1 Introduction: Foundations of GR

General relativity (GR) explains gravitation as a consequence of the curvature of
spacetime. In turn spacetime curvature is a consequence of the presence of matter.
Spacetime curvature affects the movement of matter, which reciprocally determines
the geometric properties and evolution of spacetime. We can sum this up neatly as

follows:-

“Spacetime tells matter how to move,

and matter tells spacetime how to curve”

By the completion of this course, we will see that the “geometry” or curvature prop-
erties of spacetime can be described by what is called the Einstein tensor, G,,, and
the matter/energy properties by the energy-momentum tensor, 7),,. Einstein’s
theory of general relativity then states that these two tensors are proportional to

each other, i.e.:-
G = kT, (1)

(where k is a constant, the numerical value of which depends on Newton’s gravita-

tional constant.)

Equation (1) is in fact a set of 16 equations, known as Einstein’s field equations of
general relativity, and basically contains everything we need to know in this course!
These ten lectures are all about understanding where equation (1) comes from, how
it is derived, what the symbols represent and what it means physically. To do that
we first need to develop specific mathematical tools (known as tensor analysis) which
can describe curved spacetime. We will then derive Einstein’s equations, and show
that they reduce to familiar Newtonian gravity in the non-relativistic limit. Specific
astronomical applications to planetary orbits, stellar structure, neutron stars and

black holes and gravitational waves will be covered in Gravitation and Relativity II.

GR is, as the name implies, a generalisation of special relativity (SR). In SR
Einstein attempted to formulate the known laws of physics so that they would be
valid in all inertial frames. If one accepts that the speed of light is a constant in
all such frames, then one has also to accept there is no absolute time. Similarly, the

distance between points in 3-D space is no longer invariant, but will be measured



differently by different inertial observers. Newtonian gravitation is thus inherently
non-relativistic since it describes the gravitational force between two masses as act-
ing instantaneously, and as depending on the distance separating the two masses.
Different inertial observers would not agree about either point, and so would not
agree about the force of gravity between the two masses. In developing general
relativity, Einstein set out to describe gravity in a manner that could be defined
consistently by any observer, no matter how they were moving relative to any other
observer. Einstein realised, however, that this seemed to imply something very pro-
found: that gravity and acceleration are fundamentally equivalent — an idea which

he enshrined in the principles of equivalence.

1.1 Equivalence principles

The linch-pins of GR are (i) the equivalence principles and (ii) the principle of

general covariance. Let us first consider the former.

1.1.1 The weak principle of equivalence

This simply states that the inertial mass, m;, and the gravitational mass, mg, of a

body are equal. Thus in a gravitational potential, ¢, the force acting on a body is
F=—-mgV¢ (2)

On the other hand according to Newton’s laws of motion,

—

It follows that in a gravitational field, all test bodies will accelerate at the same rate,

i=-Vo.

GR incorporates this result by demanding that test particles have worldlines that
are geodesics in curved spacetime. Hence the worldline is independent of the mass of
the test particle and depends only on the geometry of spacetime. Translating back
into Newtonian language, this means that all bodies accelerate in a gravitational

field at the same rate, regardless of their mass.

1.1.2 The strong principle of equivalence

The strong principle goes further and states that locally, i.e. in a local inertial

frame (or free-falling frame), all physical phenomena are in agreement with special
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relativity. There are two important and immediate consequences of this principle.
The first is that the path of a light ray should be bent by gravitational fields, and

secondly, there should be a gravitational redshift.

1.1.3 Bending of light in a gravitational field

Consider a uniform gravitational field, g. A lift is in free fall in this gravitational
field. Of course from the equivalence principle all bodies that do not experience
electromagnetic or other non-gravitational forces should just move in straight lines.
Special relativity should hold. Suppose the lift has just started to free fall (see
Figure 1), and a photon is emitted horizontally from point X on the left hand side
of the lift, and after some time hits the other side. There are two observers of these
events. A is in the falling lift, and B stands on the platform outside the lift. Free
falling A experiences no gravitational field. B on the other hand experiences the

gravitational field.

Figure 1
at time t=0
Uniform gravitational
field, g
A B
IBAN
| |

after time t=L/c




According to A light travels in a straight horizontal line, and so must hit the far side
of the lift at point Y at exactly the same height as point X, where it was emitted.
The time taken for the photon to travel the width, L, of the lift must be L/c. Both
observers should agree approximately on this time. According to B, who sees the
lift accelerating to a speed of g L/c at the time the photon hits the far side, the
point Y will in fact have moved a vertical distance of 1gt* = 1g(L/c)?. Since A’s
observation must be correct from the equivalence principle, B can only reconcile

matters by accepting that the gravitational field has bent the light path.

(In GRII we shall derive this result rigorously for light deflection in the Schwarzschild
metric, which corresponds to the exterior spacetime induced by a spherical mass.

The deflection of light was one of the classical tests of GR.)

Exercise: Calculate the angular deflection of light at the surface of the Earth.

Consider a horizontal path of 1 km length.

