9. Monte Carlo Simulation Methods

9.1 Uniform random numbers

Generating uniform random numbers, drawn

from the pdf U[O,1], is fairly easy. Any scientific
Calculator will have a RAN function... o)
Better examples of U[0,1] random
humber generators can be
found in Numerical Recipes.

http://www.numerical-recipes.com/
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9.1 Uniform random numbers

Algorithms only generate pseudo-
random numbers: very long (%)
(deterministic) sequences of |
numbers which are approximately
random (i.e. no discernible
pattern).

1—

The better the RNG, the better it
approximates U[O,1]

University
Qf Glasg()w Advanced Data Analysis Course, 2019-20



We can test pseudo-random numbers for randomness in several ways:

(a) Histogram of sampled values.

We can use hypothesis tests to see if the sample is consistent with the

pdf we are trying to model.
n = 100

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.




We can test pseudo-random numbers for randomness in several ways:

(a) Histogram of sampled values.

We can use hypothesis tests to see if the sample is consistent with the

pdf we are trying to model.

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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Assume the bin number counts are subject
to Poisson fluctuations, so that 0'1.2 — nipfed

Note: no. of degrees of freedom = n,,,— 1
since we know the total sample size.

n = 100




(b) Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the
phase portraits - scatterplots of the i value against the (i+1)" value etc.

(see Gregory, Chapter 5)
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This method exposed a problem with
random number generator
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(b) Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the
phase portraits - scatterplots of the i value against the (i+1)” value efc.

We can compute the ‘ Ta——
Auto-correlation function 0.8 oo '.
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If the sequence is uniformly random, we expect
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9.2  Variable transformations
Generating random numbers from other ! (f)
pdfs can be done by transforming random

numbers drawn from simpler pdfs.

The procedure is similar to changing
variables in integration.

Suppose, e.g. X ~ p(x)

Let ¥ = y(x) be monotonic

The dy = d.
n p('y) ly p(f) X () p(x(»))

- / } v/

Probability of number

between y and y+dy Probability of number Because probability

between x and x+dx must be positive



We can extend the expression given previously to the case where
y(x) is not monotonic, by calculating

p(Mdy = D p(x)dx, sothat p(x,(»)
,. p(y)

l- ‘dy/dxl.‘
yix)
'y
iy

-
'fixl 'fixi 'fix3 'fixd X
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Example 1
Suppose we have  x ~ U[0,1]

1 for O<x<l

Then p(x)= {

0 otherwise

Define y=a+(b—a)x

d
So d_i =(b-a)
, ) Y . for a<y<b
i.e. =

PLY 0 otherwise

or y~Ula,b]

p(gc)




Normal pdf with mean zero and standard deviation unity

Example 2

Numerical recipes provides a program to turn x ~ U[0,1] into y ~ N[0,1]

Suppose we want Z ~ Nlu,o]

d
We define Z=Uu+oy so that —Z=O'

dy

1 1,
Now p(y)=@e><p —Ey

S0 p(Z)=\/%O_eXp{—;[Z;’u}J
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Question 18: If x~UJ[0,1] and y=—Inx,the

pdf of y is
A p(y)=ée’
B p(y)=e”’
C p(y)=—Iny

D p(y)=Iny



9.3 Probability integral transform

One particular variable transformation merits special attention.

Suppose we can compute the CDF of Cumulative distribution function (CDF)

some desired random variable P(a) = _[p(x)fix = Prob{x=a)

Plx)

06 08

02 04
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1) Sample a random variable

2) Compute

Plx)

0.6

02 04

AA University
of Glasgovz

X suchthat V= P(x)

y ~U[0,1]

ie. x=P7'(y)
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1) Sample a random variable ¥ ~ U[0,1]

2) Compute x suchthat ¥=P(x) ie. x=P7'(y)

0.8

0.6

02 04

. . ﬂ "
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1) Sample a random variable ¥ ~ U[0,1]
2) Compute x suchthat ¥=P(x) ie. x=P7'(y)

3) Then x~ p(x) e x isdrawn from the pdf
corresponding to the cdf P(x)

