

Plan for remaining sessions

5) Introduction to General Relativity
6) GR, Black-Holes and Cosmology
7) Hot topics in Cosmology
8) The Search for Gravitational Waves
9) Einstein and the Quantum Revolution
10) The post-Einstein Universe

The Pole in the Barn Paradox

A 20 meter pole and a 10 meter barn in their perspective when in the same rest frame.

If the pole nas speed 0.9 c , then it is length-contracted by a factor of 2.29 and short enough to fit momentarily within the barn, at least as seen by an observer in the barn.

But from the point of view of the pole, the barn is contracted and the pole will never ft inside it.

Blue lines: Barn frame

Red lines:

Pole frame

Looks like, in barn frame, pole lies entirely inside barn

Looks like, in pole frame, barn lies entirely inside pole
\qquad

Blue lines: Barn frame

Red lines:

Pole frame

Looks like, in barn frame, pole lies entirely inside barn

Looks like, in pole frame, barn lies entirely inside pole
\qquad
time

Blue lines:
Barn frame

Red lines:
Pole frame

Looks like, in barn frame, pole lies entirely inside barn

Looks like, in pole frame, barn lies entirely inside pole

Barn door

Einstein's Relativity

How does gravity fit into this?

General Relativity: 1916

anNaLEN DER PHYSIK.

VIEETB FOLGE. BAND 49.

1. Die Grundlage
 der allgemeinen Relativitutstheorie; ton A. Einatein.

Die im nachfolgenden dargejegte Tbeorie kildet die denk. bar weitgehendste Verallgemeinerung der hente allgomain slह "Relativitststheocie" bereichnoten Theorie; die letatere nempe ich im folgeodet gar Untersebsidung won der enstaren "Ejezjelle Relstivitatctheorle" und setse sie als belanat momass. Dio Verallgemeinerung der Relativitătatheorie wurde sehr evleiehtart durch die Gestalt, welohe der speriellen Relativitats theorie dureh Mipkowski gegoben wurde, weleber Matbematiker aperst die formale Gleichwortigkerit der rŭnmlichen Koordinaten und der Zeitboordinste klar eriannte und four don Aufbau der Thearie nutzter mschte. Die für die allgemeine Relativitatatheoris notigen mathematiseben Hills. mittel lagen featig bereit in dom ,naboolaten Differentialkalkal" weleber aut den Forechangen mon Gauss, Riemann und Christoffel uber niebleuklidiecte Manngfaltigkelten rubt and too Ricei und Levi-Civits in ein System getracht und barsits ant Probleme der theoretissben Phyzik angewendet wurde. Ich habe im Absehnitt B der vorligeonden Abhand lung alle für uns nōtigen, beỉ dem Pbysiker nicht als belazat voransunselsenden mathematiseben Hilsmittel in móglichst infachar und durehsishtiger Weise entwiekelt, 80 das ekn Studium mathematisoher Literatur furr das Verstindnis der rorliegenden Abhandlung nieht erforderlish ist. Findisch sei an diseser Btelle dankbar meinea Freundes, des Mathematikers Grossmann, godacht, der mir durch seine Filfe nicht nur das Stadium der eanschlagigen mathemstionhen Líterstur ersperte, Boadern mith apeh bejim Suchen nach den Feldgleichomgean der Gravitation mnteratūtzte.

A group of some of the honorary graduates taken after the ceremony in the Bute Hall of Glasgow University yesterday. Left to right-The Right Hon. Sir
Robert S. Horne; Emeritus Professor William Blair-Bell, University of Liverpool; Professor Albert Einstein; Principal Sir Robert: S. Rait; the Archbishop of Armagh and Robert S. Horne; Emeritus Professor William Blair-Bell, University of Liverpool; Professor Albert Einstein; Principal Sir Rob
Primate of Ail Ireland; and M. Edouard Herriot, former Prime Minister of France.

How do things move?....

Newton built on Galileo's work and proposed 3 laws of motion:

1. A body moves in a straight line unless acted on by some force

How do things move?....

Newton built on Galileo's work and proposed 3 laws of motion:

1. A body moves in a straight line unless acted on by some force
2. The acceleration of a body is proportional to the force on it

$$
F=m a
$$

How do things move?....

Newton built on Galileo's work and proposed 3 laws of motion:

1. A body moves in a straight line unless acted on by some force
2. The acceleration of a body is proportional to the force on it

$$
F=m a
$$

3. To every action there is an equal and opposite reaction

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Applies a force to turn the car's wheels - they push against the road surface

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Applies a force to turn the car's wheels - they push against the road surface

The car moves forward

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Applies a force to turn the car's wheels - they push against the road surface

The car moves forward

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Applies a force to turn the car's wheels - they push against the road surface

The car moves forward

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Applies a force to turn the car's wheels - they push against the road surface

The car moves forward

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Applies a force to turn the car's wheels - they push against the road surface

The car moves forward

Getting from A to B.....