1.1.4 Gravitational redshift of spectral lines

With a similar set up as before, now consider a photon emitted upward from the floor
of the lift at point F just at the time the lift is allowed to free fall, and that strikes a
detector on the ceiling at point Z (see Figure 2). This time our two observers are A,
inside the lift, and B, on a platform above the lift. What frequency does A observe
when the photon strikes the detector? The photon must have the same frequency as
when emitted, because A is locally inertial. If B now conducts the experiment and
measures the frequency of the arriving photon, what does B see? According to A,
for whom everything is in agreement with special relativity, observer B is receding
at speed v = g h/c when the photon reaches F. So B would observe the photon to
have a redshift of v/c = g h/c?. A of course says this is simply a Doppler shift, since
B is moving away from the source. B must attribute the shift to the gravitational
field — in “climbing” out of the gravitational field, the photon“loses” energy, and so
is redshifted.

This redshift can also be expressed in terms of the change in gravitational potential,
@, since gh = —d¢. Thus SA/\ = —dp/c®. Emerging from the gravitational field
the photon will be observed to be redshifted. This effect has been observed in the
spectral lines of white dwarf stars. On the Earth both this and the bending of light

are very weak effects.



Exercise: Calculate the gravitational redshift of a photon moving upward through

1 km vertical height at the Earth’s surface.

Exercise: What is the gravitational redshift of a spectral line emitted at the surface

of a typical white dwarf star and observed at the Earth?
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1.2 Spacetime curvature

As we have already mentioned, gravitation appears in GR as spacetime curvature.

Let us see how this arises.

1.2.1 Locally inertial frames (LIF)

So far we have considered only uniform gravitational fields. Generally gravitational
fields are not uniform. Thus a free falling frame is only inertial over a limited
spatial and temporal region around a given event. Consider for instance two free
test particles that are separated by a small distance and initially at rest with respect
to a LIF — see Figure 3. The fact that this is only a locally inertial frame is reflected
by the fact that the distance between the two test particles will noticeably change

after a certain period of time.

Figure 3
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Exercise: Take the situation above the Earth’s surface. The initial separation of the

two test particles, T} and T5 is &. Take {; = 25 m. After 7s suppose the separation



of Ty and Ty is £ = & + A&. Show that A& ~ —1073m (take g = 10 ms™2 and the
radius, R, of the Earth to be 6 x 106 m. (Hint: A{/§ = Ar/R, where Ar is the

change in the radial distance of the test particles from the Earth’s centre.)

1.2.2 Geodesic deviation

The separation, £, between the two free test particles is called the geodesic devi-
ation. In general ¢ is a vector. (In fact, it is a four vector, if we consider time
separations as well — see later). It is the acceleration of this geodesic deviation that
indicates the presence of a gravitational field, or, as we shall see later, the curvature
of spacetime. In the simple example illustrated in Figure 3, we can define our coor-
dinate system so that only the x (i.e. horizontal) component of £ is non-zero. We
denote this component by &,. From similar triangles we have

LtAL &

= 4
r+ Ar r k (%)

where k is a constant. Taking derivatives with respect to time gives

_kGM

r2

& = kit =

Substituting for k = &, /r yields

éw:_f_w GM:_GM& (6)

r r2 r3

At the Earth’s surface, r ~ R so &, = —GME, /R3. Rewriting in more sensible units

we obtain
d?¢, GM

d(ct)? T TR & (7)

In the flat spacetime of Minkowski free test particles have worldlines that are
‘straight’. Thus the acceleration of the geodesic deviation is zero for Minkowski
spacetime — see Figure 4a. Worldlines W; and W5 remain parallel, as do worldlines
F; and Fs.
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Test particles in GR have worldlines that are geodesics, but now — because of the

presence of matter — the spacetime is not flat. Consequently the geodesics are not
‘straight lines’, and there is an acceleration of the geodesic deviation — see Figure
4b. Worldlines F; and F5 do not remain parallel. In the example illustrated in
Figure 3, the test particles are initially at rest with respect to the LIF, but almost
imperceptibly they move towards each other as they fall towards Earth. Notice that

in our equation

d?¢, GM
d(ct)? ~ T R32 bo (8)
the factor
GM
R3¢2

2

has the dimensions m™~. Evaluated at the Earth’s surface this quantity has the

value 10723 m~2.

Exercise: Evaluate the factor
GM

R3 c2

at the surface of the Earth, the Sun, and a neutron star of one solar mass.

We can understand equation (8) in terms of a 2-D analogy. Suppose T; and T are on
the equator of a sphere of radius a (see Figure 5). Consider geodesics perpendicular

to the equator passing through 77 and 7, . The arc distance along the geodesics
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is denoted by s and the separation of the geodesics at s is £(s). Evidently this
geodesic separation is not constant as we change s. Let us write down the differential
equation governing the acceleration of this geodesic separation or deviation. If £(0)

is the initial deviation, we may write d¢ = £(0)/a and so

&(s) =acosfdp = £(0) cosd = £(0) coss/a 9)
Differentiating £(s) twice with respect to s yields
e 1
2~ a (10
Compare this with equation (8). In some sense the quantity
GM
R= {R3c2 }

represents the radius of curvature of spacetime at the surface of the Earth.

Exercise: Sketch on Figure 6 the worldline of the Earth, taking the sun as the

origin of the coordinate system.

Figure 5
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Figure 6
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