P(x) - - .
@ L
L=
o _
L=
- | -
L ]
o L -
L ]
. . ﬂ I . . I
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Example (from Gr'egor‘y) [ See also ]
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9.4 Rejection sampling

Suppose we want to sample from
some pdf p, (x) and we know that

p(X)<py(x) Vx

1) Sample X; from p,(x)

2) Sample Yy~ U[Oa P> (Xl )] (Suppose we have an ‘easy’ way to do this)
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9.4 Rejection sampling

Suppose we want to sample from
some pdf p, (x) and we know that

p(X)<py(x) Vx

1) Sample X; from p,(x)

2) Sample Yy~ U[Oa P> (Xl )] (Suppose we have an ‘easy’ way to do this)

3) If y<p(x) ACCEPT
otherwise REJECT
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(following Mackay)

9.4 Rejection sampling

Suppose we want to sample from
some pdf p, (x) and we know that

p(X)<py(x) Vx

1) Sample X; from p,(x)

\ 'xl ;Ir

2) Sample Yy~ U[Oa P> (Xl )] (Suppose we have an ‘easy’ way to do this)

3) If y<p(x) ACCEPT

otherwise REJECT Set of accepted values )
are a sample from p (x)
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9.4 Rejection sampling

Method can be very slow if the shaded region is too large.

Ideally we want to find a pdf p,(x) thatis: (a) easy to sample from

University (b) close to n(x) ‘SUPA
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9.5 Genetic Algorithms
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ABSTRACT

This paper aims at demonstrating, through examples, the applicability of genetic algorithms to wide classes of
problems encountered in astronomy and astrophysics. Genetic algorithms are heuristic search techniques that
incorporate, in a computational setting, the biological notion of evolution by means of natural selection. While
increasingly in use in the fields of computer science, artificial intelligence, and computed-aided engineering de-
sign, genetic algorithms seem to have attracted comparatively little attention in the physical sciences thus far.

The following three problems are treated: ( 1) modeling the rotation curve of galaxies, (2 ) extracting pulsation
periods from Doppler velocities measurements in spectral lines of § Scuti stars, and ( 3) constructing spherically
symmetric wind models for rotating, magnetized solar-type stars. A listing of the genetic algorithm-based general
purpose optimization subroutine PIKAIA, used to solve these problems, is given in the Appendix.

Subject headings: galaxies: kinematics and dynamics — methods: numerical — stars: mass loss —
stars: oscillations
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9.5 Genetic Algorithms

f(x,y) = [16x(1 = x)¥(1 — ) sin (n7x) sin (n7y)]*,
(Charbonneau 1995) x,y€[0,1], n=1,2,..
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9.5 Genetic Algorithms

(Charbonneau 1995)

1. Construct a random initial population and evaluate the
fitness of its members.

2. Construct a new population by breeding selected individ-
uals from the old population.

3. Evaluate the fitness of each member of the new popula-
tion.

4. Replace the old population by the new population.

5. Test convergence; unless fittest phenotype matches target
phenotype within tolerance, goto step 2.
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9.5 Genetic Algorithms

see http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html

Ph{P1) x=0.14429628 y=0.72317247 [01]
Encoding: Ph(FZ&) x=0.71281369 y=0.83458891 [02]

il i
71281369 83459991 [03]

| S — i = —
Gn(P2) 7128136963459991 [04]
Breeding: Gn(P1) 1442982872317247 [05]
Gn(P2) 712B8136983459981 [08]
(a) Crossover (gene=4):
144 |[2862872317247] [07]
Lt
712|81369834508991] [06]
144 [B136983450001] [09]
712 [2DB2B72317247] [10]
Gn(01) 14481368983459951 [11]
Gn(02) 7122062872317247 [12]
{b) Mutation (Offspring=02, gene=10}:
Gn(0D2) 71229682872317247 [13]
v122068287[E]317247 [14]
7122968287(B] 317247 [15]
Gn(02) 7122082B7B317247 [18]
Decoding: Gn(DE2) TIZ2982B7AI1T247 [17]
A

‘71229628 78317247 [18]

i’ 1
Ph(02) x=0.71229628 y=078317247 [18]
Ph{01) x=0.14481369 y=0.83458881 [20]
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9.5 Genetic Algorithms

see http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html
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{C} 2ot generation
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9.6 Markov Chain Monte Carlo

This is a very powerful and (fairly) new method for sampling from pdfs.
(These can be complicated and/or of high dimension).

