Astronomy A3/A4H, Physics P4H
Gravitation and Relativity I: Example Sheet 5

1. The line element for the unit sphere, S2, embedded in E3 is given by
di? = db? + sin*0d¢*
Write down the Christoffel symbols for this metric. (Hint: these follow trivially from
the results of Tutorial Sheet 3, Q. 5). Given that the geodesic equation is
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where [ is an affine parameter, show that the curve 8 = [, ¢ = constant is a geodesic.

2. Let TH = dx* /dn be a tangent vector to a geodesic curve with parameter, 7. Recall
from the lecture notes equation (179), which gives the geodesic equation in terms of
the scalar function, f(n), viz
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Consider the affine transformation, introduced in the lecture notes

A= —Co / Fm)~dn+ Ao

d\\ ! df d2)\ /d\\ 2
fm=a(g)  wma g=0gs(G)

Hence verify that the above geodesic equation reduces to equation (182) of the lecture
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Show that

notes, i.e.
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3. If @ and ¢ are the co-latitude and longitude respectively on the surface of the unit
sphere, 82, Mercator’s projection is obtained by plotting (x, %) as rectangular Carte-
sian coordinates in E2, where

1
T=¢ y=10gc0t§0
Show that the line element for S2 in terms of = and y is given by
ds® = sech?y(dz? + dy?)
Comment on the comparison of this expression with the line element for E2? in
Cartesian coordinates.

(N.B. This question is a neat mathematical exercise, but don’t worry if you can’t
derive the required result; the algebra is messier than anything you will meet in the

class exam or degree exam)



10.

. Let A; and B; be the components of two arbitrary one-forms. Show explicitly that

the product rule holds for the covariant derivatives of A; and Bj, i.e.
(AiBj)ik = Ai(Bjik) + (Aik)Bj

Argue that the product rule will hold for the covariant derivatives of the product of

two or more tensors of arbitrary type

. Recall that the covariant components of a vector with contravariant components,

VB, are
Vo= gaﬂvﬂ

By taking the covariant derivative of this equation, show that
apyy =0

(Hint: recall the result of Tutorial Sheet 4, Q. 7)

. By noting that the equation g,5,, = 0 is a tensor equation, use the principle of

equivalence to establish that the equation is valid in any reference frame. Deduce
also that g‘fg =0

By direct differentiation of the expression

dz® daP
Jab dr dr
with respect to the proper time, 7, show that the magnitude of the tangent vector,

dx®/dr, is constant along the world-line of a material particle.

(Hint: remember this is a tensor equation, and so must hold in any frame)

In the MCRF of a fluid element, the components, u*, of the four velocity are iden-

tically zero. Why, in general, can we not assume that v/, = 07

. In the energy momentum tensor, the component 7% represents the energy flux

through a surface of constant z?, while the component 7% represents the density
of the i*" component of momentum. Suppose we have a fluid element, with spatial

2 = y and z3 = 2 axes, con-

dimensions Az, Ay and Az parallel to the z! = z,
taining particles of equal rest mass, m. By considering a stream of particles moving
with 3-velocity, v, in the positive  direction, explain why it follows that 70! = 710,

with similar arguments giving 7% = T%, for i = 1,2,3

In an ideal gas we have a collection of non-colliding particles with an isotropic,
random distribution of velocities. Consider a fluid element containing an ideal gas
in which all the particles have rest mass, m and speed, v, in the MCRF. Further, let
n denote the number density of gas particles in the MCRF. Explain why, given these



assumptions, the energy momentum tensor for an ideal gas takes the same form as

that of a perfect fluid, i.e.
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Let the fluid element have spatial dimensions Az, Ay and Az, parallel to the z, y
and z axes in the MCRF. Consider those particles in the fluid element moving with
3-velocity, v, (where v << ¢) in a direction which makes an angle, 6, with the normal
to the y — z plane. Show that the x component of momentum transferred in the x

direction from these particles in time At is
Ap = mv? cos? 8 nAyAzAt

and hence that the x component of momentum flux through the y — z plane is
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