Car engine burns petrol, releases chemical energy

Applies a force to turn the car's wheels - they push against the road surface

The car moves forward

Law of Universal Gravitation

Every object in the Universe attracts every other object with a force directed along the line of centers for the two objects that is proportional to the product of their masses and inversely proportional to the square of the separation between the two objects.

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}} \quad \underset{m_{1}}{\bigodot} \quad \begin{aligned}
& m_{2}
\end{aligned}
$$

$$
1<r_{1} \rightarrow \mid<r_{2} \rightarrow 1
$$

Isaac Newton:

$$
1642 \text { - } 1727 \mathrm{AD}
$$

Aristotle's Theory:

Galileo's Experiment:

1. Objects keep moving after we stop applying a force (if no friction)
2. Falling bodies accelerate as they fall
3. Heavy bodies fall at the same rate as light ones

Newton's Laws of Motion and Gravitation

Aristotle's Theory:

1. Objects move only as long as we apply a force to them
2. Falling bodies fall at a constant rate
3. Heavy bodies fall faster than light ones

Galileo's Experiment:

1. Objects keep moving after we stop applying a force (if no friction)
2. Falling bodies accelerate as they fall
3. Heavy bodies fall at the same rate as light ones

Newton's Laws of Motion and Gravitation

Aristotle's Theory:

1. Objects move only as long as we apply a force to them
2. Falling bodies fall at a constant rate
3. Heavy bodies fall faster than light ones

Galileo's Experiment:

1. Objects keep moving after we stop applying a force (if no friction)
2. Falling bodies accelerate as they fall
3. Heavy bodies fall at the same rate as light ones

The Equivalence Principle

Acceleration due to motion and due to gravity are equivalent

The Equivalence Principle

A object freely-falling in a uniform gravitational field inhabits an inertial frame in which all gravitational forces have disappeared, and Newton's laws of motion apply.

The Equivalence Principle

A object freely-falling in a uniform gravitational field inhabits an inertial frame in which all gravitational forces have disappeared, and Newton's laws of motion apply.

But only local over region for
 which gravitational field is uniform.

The Equivalence principle also predicts the bending of light by a gravitational field...
 (Einstein 1911)

Light enters lift horizontally at X, at instant when lift begins to free-fall.

Observer A is in an inertial frame. Must see light reach opposite wall at Y (same height as X), in agreement with Special Relativity.

Distant Object Gravitationally Lensed by Galaxy Cluster Abell 2218 Hubble Space Telescope •WFPC2

The Equivalence principle also predicts gravitational redshift...

Light enters lift vertically at F, at instant when lift begins to free-fall.

Observer A is in LIF. Must see light reach ceiling at Z with unchanged frequency, in agreement with SR.

To be consistent, observer B outside lift must see light as redshifted, interpreting this as due to gravitational field.

The Equivalence principle also predicts gravitational

 redshift...

Tiny effect, but measured at Harvard in the 1960s: Pound-Rebka experiment

The Equivalence principle also predicts gravitational redshift...

Light enters lift vertically at F, at instant when lift begins to free-fall.

Observer A is in LIF. Must see light reach ceiling at Z with unchanged frequency, in agreement with SR.

If the frequency of light were used as a clock, this implies that clocks run more slowly in a stronger gravitation field.

Einstein (1907)

B after time $t=h / c$

GLOBAL POSITIONING SYSTEM

Serving the World

WWW.gps.gov

TThe Global Positioning System (GPS) is a U.S. space-based radionavigation system that provides reliable positioning, navigation, and timing services to civilian users on a continuous worldwide basis -- freely available to all. For anyone with a GPS receiver, the system will provide location and time. GPS provides accurate location and time information for an unlimited number of people in all weather, day and night, anywhere in the world.

Relativity

According to the theory of relativity, due to their constant movement and height relative to the Earth-centered inertial reference frame, the clocks on the satellites are affected by their speed (special relativity) as well as their gravitational potential (general relativity). For the GPS satellites, general relativity predicts that the atomic clocks at GPS orbital altitudes will tick more rapidly, by about 45.9 microseconds ($\mu \mathrm{s}$) per day, because they are in a weaker gravitational field than atomic clocks on Earth's surface. Special relativity predicts that atomic clocks moving at GPS orbital speeds will tick more slowly than stationary ground clocks by about $7.2 \mu \mathrm{~s}$ per day. When combined, the discrepancy is about 38 microseconds per day; a difference of 4.465 parts in 1010.[23]. To account for this, the frequency standard onboard each satellite is given a rate offset prior to launch, making it run slightly slower than the desired frequency on Earth; specifically, at 10.22999999543 MHz instead of 10.23 MHz .[24] Since the atomic clocks on board the GPS satellites are precisely tuned, it makes the system a practical engineering application of the scientific theory of relativity in a real-world environment.

GLOBAL POSITIONING SYSTEM

Serving the World

www.gps.gov

There is no better illustration of the unpredictable payback of fundamental science than the story of Albert Einstein and the Global Positioning System [GPS] . . . the next time your plane approaches an airport in bad weather, and you just happen to be wondering "what good is basic science, " think about Einstein and the GPS tracker in the cockpit, guiding you to a safe landing.