MCMC widely used e.g. in cosmology to determine 'maximum likelihood'
model to CMBR data.

Angular power spectrum of CMBR temperature fluctuations

6000 S'::O ? O.l5 0.I2 _
: TT Cross Power :
5000 E- Spectrum E
- . — A-CDM All Data
ML cosmological model, 3 WMAP ;
Q4000 | i i i cBl E
N2 depending on 7 different ® cE ]
o F parameters.
B =
& 3000
9 =
+ :
= 2000 |
1000 |
(Hinshaw et al 2006)  ofF__e




Consider a 2-D example (e.g. bivariate normal distribution);
Likelihood function depends on parameters a and b.

Suppose we are trying to find the

L(a,b)
maximum of L(a,b) 4

1) Start off at some randomly
chosen value (a,,b,)

2) Compute L(a;,b,) and gradient )
ety (Y
IR
e

)
da’ Ob ()
{,‘::ff.g.:&ffp:f (A A lzi

3) Move in direction of steepest TR
R
+ve gradient - i.e. L(a,,b,) is
increasing fastest

4) Repeat from step 2 until (a,,b,) converges on maximum of likelihood
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Consider a 2-D example (e.g. bivariate normal distribution);
Likelihood function depends on parameters a and b.

Suppose we are trying to find the

L(a,b)
maximum of L(a,b) 4

1) Start off at some randomly
chosen value (a,,b,)

2) Compute L(a,,b,) and gradient
5%)
oa’ b ), 4

3) Move in direction of steepest _ ""
+ve gradient - i.e. L(a,,b,) is
increasing fastest

4) Repeat from step 2 until (a,,b,) converges on maximum of likelihood

OK for finding maximum, but not for generating a sample from L(a,b)
or for determining errors on the the ML parameter estimates.



MCMC provides a simple Metropolis algorithm for
generating random samples of points from 1(a b)

bﬂ

™S

Slice through
L(a,b)

v
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from 1(a b)

b A
1. Sample random initial point P, = (a;, b,)

™S

Slice through
L(a,b)

v
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from 1(a b)

b A
1. Sample random initial point P, = (a;, b,)

2. Centre anew pdf, O, called the
proposal density, on P,

™S

Slice through
L(a,b)

v
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from 1(a b)

b A
1. Sample random initial point P, = (a;, b,)
2. Centre anew pdf, O, called the
proposal density, on P,
3. Sample tentative new point P’ = (a’, b’)
from Q
Slice through
L(a,b)
a
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MCMC provides a simple Metropolis algorithm for
generating random samples of points from 1(a b)

b A
1. Sample random initial point P, = (a;, b,)

2. Centre anew pdf, O, called the
proposal density, on P,

3. Sample tentative new point P’ = (a’, b’)

from Q
Slice through 4. Compute R = L(a',b")
Lab) L(a,,b,)
"
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5. If R>1 thismeans p’ is uphill from p, .

We accept P’ as the next point in our chain, i.e. P, = P’

6. If R<1 thismeans p’ is downhill from p, .

In this case we may reject p’ as our next point.

In fact, we accept p’ with probability R.
How do we do this?...

(a) Generate a random number x ~ UJ[0,1]
(b) If x <R thenaccept P’ andset p, =P

(c) If x> R thenreject P’ andset p, = P,
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5. If R>1 thismeans p’ is uphill from p, .

We accept P’ as the next point in our chain, ie. P,

I
T

6. If R<1 thismeans p’ is downhill from p, .

In this case we may reject p’ as our next point.

In fact, we accept p’ with probability R.

