examples of differentiable manifolds are:
1. the two dimensional plane, E2
2. the two dimensional sphere, S2
3. a two dimensional torus (e.g. surface of a doughnut)
In this course we will be concerned with a particular class of differentiable mani-

folds known as Riemannian manifolds. A Riemannian manifold is a differentiable

manifold on which a distance, or metric, has been defined.

Evidently E? has a natural distance defined on it. If we take a Cartesian co-
ordinate system {z,y} the distance, dl, between two neighbouring points, P, with

coordinates (z,y), and @, with coordinates (z + dz,y + dy), is given by
di* = dz® + dy® (78)

dl? is often called the line element. Note that the distance between P and Q is
defined in a coordinate-free way — i.e. it exists independently of one’s choice of
coordinate system, although in equation (78) a Cartesian coordinate system has

been chosen to represent it. If we use instead a polar coordinate system, {r, 6},

where
r=(2%+y?)2 (79)
and
0 = atan” (80)
T
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then the distance between P and () may be written as

di* = dr® + r*df* (81)

The Minkowski spacetime of special relativity is another example of a Riemannian

manifold, with metric defined via equation (33).

If one imagines a curved manifold embedded in a higher dimensional Euclidean space
(e.g. a 2-D sphere embedded in E3?) then there is a natural metric which we can
adopt, which is just the Euclidean distance function of the higher-dimensional space
in which the manifold is embedded. Thus examples (ii) and (iii) above are usually
seen as embedded in E3, in which case it is straightforward to derive the expression

for the line element.

Exercise: Show that the line element for the surface of a sphere of radius, R,

embedded in 3-D Euclidean space is given in spherical polar coordinates by

di* = R*(d6* + sin*0d¢*) (82)

Exercise: Find a coordinate system for a torus, and write down the line element

in this coordinate system.

4.1 Differentiable manifolds

Consider a point, P, in a Riemannian manifold, to which a set of coordinates has

been assigned.

Mathematical Aside: The formal mathematics of defining coordinates for P need not
concern us in this lecture course, but the interested reader can find useful discussions in any
introductory textbook on differential geometry. Loosely speaking, it involves covering the
points of the manifold by a collection of open sets, Ul, each of which is mapped onto R™ by
a one-to-one mapping, ¢*. The pair (Ui, #) is called a chart, and the collection of charts an

atlas. One can think of each chart as defining a different coordinate system.

Suppose point P belongs to U and U’. From chart (U, ¢), P has coordinates {z!,z?, ..., 2"}
and from (U’,¢’) it has coordinates {z'!, 22, ...,2/"}. There will be a functional relation-

ship between the two sets of coordinates; i.e. we can write
2 = (2t 2, . 2" (83)
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for each j = 1,2,...,n. In somewhat loose notation we can also, for expedience, write this
as

27 =g (2,22, ..., ") (84)

If the all partial derivatives of f7(z!,22,...,2") exist for all orders then we call the mani-
fold differentiable. With this notion of a differentiable manifold, a great deal of geometric
structure can be defined, including functions, tangent vectors, one-forms and ten-

SOors.

4.2 Functions on a manifold

One can define a function, f, on a manifold, M. At any point, P, of the manifold the
function takes a real value

Fi M-SR (85)

In a particular coordinate representation, P has coordinates {z!,z?, ...,2"}. We may then
write simply

fp = f(wl,:c2,...,wn) (86)

In another, primed, coordinate coordinate system P has coordinates {z'!,z,...,2/"}.

Thus we may write

fp = f(ml,xQ,...,x")
— f (ml(wll,ma,...,x'"),wz(xll,m'Q, ,z'™), ,:t:"(w'l,wlz, ,:c'n))
— f’($'1,xl2, ...,.’E’n) (87)

f is called a scalar function; this means that its numerical value at each point of the

manifold is the same real number, no matter which coordinate representation is used.

