3 Special relativity

To understand GR we need to spend a little time on SR. This will also give us the
opportunity to discuss covariance in SR, and introduce some notation that will be
useful in GR. Bear in mind that SR is essentially the same as GR when the spacetime
is globally flat. The notion of a spacetime manifold arises quite naturally in
special relativity. Events are the points of this manifold, and 4 coordinates are
required to specify any particular event. These are usually taken to be a time
coordinate, and three spatial coordinates. We shall refer to these coordinates as
2%, ', 2%, 23, where 20 denotes the time coordinate. We shall also measure time in
the same units as space. Usually we shall take the spatial unit to be metres, in
which case time is also measured in metres — i.e. the time in which light travels
one metre. (A metre will thus be (3 x 108)~! seconds). Evidently in these units,

the speed of light is 1, and we write ¢ = 1. (It is also common to measure the time

coordinate in terms of the variable ct).

3.1 Invariant distance in spacetime

Between any two events an invariant “distance” can be defined. Thus in an in-

ertial frame using cartesian coordinates, the “distance” or interval between event

A(2Y, 2, 7%, %) and event B(z%,zh, 7%, 2%) is given by

§? = —(zh — 2%)? + (¢4 — zp)* + (2% — 2})* + (2 — 23)° (30)
Another inertial observer using coordinates {z'°, 2!, "2, 2”3} would obtain the same
value when evaluating

= (@] - o)+ @ -2+ (@] R4 -2 (3D

For this reason the quantity s in equation (30) is called an invariant.

Rather than two finitely separated events, consider two infinitesimally separated
events whose coordinates in inertial frame S are (2°, 2!, 22, z3) and (z° + Ax°, 2! +
Azl x? + Ax? 2® + Ax®) respectively. The interval between the two events is given
by

As? = —(Az°)? + (Az')? + (Az?)? + (Az?)? (32)
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3.2 The metric in special relativity
We can write equation (32) in the form
As? = nopAz*Az? (33)

where 7990 = —1, n11 = 1, 722 = 1, 733 = 1 and all other components are zero. 7,z
will appear later in GR as the metric tensor, g,s3. Sometimes we write the metric

tensor in matrix form, i.e.

Moo To1 T2  To3
Mo ™M1 ™2 ™3
20 721 T2 723
M0 7M31 T2 733

In equation (33), 1, is diagonal and constant because:-
e we only consider spatially cartesian coordinates, and inertial frames and

e in SR spacetime is flat

We define n** to be the inverse of 7,4, i.e.

g = 0 (35)

where 0g is the Kronecker delta defined in equation (24).

3.3 Spacelike, timelike and null intervals
As has the dimensions of metres.

As? > 0 the interval is spacelike
As? < 0 the interval is timelike (36)

As?® = 0 the interval is null

e When the interval is spacelike a Lorentz frame can be found in which the two

events are simultaneous

e When the interval is timelike a Lorentz frame can be found in which the two

events have the same spatial coordinates

e When the interval is null each event lies on the light cone of the other.
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3.4 Proper time

If an interval is timelike, A7 denotes the proper time between the two events and is
given by A72 = —As?. The set of all events in the past and future of a particle is

its worldline. From equation (32) it follows that
Ar = {(8a")? — (Aa')’ — (Aa?)? — (Aa*)?) (37)
Clearly, since
Azt /A’ = v
etc., we may write
Az’ = y(v) ' Az® (38)
where (v)? = (v')? + (v?)? + (v3)2.

Thus between any two events on its worldline the particle will record a time of
E2
™= I dr (39)
If we evaluate this time in any inertial frame this may be written
E, E;

r= [ (- @) dt= [y (40)

E1 El
3.5 The Lorentz group

Consider inertial frames S, with coordinate system {z°, z', z?, z*}, and S', with
coordinate system {z°,z'',z%,z"3}. (S’ travels at uniform velocity w.r.t. S, but

their axes are not necessarily aligned.) We may write in matrix notation
xX' =Ax+c (41)

where c is a constant and A is a 4 x 4 Lorentz matrix. Noting that A% is the element

in the y row and v column of the matrix A, in index notation equation (41) becomes

o' = Atz + (42)

If the origins are chosen to coincide when 2° = 2/ = 0 then c* = 0. We may write

i
Az™ = Z%Axa (43)

18



From equation (42) it is now obvious that

oz

AE = 44
p=2T (44

We can therefore write equation (43) in the more suggestive form

oz'*
Az'" = —Az® 45
ot =2 SAT (45)
To ensure the invariance of As?, A has to satisfy

ATN'A =N (46)

Matrices which satisfy equation (46) are called Lorentz matrices. In component

form this condition may be written

0z 0z

nlul' ~ 8x/unaﬂ (47)
It also follows that oA
oz'" 9z

11724 — aﬂ 48

91> P | )

Exercise: Verify equations (47) and (48).

If S’ moves along the z! axis of S, the Lorentz matrix may simply be written

y(w) —vy(w) 0 O

—vy(v) (w) 0 0 (49)
0 0 10

0 0 0 1

The set of transformations given by equation (41) forms a group. Similarly the set of
Lorentz matrices forms a group. The latter may easily be demonstrated by showing
that if A; and A, satisfy equation (46) then so does AjA,. The inverse of A also

satisfies equation (46) as does the unit matrix, I.

Exercise: Show that the Lorentz matrices form a group.