How do we do this?...
(a) Generate a random number x ~ UJ[0,1]
(b) If x <R thenaccept P’ andset p, =P

(c) If x> R thenreject P’ andset p, = P,

Acceptance probability depends only on the previous point - Markov Chain



So the Metropolis Algorithm generally (but not always) moves uphill,
towards the peak of the Likelihood Function.

Remarkable facts

e Sequence of points { P, ,P,,Py,P,, Py, ... }

represents a sample from the LF L(a,h)  (see notes on website)

° Sequence for each coordinate, e.q. { Ay ,0y,03,04,05, «o. }

samples the marginalised likelihood of a

°© We can mClke a hiSTogr'Clm Of { al ° aza a3 ° a49 a5 9 °°° > an }
and use it fo compute the mean and variance of a (i.e.

to attach an error bar to a )
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Why is this so useful?...

Suppose our LF was a 1-D Gaussian. We could estimate the mean and
variance quite well from a histogram of e.g. 1000 samples.

But what if our problem is,
e.g. 7 dimensional?

100

'Exhaustive’ sampling could
require (1000)” samples!

MCMC provides a short-cut. * ‘
& - et sﬁf%‘j M i -

No. of samples
=g
/

50
[
|

To compute a new point in our e T2 3
Markov Chain we need to compute Sampled value

the LF. But the computational cost does not grow so dramatically as we
increase the number of dimensions of our problem.

This lets us tackle problems that would be impossible by ‘normal’ sampling.
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Question 19:  When applying the Metropolis algorithm, if the width
of the proposal density is very small

A the Markov Chain will move around the parameter
space very slowly

B the Markov Chain will converge very quickly to the
true pdf
C the acceptance rate of proposed steps in the Markov

Chain will be very small

D most steps in the Markov Chain will explore regions of
very low probability



A number of factors can improve the performance of the Metropolis
algorithm, including:

using parameters in the likelihood function which are (close to)
independent (i.e. their Fisher matrix is approx. diagonal).

adopting a judicious choice of proposal density, well matched to the
shape of the likelihood function. (See Mathworld example ).

using a simulated annealing approach - i.e. sampling from a modified
posterior likelihood function of the form

ln[p(ew,l)]}

T

pT(Q | D,])z exp{

for large 1" the modified likelihood is a flatter version of the
true likelihood
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Temperature parameter T starts out large, so that the acceptance
rate for ‘downhill’ steps is high - search is essentially random.

(This helps to avoid getting stuck in local maxima)

T is gradually reduced as the chain evolves, so that ‘downhill’ steps
become increasingly disfavoured.

Computational

In some versions, the evolution of 7T is carried out Statistics

automatically - known as adaptive simulated annealing.

See, for example, Numerical Recipes B

Section 10.9, or Gregory Chapter 11, advanced
textbook

for more details.

http://www.stat.colostate.edu/computationalstatistics/
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A related idea is parallel tempering (see e.g. Gregory, Chap 12)

Series of MCMC chains, with different IB = I/T, set of f in parallel,
with a certain probability of swapping parameter states between
chains.

High temperature chains are effective at mapping out the global
structure of the likelihood surface.

Low temperature chains are effective at mapping out the shape of
local likelihood maxima.
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Qf Glasgow Advanced Data Analysis Course, 2019-20



Example: spectral line fitting, from earlier.

Conventional MCMC MCMC with parallel tempering
5 5
4 4
3 3
- I~
20| 2
1 1
0 ‘ : . 0 J
0 50000 100000 0 50000 100000
Iteration Iteration
1.2} 12f,
5 1
*U:_; 1 \ % 1
L 08 S o8
2 >
= 067} \\A_/.—,*‘ = 0.6
< P 9
S 04 S 0.4
g o \ o 0.2
05 15 2 25 3 s 35
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Example: spectral line fitting, from earlier.