4.3 Vectors and one-forms

The intuitive picture of a vector which we have learned in elementary maths and physics
courses is based on the simple idea of an arrow representing a displacement between two
points in space. In section 2 we introduced the idea that a vector, @, exists independently of
our choice of coordinate system, but the components of @ take different values in different
coordinate systems, and we can define a transformation law for the components of the
vector. Consider, for example, the displacement vector, A—:’c, with components Az* and
Az'P in an unprimed and primed coordinate system respectively. Recall from equation

(43) that
ox'"

Az =
:c oz~

Az® (88)
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Consider now two displacement vectors, AT and Ay. How can we decide if AZ and Ay are
equal when — as shown in Figure 7 — they are defined at different points on our manifold?
For vectors in E3 with Cartesian coordinates, for example, we can simply ‘translate’ Ag
to X and compare the components of Ay with those of AZ. We can do this for any point,
Y, and in any coordinate system, however, only if the transformation law for vectors is
the same at every point of the manifold. This is indeed the case for Cartesian coordinates
in E3, but will not be true for a general curved manifold. This is because for a curved
manifold the coefficients of the transformation law in equation (88) are in general functions
of position, i.e.
ox'*  oz'M(zt,x?, ..., 2")

ox?® - ox® (89)

In other words, the transformation law between the primed and unprimed coordinate

systems is in general different at different points of the manifold. Thus, it is not enough
to define the components of a vector; we also need to specify the point of the manifold at

which the vector (and its components) are defined.

Figure 7

The fact that the transformation law coefficients of equation (88) are in general functions
of position also means that we have no ‘universal’ set of coordinate basis vectors on a
curved manifold, as is the case for Euclidean space. (In fact, this is precisely why it is not
enough simply to define the components of a vector — with respect to some fiducial set of
basis vectors — since these vectors will not in general form a basis at every point of the

manifold). There is, however, a means of defining a natural set of basis vectors for each
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point of the manifold which allows us to develop a more general picture of what we mean

by a vector — and one which is equally valid in a curved spacetime.

4.3.1 Tangent vectors

Suppose we have a scalar function, ¢, defined at a point, P, of a Riemannian manifold,

where P has coordinates {z!, 2*

,.--, ™} in some coordinate system. Since our manifold is
differentiable we can evaluate the derivative of ¢ with respect to each of the coordinates,
z!, for i = 1,...,n. In fact, since ¢ is completely arbitrary, we can think of the derivatives

as a set of n ‘operators’, denoted by

0
Ozt

These operators act on any scalar function, ¢, and yield the rate of change of the function

with respect to the z*.

We can now define a tangent vector at point, P, as a linear operator of the form

0 —a1i+a2i+...+ani (90)

at— =
OzH ozl Oz? oz

(Note the use of the summation convention). This tangent vector operates on any function,
¢, and essentially gives the rate of change of the function — or the directional derivative —
in a direction which is defined by the numbers (a',a?,...,a™). We can define the addition

of two tangent vectors in the obvious way

0 0 0
' — + b — = (" + ) — 91
OoxH + OoxH (af+ )818“ (91)
Mathematical Aside: With this straightforward definition of addition, a little formal

mathematics easily shows that the set of all tangent vectors form what is called a vector

space

Thus, the operator,

9
ozt
behaves like a vector, the components of which are (a!,a?,...,a"). We therefore write
0
a=a'— 92
e (92)

The n operators % can be thought of as forming a set of basis vectors, {€,}, spanning

the vector space of tangent vectors at P.

What exactly do these basis vectors represent? We can find a simple geometrical picture

for the €, by first crystallising the notion of a curve, C, defined on our manifold. Our
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intuitive notion of a curve is simply of a connected series of points on the manifold; in
the mathematical literature, however, we call this a path, and the term curve is instead

reserved for the particular case of a path which has been parametrised.

Thus, a curve is a function which maps an interval of the real line into the manifold.
Putting this more simply, a curve is a path with a real number (s, say) associated with
each point of the path; we call s the parameter of the curve. Note also that once we choose
a coordinate system each point on the curve has coordinates, {z*}, which may also be

expressed as functions of the parameter, s, i.e.
t=ak(s) p=1,...,n (93)

Once we specify our coordinate system, we can consider a particular set of curves which

use the coordinates themselves as their parameter. For example, point P with coordinates

2

{z!,22,...,2"} lies on the n curves which we obtain by allowing only the value of z¢ to

vary along the i*! curve (i = 1,...,n) and fixing all other coordinate values to be equal to

their values at P. (To visualise a simple example, think of circles of equal latitude and

8 —
oxt

as the tangent to the i*® curve. This geometrical picture is illustrated in Figure 8, again

longitude on the 2-sphere manifold). The basis vector, € = can be thought of simply
for the straightforward example of the 2-sphere. Note that the basis vectors €3 and €p are

different at points X and Y of the manifold.

