

Einstein's Universe

Fiona Speirits, Dept. of Physics and Astronomy

Einstein's Universe

- The shape of Spacetime how do we know Einstein was right?
- Cosmology from locally flat spacetime to a curved universe
- Measuring cosmological parameters
 - **CMBR**
 - Supernovae & GRBs
 - Baryon Acoustic Oscillations
- ►Is ACDM right?

"Matter tells spacetime how to curve... spacetime tells matter how to move"

"Matter tells spacetime how to curve... spacetime tells matter how to move"

"Matter tells spacetime how to curve... spacetime tells matter how to move"

GRAVITY PROBE B

Frame Dragging

Geodetic Precession

GRAVITY PROBE B

The world's most perfect sphere

GRAVITY PROBE B

- Satellite in 642km polar orbit
- >IM Pegasi used as guide star
- ➤ Preliminary results confirm geodetic effect to better than 1%

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

Schwarzschild's solution for the spacetime metric exterior to a black hole

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

Schwarzschild's solution for the spacetime metric exterior to a black hole

$$ds^{2} = -dt^{2} + R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

Robertson-Walker metric describes background cosmological model in a homogeneous, isotropic expanding or contracting universe

$$ds^{2} = -dt^{2} + R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

$$ds^{2} = -dt^{2} + R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

$$\frac{R(t)}{R_0} = \frac{1}{1+z}$$

Scale factor

$$z = \frac{\lambda_{\text{obs}} - \lambda_{\text{emit}}}{\lambda_{\text{emit}}}$$

Redshift

$$ds^{2} = -dt^{2} + R(t)^{2} \left[\frac{dr^{2}}{1 - (k)^{2}} + r^{2} d\Omega^{2} \right]$$

$$k = \begin{cases} -1, & \text{open} \\ 0, & \text{flat} \\ +1, & \text{closed} \end{cases}$$

Curvature constant

$$k = \begin{cases} -1, & \text{open} \\ 0, & \text{flat} \\ +1, & \text{closed} \end{cases}$$

$$ds^{2} = -dt^{2} + R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

$$ds^{2} = -dt^{2} + R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

We can solve this to give Friedmann's Equations:

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^{2}}$$

$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3} (\rho + 3P) + \frac{\Lambda}{3}$$

$$ds^{2} = -dt^{2} + R(t)^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right]$$

We can solve this to give Friedmann's Equations:

$$H^2 = \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^2}$$

Observables that we can measure, allowing us to determine 'k'

$$\frac{\ddot{R}}{R} = -\frac{4\pi G}{3} (\rho + 3P) + \frac{\Lambda}{3}$$

$$H^2 = \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^2}$$

$$H^2 = \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^2}$$

Divide both sides by H²

$$1 = \frac{8\pi G\rho}{3H^2} + \frac{\Lambda}{3H^2} - \frac{k}{R^2 H^2}$$

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^{2}}$$

Divide both sides by H²

$$1 = \frac{8\pi G\rho}{3H^2} + \frac{\Lambda}{3H^2} - \frac{k}{R^2 H^2}$$

Matter Density

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^{2}}$$

Divide both sides by H²

Energy Density

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^{2}}$$

Divide both sides by H²

$$1 = \frac{8\pi G\rho}{3H^2} + \frac{\Lambda}{3H^2} - \frac{k}{R^2 H^2}$$

Intrinsic Curvature

$$H^2 = \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} + \frac{\Lambda}{3} - \frac{k}{R^2}$$

Divide both sides by H^2

$$1 = \frac{8\pi G\rho}{3H^2} + \frac{\Lambda}{3H^2} - \frac{k}{R^2 H^2}$$

Recast as dimensionless parameters

$$1 = \Omega_m + \Omega_\Lambda + \Omega_k$$

$$\Omega_m + \Omega_\Lambda + \Omega_k = 1$$

Matter, energy and intrinsic curvature

$$\Omega_m + \Omega_\Lambda + \Omega_k = 1$$

Figure 3. A line up of cosmological culprits Ω_{Λ} is the big shot controling the Universe. He's going to make it blow up. Ω_{CDM} would like to make the Universe collapse but can't compete with Ω_{Λ} . Ω_{b} just follows Ω_{CDM} around. Like all dangerous criminals, one can never be sure of Ω_{Λ} until he is behind bars. The CMB police is being beefed up. Hundreds of heroic CMB observers are now planning his capture.

WHY DOES IT MATTER...?

COSMOLOGICAL TIMELINE

Cosmological Distance Indicators

Type 1A Supernovae

Type 1A Supernovae

Type 1A Supernovae

GRB:→Hyperaccreting Black Holes (current paradigm)

Hubble Diagram

$$\mu = m - M = 5 \log d_L + 25$$

Hubble Diagram

$$\mu = m - M = 5 \log d_L + 25$$

$$F = \frac{L}{4\pi d_L^2}$$

Hubble Diagram

$$\mu = m - M = 5 \log d_L + 25$$

$$F = \frac{L}{4\pi d_L^2}$$

$$L_{obs} = \frac{L_{emitted}}{\left(1+z\right)^2}$$

Hubble Diagram

STANDARD RULERS

RESULTS

RESULTS

RESULTS

$$H_0 = 73 \pm 0.03 \text{ km}^{-1}\text{s}^{-1}\text{Mpc}$$

$$\triangleright \Omega_{\rm M} = 0.24 \pm 0.03$$

$$\Sigma \Omega_{\Lambda} = 0.72 \pm 0.04$$

$$\triangleright \Omega_k = -0.010 (+0.016, -0.009)$$

COULD WE BE WRONG?

- \triangleright Λ CDM is a model not a theory
- ► Pioneer Anomaly
- Fine tuning of parameters 'why now?' problem

COULD WE BE WRONG?

Cosmic Microwave Background Radiation (CMBR)

Galaxy Rotation Curves

Einstein's Universe

Fiona Speirits, Dept. of Physics and Astronomy