
9.1 Uniform random numbers

Generating uniform random numbers, drawn 
from the pdf U[0,1], is fairly easy.  Any scientific 
Calculator will have a  RAN function…

Better examples of U[0,1] random 
number generators can be 
found in  Numerical Recipes.

http://www.numerical-recipes.com/
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9.1 Uniform random numbers
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Algorithms only generate pseudo-
random numbers:   very long 
(deterministic) sequences of 
numbers which are approximately 
random  (i.e. no discernible 
pattern).

The better the RNG, the better it 
approximates  U[0,1] 
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We can test pseudo-random numbers for randomness in several ways:

(a)   Histogram of sampled values.    
We can use hypothesis tests to see if the sample is consistent with the 
pdf we are trying to model.

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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Note:  no. of degrees of freedom  = nbin – 1
since we know the total sample size. 



(b)   Correlations between neighbouring pseudo-random numbers

ix

1ix

ix

1ix

2ix

Sequential patterns in the sampled values would show up as structure in the 
phase portraits – scatterplots of the  ith value against the  (i+1)th value etc.

This method exposed a problem with
RANDU random number generator 

(see Gregory, Chapter 5)
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(b)   Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the 
phase portraits – scatterplots of the  ith value against the  (i+1)th value etc.

We can compute the
Auto-correlation function
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The procedure is similar to changing
variables in integration.

Let                              be  monotonic

Then 

)(xyy 

)(~ xpx

dxxpdyyp )()( 

Probability of number 
between  y and  y+dy Probability of number 

between  x and  x+dx

dxdy

yxp
yp

))((
)( 

Because probability 
must be positive

9.2 Variable transformations

Generating random numbers from other 
pdfs can be done by transforming random 
numbers drawn from simpler pdfs. 

Suppose, e.g.



We can extend the expression given previously to the case where    
is not monotonic, by calculating

so that
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Example 1

Suppose we have
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Example 2

Numerical recipes provides a program to turn                          into

Suppose we want

We define                                                    so that

Now

so
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Question 18: If                        and                    , the 

pdf of        is                

A

B

C

D
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Suppose we can compute the CDF of
some desired random variable

9.3     Probability integral transform

One particular variable transformation merits special attention.
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1) Sample a random variable

2) Compute         such that                       i.e.

]1,0[~ Uy

)(1 yPx )(xPy x
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1) Sample a random variable

2) Compute         such that                       i.e.

3) Then                            i.e.        is drawn from the pdf 
corresponding to the cdf

]1,0[~ Uy

)(1 yPx )(xPy x

)(~ xpx x
)(xP

Advanced Data Analysis Course, 2019-20



Example (from Gregory)            [ See also Mathworld applet ]
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)(1 xp

)(2 xp

9.4     Rejection sampling

Suppose we want to sample from 
some pdf              and we know that )(1 xp

xxpxp  )()( 21

1) Sample       from

2) Sample 

)(2 xp

)](,0[~ 12 xpUy

1x
1x

y

(Suppose we have an ‘easy’ way to do this)
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9.4     Rejection sampling

Suppose we want to sample from 
some pdf              and we know that )(1 xp

xxpxp  )()( 21

1) Sample       from

2) Sample 

)(2 xp
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3) If ACCEPT

otherwise  REJECT

)(1 xpy 

(Suppose we have an ‘easy’ way to do this)
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9.4     Rejection sampling

Suppose we want to sample from 
some pdf              and we know that )(1 xp

xxpxp  )()( 21

1) Sample       from

2) Sample 

)(2 xp

)](,0[~ 12 xpUy

1x
1x

y

3) If ACCEPT

otherwise  REJECT

)(1 xpy 

(Suppose we have an ‘easy’ way to do this)

Set of accepted values 
are a sample from 

 ix

)(1 xp

(following Mackay)
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Method can be very slow if the shaded region is too large.

Ideally we want to find a pdf              that is:    (a)  easy to sample from

(b) close to

9.4     Rejection sampling

)(1 xp

)(2 xp

)(2 xp

)(1 xp

Advanced Data Analysis Course, 2019-20



9.5   Genetic Algorithms

(Charbonneau 1995)
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see  http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html
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see  http://www.hao.ucar.edu/Public/models/pikaia/pikaia.html

9.5   Genetic Algorithms
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9.6     Markov Chain Monte Carlo

This is a very powerful and (fairly) new method for sampling from pdfs.  
(These can be complicated and/or of high dimension).

MCMC widely used e.g. in cosmology to determine ‘maximum likelihood’ 
model to CMBR data.

Angular power spectrum of CMBR temperature fluctuations

ML cosmological model, 
depending on 7 different 
parameters.

(Hinshaw et al 2006)



Consider a 2-D example  (e.g. bivariate normal distribution);
Likelihood function depends on parameters  a and  b.

Suppose we are trying to find the
maximum of

1) Start off at some randomly
chosen value

2) Compute                and gradient

3) Move in direction of steepest
+ve gradient – i.e.                 is
increasing fastest

4) Repeat from step 2 until              converges on maximum of likelihood 
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OK for finding maximum, but not for generating a sample from
or for determining errors on the the ML parameter estimates. 



a

MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
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MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
1. Sample random initial point

P1

P1 =  ( a1 , b1 )
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Slice through
L(a,b)

b
1. Sample random initial point
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proposal density,  on

3. Sample tentative new point        
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a

MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

Slice through
L(a,b)

b
1. Sample random initial point

2. Centre a new pdf,  Q,  called the
proposal density,  on

3. Sample tentative new point        
from  Q

4. Compute 

P1 P’

P1

P’  =  ( a’ , b’ )
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P1 =  ( a1 , b1 )
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5. If R > 1   this means        is  uphill from      . 