And what of a more general curve in the manifold? Here we simply connect the notion,
introduced above, of a tangent vector as a directional derivative to our straightforward
geometrical picture of a tangent to a curve. Figure 9 shows a curve, with parameter s,
and with tangent vectors drawn at points with different parameter values. Suppose the
coordinates of the points on the curve are {z#(s)}, for p = 1,...,n. Then the components,

T*, of the tangent vector with respect to the basis {€,} = {%} are simply given by

dz#
TH — 27
ds

(94)
To sum up, we can represent vectors as tangent vectors of curves in our manifold. Once
we have specified our coordinate system, we can write down the components of a vector
defined at any point of the manifold with respect to the natural basis generated by the
derivative operators {%} at that point. A vector field can be defined by assigning a
tangent vector at every point of the manifold, so that the components, {a*} now become

functions of the coordinates, i.e.

a=a'(z', 2% ..., 2") €, (95)



Figure 8

<

Figure 9

31



4.3.2 Transformation law for vectors

Suppose we change to a new coordinate system {z'!,z2,....2™}. Our basis vectors are
now
- 0
/] —
e, = 96
B 9k (96)

How do the components, {a!,a?,...,a"}, transform in our new coordinate system? We
have already derived this transformation law for displacements in equation (43). To see
how the law arises within the framework of our tangent vector description, let the vector

a operate on an arbitrary scalar function, ¢. Then

o¢
a(¢p) = a” 97
i(6) = 0" 20 (97)
By the chain rule for differentiation we may write this as
. , 0z 9¢
i(9) = 00 00 (98)
However, if we write @ directly in terms of coordinate basis {e_L} = {ami,“}, we have
o¢
- _ ly,
a(()b) =a 8(3’” (99)
Comparing equation (98) with (99) it is evident that
ox'*
= aﬁ;v a” (100)

Thus the components of the tangent vector transform according to equation (100). We call
this equation the transformation law for a contravariant vector, and say that the com-
ponents of @ transform contravariantly. (The term ‘contravariant’ is used to distinguish
these vectors from another type of geometrical object — covariant vectors or ‘covectors’ —
which we will meet in the next subsection. The more modern name for covariant vectors,
however, is ‘one-forms’, and we will generally adopt that name in order to avoid this source

of ambiguity). We denote the components of a contravariant vector as superscripts.

As we remarked above, equation (100) is the same transformation law as we introduced
in equation (43) to describe the transformation of a small displacement, AZ. To fix these
ideas within our tangent vector framework, consider two neighbouring points P and @
of the manifold with coordinates {z*#} and {z* + dz*} respectively. Here the dz* are
considered to be infinitesimal. In another, primed, coordinate system P and ) have

coordinates {z'#} and {z'* + dx'*}. Since
o =zt 22, . ") (101)
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it follows that

o +da* = a(at 4 dat 2?4 do?, . 2" + da) (102)
In
_ 1,2 " dz”
H(z, z?, ’$)+6m” T
It then follows that
dz = 9% g (103)
't = —dzx
loknd

Thus, the infinitesimals {dz#} transform as contravariant components. One can refer to

{dz',dx?,...,dz"} as being a contravariant vector.

Equations (100) and (103) are two examples of the prototype transformation law for
any contravariant vector. Any quantity, A*, with n components which can be evaluated
in any coordinate system, and which transform in the same way as dx*, according to
the transformation law of equation (103), is called a contravariant vector. (Strictly, in
the coordinate-free approach one would talk of A= Ar€, being the vector, and A* its

components). Thus for any contravariant vector

o't
At = 22 Av 104
oxY (104)

4.3.3 One-Forms

-

What is the relationship between the basis vectors e, and €, in the primed and unprimed

coordinate systems? From equation (96) we have

- or¥
e;l, = Wey (105)

(which is equivalent to equation (75) of Section 3 above).