Exercise: Show that the transformations in equation (41) form a group, of which

the Lorentz group is a subgroup. (This larger group is called the Poincaré group.)
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3.6 Four vectors

The four velocity of a particle is defined to be

dx*
vt = = (50)
Strictly speaking equation (50) defines only the components in some coordinate
system of the four velocity, . © exists independently of all coordinate systems.
There is a natural set of basis vectors associated with any given coordinate system
(we shall see this later), and for the usual cartesian coordinates {z°, z!, z?, 23} in
inertial frame, S, these basis vectors, {&, €1, €2, €3} correspond to unit displacements

along the z°, 2!, z? and z® axes. Thus we may write
7= vk, (51)

The components of the four velocity must transform under a Lorentz transformation
in the same way as Ax*, since A7 is an invariant. Writing out the components in a

given Lorentz frame, we have

dx® ~1/2
0_ _ 2 _
0= = (1) =) (52)
ot _ata
T dr  dd® dr )
,  de®  daz®da®

v e (53)

= e O 5
dr®  dx®dx® .
= T (55)

where v*, v¥ and v* are the components of the three velocity, v. Sometimes one sees

written v* = 7(1,v), although this is a bit of a ‘mixed metaphor’.

Notice that » »
d 0
vt = ;BT = A = 83;" v (56)

Exercise: In frame S a particle has four velocity v(u)(1,u,0,0). If frame S’ moves
at velocity, v, along x-axis of S, what are the components of the four velocity in

frame S’? Comment on your answer.

The magnitude of the four velocity, (¢.7)'/? is defined via
T = Napv®v”® (57)
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¥.7 is often written v2, which can be confusing. Notice that .7 as given by equation
(57) is an invariant — i.e. one would obtain exactly the same value when evaluated

in any inertial frame. It is easy to verify that
T0 = Nopv™0” = 72 (—1 + (’U)2) =-1 (58)

Exercise: Show that

naﬂvavﬂ _ n/aﬂvlavlﬂ

3.6.1 Covariant Components

As a precursor to our discussion of one-forms in Section 4, we can introduce what

are called the covariant components, v,, defined by

Uy = Npa0” (59)
Thus vg = —v°, v; = v*, where i takes the values from 1 to 3. Hence we may write
V.0 = Napv®0? = v, 0" (60)

3.6.2 The four momentum

So far we have dealt with the four velocity. We can simply define the four momentum

of a particle as
p=mv (61)

where m is the rest mass of the particle. In component notation equation (61)

becomes

p" = mot (62)

and is evidently valid in all inertial frames.

3.6.3 The four acceleration

We define the four acceleration as

In an inertial and cartesian frame in which

de,

dTZO
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we may write

L dvt
a = EG# (64)

In this Lorentz frame we may write @ in component form as

L, dv* d?z*

= =" 65
“ dr dr? (65)
The (components of the) four acceleration may also be defined as
dv*
b= — 66
o' =— (66)

and must transform in the same way as v*.

p* and a* transform in exactly the same way as v*. p and @ provide examples of
four vectors. In the same way as before, we can define the covariant components of

these four vectors as
Dy = Thwcpa (67)

a, = Nuad™ (68)

Exercise: Show that p,p* = —m?.

The relativistic version of Newton’s laws now has to be of the form

> dv
=m— 69
fems (69

where f is a four force; i.e. it has to be a four vector. In a Lorentz frame, equation

(69) in component form becomes

d?z*
B = 70
fr=m" (70)
Conservation of four momentum will read
N -
> PG = Pros (71)
i=1

where P, is a constant four vector, and the sum is over N particles. In component

form equation (71) becomes

N
Y = Pl forp=0,1,2,3 (72)
i=1
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This evidently could also be written in terms of covariant components. (Note that
in equation (72) the subscript ‘(¢)’ is simply a label to denote the i*! particle and
should not be confused with the covariant components, p,). Equations (69) and
(71) are explicitly independent of all coordinate systems. Equations (72), on the
other hand, which are in component form, will be valid in all frames, although the

components p# will be different according to in which frame they are evaluated.

Equation (70), with a* as d?z#/dr? is valid in all inertial frames, but not true
in arbitrary coordinate systems. Equation (70) is covariant under Poincare (and

Lorentz) transformations, but not under more general transformations.

3.7 Generalising to tensors

So far we have only discussed how four vectors transform, but we can easily extend
our discussion to more general geometrical objects known as tensors. We shall

usually just talk about the components of a tensor, eg F},,,, and their transformation

Iz
properties, and sometimes simply refer to these components as the tensor itself.
Mathematically this is not entirely correct, but is expedient and should not lead to

confusion in the context of this course.

Thus we can simply define a tensor in terms of its transformation properties. (We

will discuss this in more detail in Section 4).

A simple example of a tensor would be C*” = a*b”. Under a Lorentz transformation

this tensor would transform as

oz o'
1wy af
o= Oz OxP (73)
An equation of the form
CcH = D* (74)

where both C and D are tensors, will necessarily be valid in all Lorentz frames.

Such equations are called tensor equations, or covariant equations.

The basis vectors €, corresponding to coordinates {z°, 2!, 2%, 2*} are related to basis

1

vectors €/, corresponding to coordinates {z'°, z'*, z'?, 2"}, via the transformation law

oz’ -
€ ? ey (75)

B Ogpm

This makes sense, as we want four vectors, @, etc to be independent of coordinates,
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and evidently

(76)

There is a close relationship between the basis vector €, and the operator 0/0z*.

We shall see this when we consider curved spaces. Note that it has the same ‘trans-

formation’ properties as €, i.e.

o oz

OxH ox* Ox'*
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