Conventional MCMC MCMC with parallel tempering
e 40 = 40
Q -D
E 30 £ 30
o= -
© 20 o 20
5 :
(x_:) 10 5 10

0 50000 100000 % 50000 100000
[teration lteration
0.3 0.3f

2 025 2025
é 0.2 § 0.2}
% 0.15 %0.15.
S o1 % 0.1
= 005 * 0.0s}

o -. ‘m".'.‘... roy 2.' ""'ﬂ—-—

10 20 30 40 10 20 30 40

Channel number Channel number
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Approximating the Evidence

Evidence = j p(data |0, M) p(8| M)do
|

Average likelihood, weighted by prior

«  Calculating the evidence can be computationally very costly
(e.g. CMBR C, spectrum in cosmology)

How to proceed?...
1. Information criteria  (see e.g. Liddle 2004, 2007)

1. Laplace and Savage-Dickey approximations
(see e.g. Trotta 2005)

3. Nested sampling (Skl”lng 2004, 2006; http://www.inference.phy.cam.ac.uk/bayesys/ )
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Nested Sampling (Skilling 2004, 2006; Mukherjee et al 2005, 2007)
Evidence = |[p(data|6,M)p(0| M)dO

Key idea:

We can rewrite the Evidence as

Evidence = I p(data|8,M)dX

where X is a 1-D variable known as the prior mass
uniformly distributed on [0,1]

1
Evidence = Z = j L(X)dX
0

University
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Skilling (2006)

1
Evidence = Z = _[ L(X)dX ¢
0

Area Z
Example: 2-D Likelihood function ol 81151 3 : X !
I — |11]24]22]10
19302616
9(23(18] 6

Our plan is to proceed as if we could sort these elements by likelihood, in
the above example to L = (30,26,24,23,22,19,18,16,15,11,10,9,8,6,3,0), whence
Z =B+ + e+ R+ R+t ettt sttt = 15, to
be evaluated right-to-left into domains of progressively greater likelihood. The
likelihood corresponding to (say) X = %, being one fifth of the way along the
sequence so falling into the fourth cell out of sixteen, is L(X =0.2) = 23.
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Example: 2-D Likelihood function (from Mackay 2005)

« Contours of constant likelihood, L 92

 Each contour encloses a different

fraction, X, of the area of the
square

* Each point in the plane has an
associated value of L and X L

However, mapping systematically
the relationship between L and 04
X everywhere may be computationally very costly
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B 02 B2

1 |' 61 01
i A A
L(z) | L{z) Lz)|\ / .-
.l.“. |I I"\‘ h,_l. IIlI.
% i '.‘"‘ 7 '\,\\. |l.I-' II
y | 4 .
\\\ I| \\\ ‘\\ III
N v R SO F
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- . > | | >
1 1 x 1 1 1 1. ol 1 1 T
3 4 2 8 4 2

However, mapping systematically the relationship between
L and X everywhere may be computationally very costly
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Skilling (2006)

Approximation procedure

Start with N points 64,...,0y from prior;
initialise Z =0, Xy = 1.
Repeat for i =1,2,...,7;
record the lowest of the current likelihood values as L;,
set X; = exp(—i/N) (crude) or sample it to get uncertainty,
set w; = X;_1 — X; (simple) or (X;_1 — X;4+1)/2 (trapezoidal),
increment 7 by L;w;,
then replace point of lowest likelihood by new one drawn
from within L(0) > L;, in proportion to the prior ().
Increment Z by N~'(L(6;) + ...+ L(8n)) X;.
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Let a1 be the largest x-value. The typical value of x; is something like
N/(N +1) or e /N, (The former is its arithmetic expected value, the latter
its geometric mean.) We introduce a contour associated with this point.



Skilling (2006)

400 —0 o9

0 8 samples X 1

0 X:} Step 5

0 X 4 Step 4

20— — "

0 X3 Step 3

S 2—@

0 X2 Step 2

0 e ._x] Step 1

0 e 1
Parameter space Enclosed prior mass X

NESTED SAMPLING TERMINATION

Termination of the main loop could simply be after a pre-set number of
steps, or could be when even the largest current likelihood, taken over the full
current box, would not increase the current evidence by more than some small

fraction f;

max(Li,...,Ln)X; < fZ; = termination. (16)
Plausibly, the accumulation of Z is then tailing off, so the sum is nearly com-
plete.
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