Thus we see that the basis vectors do not transform in the same way as the components
of a contravariant vector. This should not be too surprising, since the transformation
of a basis and the transformation of components are different things: the former is the
expression of new vectors in terms of old vectors; the latter is the expression of the same

vector in terms of a new basis.

In fact, the form of the transformation in equation (105) is the same as the transformation
law for another type of geometrical object, which we call a covariant vector, covector,

or (in more modern literature) a one-form. Any quantity, A,, with n components which
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can be evaluated in any coordinate system, is said to be a one-form if the components
transform according to the equation

0 ox¥

i == W v (106)

(The old-fashioned name for a one-form, a covariant vector, arose because the compo-
nents transform in the same way as (i.e. ‘co’) basis vectors, while the components of a

contravariant vector transform in the opposite way (i.e. ‘contra’) to basis vectors).

One can simply regard equation (106) as defining a one-form. Many modern textbooks
on differential geometry, however, begin by defining a one-form as a linear mapping which
acts on a vector to give a real number. (Starting from this definition one can then arrive

at equation (106).

One-forms are usually denoted by a tilde above a symbol, just as vectors are denoted by
an arrow above a symbol. Thus p(@) is a real number. If p, g, 7 and § are one-forms, then

we define their addition and scalar multiplication properties via the relations
§=p+q=35(a) = p(a) + ¢(a) (107)
7 = ap = 7(d) = ap(a) (108)

for any vector, a. With these rules the set of all one-forms is a vector space, which we call
the dual space of of the vector space of contravariant vectors. There is a close relationship
between these two vector spaces. For example, there is a natural basis of one-forms which

we denote W* = Jxa, which are related to the basis vectors, €3, by the equation
@0%(ep) = 03 (109)
With this basis we can write any one-form in terms of components
D = pa® (110)
where py = p(€n)-

4.3.4 Picture of a One-Form

If we need a picture to represent a vector we usually think of an arrow. It is helpful to
have a picture of a one-form as well. First of all, it is not an arrow. Its picture must
reflect the fact that it maps vectors into real numbers. The picture generally used by
mathematicians is shown in Figure (10). Here the one-form consists of a series of surfaces

in the neighbourhood of a point in the manifold [panel (a)]. The ‘magnitude’ of the one
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form is given by the spacing between the surfaces: the smaller the spacing, the larger the
magnitude of the one-form. Thus the one-form in panel (b) has a larger magnitude than
the one-form in panel (c). In this picture, the real number produced when a one-form acts
on a vector is the number of surfaces that the vector crosses; hence, the closer the spacing
the larger the number. The one-form doesn’t define a unique direction, since it is not a

vector. Rather it defines a way of ‘slicing’ the manifold.

In order to justify this picture we shall look at a particular one-form: the gradient.

Figure 10

©) (b) (©)

As in Section 4.3.1, consider a scalar field, ¢, defined everywhere on a Riemannian mani-

fold. At point P, with coordinates {z!, 22, ..., 2"}, form the derivatives {%, %, - %}.
Suppose we now change to a new, primed, coordinate system, in which the point P has

2

coordinates {z'1, /2, ...,z/™}. From the chain rule for differentiation we have, for each ,

o _ Oz’ 0¢

ox'*  Ox'm dxv

(111)

Comparing equation (111) with equation (106) we see that the gradient of ¢ fits our defini-
tion of a one-form, since its components transform according to the correct transformation
law. It is usually denoted by Jqﬁ (In elementary courses on calculus and geometry the
gradient is usually introduced as a vector, i.e. with a defined direction. We will see in the

next section why this is justifiable, at least for Euclidean space).

