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Lecture 3:
Stellar Brightness

Maps of the sky show not only the positions of stars, but also indicate their apparent brightness (usually shown by circles of different sizes – although this is a purely schematic representation; remember that stars are seen as only points of light).  Some stars appear brighter than others: the brightest stars – such as Sirius, Vega and Betelgeuse – are very clearly seen, even in a large city, while hundreds of other stars are close to the limit of being detected by the naked eye and can only be seen far away from city light pollution.  When Galileo used the telescope for the first time, he was able to see many more stars that were too faint to see with the naked eye.

The Magnitude Scale

To record brightness values astronomers use the Magnitude Scale.  The origins of this system go back to the Greek astronomer Hipparchus (160-127 BC).  He assigned the stars to six classes: the brightest stars he designated as being ‘first class’ and the faintest as ‘sixth class’; those of intermediate brightness were assigned to the second, third, fourth and fifth classes.  The smaller the number, the brighter is the star (think of golf handicaps as an analogy: the smaller the handicap the better the golfer!).

Since the time of Hipparchus the magnitude scale has been greatly extended and refined, although the basic idea remains the same: fainter stars have larger magnitudes.

· The naked eye can see stars down to about sixth magnitude, although only in the absence of light pollution; in a large city only stars brighter than about third magnitude are visible.

· A small amateur telescope might see stars down to about magnitude +10

· The Hubble Space Telescope can see stars down to about magnitude +28

· The modern magnitude scale is much more precise than Hipparchus’ original classification. Brightness measurements can now be made accurately, using e.g. photographic equipment or electronic detectors. This allows each magnitude class to be subdivided into many sub-intervals, and means that the magnitude of a star needn’t be an integer (whole) number, but can contain a decimal part.

· Also, modern accurate measurements have shown that Hipparchus’ original system should have allowed for some stars being even brighter than his ‘first’ class – and in fact have magnitudes between 1 and 0, or even negative values (hence the + sign above).

· The magnitude of an object is now more precisely referred to as its apparent magnitude, because it measures how bright the objects appears to be in the sky.  Contrast this with the idea of absolute magnitude, which is a measure of the intrinsic brightness (or luminosity) of an object. A star might be intrinsically very luminous, but appear rather faint because it is very far away.  We will only talk about apparent magnitudes in this course, however.

· On the modern scale, e.g. Vega has magnitude 0.04 and Sirius (the brightest star in the sky, after the Sun) has magnitude –1.42. The planets can be even brighter: e.g. Venus may have a magnitude of about –4. The Sun is much brighter still, with a magnitude of about –26.7.

Mathematics of the Magnitude System

Hipparchus’ system of magnitudes may seem a ‘bizarre’ way to describe brightness, but in fact it is closely attuned to human physiology. The human eye’s response to brightness levels is close to what a mathematician would term ‘logarithmic’ – meaning that the sensitivity of the eye to a given change in brightness depends on the brightness level before the change.  Consider, for example, being in a darkened room, with curtains fully closed: if we open the curtains even by 1cm our eyes immediately notice the change in light level. If, however, the curtains are already open by, say, 10cm, then our eyes will hardly notice the difference if we open them by another 1cm.  (We can demonstrate the same logarithmic response of our sense of touch, by feeling the thickness of a single sheet of paper, feeling the difference when we add a second sheet, and then repeating the exercise with first 10 and then 11 sheets of paper. In the latter case adding an extra sheet hardly makes any difference to our sensation – if it can be detected at all).

In the 19th Century astronomers tried to put the magnitude scale on a more scientific footing, so that brightness measurements could be related to the physical units as used in the laboratory (e.g. Watts per square metre).  The problem was solved by Norman Pogson in 1855, using the apparent magnitude of asteroids as a reference.  Pogson made use of the Inverse Square Law, which says that the energy received from any light source falls off as its distance squared.  If we have two 1000W light bulbs, and bulb B is twice as far away as bulb A, bulb A will appear to be four times brighter than bulb B, because 
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. If bulb B is ten times further away, then A will appear to be one hundred times brighter, because 
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, and so on.  Essentially by treating his asteroids rather like 1000W light bulbs, and knowing their distance from the Earth, Pogson could measure their apparent magnitude in a way that was consistent with the Inverse Square Law.

Pogson set the magnitude scale so that a change in brightness by a factor of 100 corresponded to a difference of exactly 5 in apparent magnitude.  This means that a magnitude difference of 1 corresponds to a factor in brightness not of 20, but of 
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. Pogson’s work led to Pogson’s formulae, which relate the difference in apparent magnitude of two objects to the ratio of their apparent brightness. For example, if two objects have apparent brightnesses 
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    or, conversely   
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N.B. You will not  be required either to remember, or to use, the above formulae in the test or examination. They are included here to emphasise that the modern magnitude system is a precise, scientific procedure for measuring the brightness of objects in the sky – a fact that you should  know. You should also know that Pogson’s formulae relate differences in magnitude to ratios in brightness, and that a difference of 5 magnitudes corresponds to a factor of 100 in brightness.  Finally, you should know that both the crude system devised by Hipparchus and the precise system later developed by Pogson are based on the approximate response of the eye to changes in brightness.

As a (non-examinable) illustration for the more mathematically minded, it is given that the apparent magnitude of the Sun is 
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, and the apparent magnitude of Sirius is 
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.  We can then use Pogson’s formulae, i.e. 
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, to show that the Sun appears 13.4 billion times brighter than Sirius.
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