The gradient enables us to justify our picture of a one-form, through the following

simple example. Figure 11 is part of a topographical map, showing contours of equal
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elevation. If h is the elevation, then the gradient, cih, is clearly largest in an area like A,
where the contour lines are closest together, and smallest near B, where the contour lines
are spaced far apart. Moreover, suppose one wanted to know how much elevation a walk
between two points would involve. One would lay out on the map a vector between the
starting and finishing points, and the number of contours which the line crossed would
give the change in elevation. For example, vector (1) crosses 1.5 contours, while vector
(2) crosses 2 contours. Vector (3) starts from the same point as vector (2), but goes in a

different direction and winds up only about 0.75 contours higher.

Figure 11

4.4 Tensors

Having defined what me mean by vectors and one-forms, in terms of how their components
transform under a general coordinate transformation, we can now extend our definition to

the more general class of geometrical object which we call tensors.

A tensor of type (I,m), defined on an n dimensional manifold, is a linear operator which
maps [ one-forms and m (contravariant) vectors into a real number (i.e. scalar). Such a

tensor has a total of n'*™ components.

The transformation law for a general (I, m) tensor follows from its linearity, and from the
transformation laws for a vector and one-form, in order that the scalar quantity obtained

when the tensor operates on [ one-forms and m vectors is independent of one’s choice of
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coordinate system. We can write this general transformation law as follows

Alu1 U2 ..U 8‘rlm axlul aqu . axqm At1 to... 14 (112)

T172...Tm Ozt Ortt o'™ T Hg!Tm "I 92 - dm

This somewhat intimidating equation appears much more straightforward for some specific
cases. First note that a contravariant vector is in fact a (1,0) tensor (since it operates on
a one-form to give a scalar). To see this, substitute [ = 1, m = 0 into equation (112) and
recover equation (104). Similarly a one-form is a (0, 1) tensor (and more trivially a scalar

is a (0,0) tensor).

A (2,0) tensor, say T%, is called a contravariant tensor of rank 2 and transforms according

to the transformation law S
0" 0L

T — el
ok Ozl

(113)

A (0,2) tensor, say B;j, is called a covariant tensor of rank 2, and transforms according

to the law
,  Oz* o

ii = i §gid OF (114)

An important example of a (0,2) tensor is the metric tensor, gos, which we will discuss
in more detail in the next section. We already met the metric tensor, 744, in Section 3,
in its simplified form for the Minkowski metric of special relativity. Recall from equations
(47) and (48) that we gave the transformation law for Lorentz matrices which ensured the
invariance of the interval, As?, in different Lorentz frames. We can now see that the form
of equations (47) and (48) is consistent with 7,5 and 7 being a second rank covariant
and contravariant tensor respectively. Note also that our expression, in equation (57), for
the magnitude (i.e. scalar product) of the four velocity now makes more sense: we expect
a second rank covariant tensor (n,s) operating on two contravariant vectors (v*, v?) to

give a real number.

A tensor which has both upper and lower indices, which means that it has both con-
travariant and covariant terms in its transformation law, is known as a mized tensor. The
simplest example (after the trivial case of a (0,0) tensor) is a (1,1) tensor, D;-, say. Its

transformation law is
n l
/.i _ 61‘ v 833 1k
I 9k oxli

(115)

37



An important example of a (1,1) tensor is the Kronecker delta, 5;-, which we met first in

Section 2.
Exercise: Show that 5;- transforms as a (1, 1) tensor.

One way to construct a (1,1) tensor is to take the product (formally the outer product) of

a vector and one-form, i.e.

D} = A'B; (116)

(Clearly we may generalise this procedure to mixed tensors of higher rank).

4.4.1 Contraction of tensors

We can also take another kind of product in equation (116), known as the inner product,
or contraction of a vector and one-form; i.e. we form the quantity A*B; (where, as usual,
the summation convention is implied). This quantity can easily be shown to be an invariant

or scalar in the sense that

AT B = A'B; (117)

Exercise: Verify equation (117)

We can generalise the operation of contraction to the case of any two tensors, and over an
arbitrary number of indices, provided that an equal number of upper and lower indices are
selected. In general, contraction over k indices will produce from a tensor of type (I,m)
a new tensor of type (I — k,m — k). For example, the contraction of the two tensors Gﬁ:
and Rj, over the indices ¢ and ¢, j and u and [ and s will give the (1,1) tensor G;Z,’f Rﬁj,

where now only the indices k and m are free indices.
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