We  accept as the next point in our chain,  i.e.

6. If   R < 1   this means        is  downhill from      .

In this case we  may reject        as our next point.

In fact,  we accept          with probability  R . 

P’ P1

P’ P2 =  P’

P’ P1

P’

P’

How do we do this?…

(a)   Generate a random number   x  ~  U[0,1]

(b)  If  x < R  then accept         and set

(c)  If  x > R  then reject          and set

P’ P2 =  P’

P’ P2 =  P1
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In fact,  we accept          with probability  R . 

P’ P1

P’ P2 =  P’

P’ P1

P’

P’

How do we do this?…

(a)   Generate a random number   x  ~  U[0,1]

(b)  If  x < R  then accept         and set

(c)  If  x > R  then reject          and set

P’ P2 =  P’

P’ P2 =  P1

Acceptance probability depends only on the previous point  - Markov Chain



So the Metropolis Algorithm generally  (but not always)  moves uphill, 
towards the peak of the Likelihood Function.

Remarkable facts

Sequence of points

represents a sample from the LF                  (see notes on website)

Sequence for each coordinate, e.g.

samples the  marginalised likelihood  of

We can make a histogram of

and use it to compute the mean and variance of         ( i.e.

to attach an error bar to      )  

{                        }

{                        }P1 , P2 , P3 , P4 , P5 , …

L(a,b)

a1 , a2 , a3 , a4 , a5 , …

a

{                          }a1 , a2 , a3 , a4 , a5 , … , an

a

a
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Why is this so useful?…

Suppose our LF was a 1-D Gaussian.  We could estimate the mean and 
variance quite well from a histogram of e.g. 1000 samples.

But what if our problem is,
e.g. 7 dimensional?

‘Exhaustive’ sampling could
require  (1000)7 samples!

MCMC provides a short-cut.

To compute a new point in our
Markov Chain we need to compute
the LF.   But the computational cost does not grow so dramatically as we 
increase the number of dimensions of our problem.

This lets us tackle problems that would be impossible by ‘normal’ sampling.
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Question 19: When applying the Metropolis algorithm, if the width 

of the proposal density is very small                

A the Markov Chain will move around the parameter 
space very slowly

B the Markov Chain will converge very quickly to the 
true pdf

C the acceptance rate of proposed steps in the Markov 
Chain will be very small

D most steps in the Markov Chain will explore regions of 
very low probability  



A number of factors can improve the performance of the Metropolis 
algorithm, including:

• using parameters in the likelihood function which are (close to) 
independent  (i.e. their Fisher matrix is approx. diagonal).

• adopting a judicious choice of proposal density, well matched to the 
shape of the likelihood function.  (See Mathworld example here).

• using a  simulated annealing approach – i.e. sampling from a modified 
posterior likelihood function of the form

for large      the modified likelihood is a flatter version of the 
true likelihood 
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Temperature parameter      starts out large, so that the acceptance 
rate for ‘downhill’ steps is high – search is essentially random.

(This helps to avoid getting stuck in local maxima) 

is gradually reduced as the chain evolves,  so that ‘downhill’ steps 
become increasingly disfavoured.

In some versions, the evolution of       is carried out 
automatically – known as  adaptive simulated annealing.

See, for example,  Numerical Recipes 
Section 10.9, or Gregory Chapter 11, 
for more details. 

T

T

T
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http://www.stat.colostate.edu/computationalstatistics/

Excellent 
advanced 
textbook



A related idea is  parallel tempering  (see e.g. Gregory, Chap 12)

Series of MCMC chains, with different                ,   set off in parallel,
with a certain probability of swapping parameter states between 
chains.

High temperature chains are effective at mapping out the global 
structure of the likelihood surface.

Low temperature chains are effective at mapping out the shape of 
local likelihood maxima.

T1
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Example:  spectral line fitting, from earlier.

Conventional MCMC MCMC with parallel tempering
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Example:  spectral line fitting, from earlier.

Conventional MCMC MCMC with parallel tempering

Advanced Data Analysis Course, 2019-20



 dMpM )|(),|p(dataEvidence 

Average likelihood, weighted by prior

• Calculating the evidence can be computationally very costly
(e.g. CMBR      spectrum in cosmology)

• How to proceed?...

1. Information criteria (see e.g. Liddle 2004, 2007)

1. Laplace and Savage-Dickey approximations
(see e.g. Trotta 2005)

3. Nested sampling (Skilling 2004, 2006;  http://www.inference.phy.cam.ac.uk/bayesys/ )

C

Approximating the Evidence
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Nested Sampling  (Skilling 2004, 2006; Mukherjee et al 2005, 2007)

Key idea:

We can rewrite the Evidence as

where   X is a 1-D variable known as the  prior mass 
uniformly distributed on [0,1]

 dMpM )|(),|p(dataEvidence 

dX),|p(dataEvidence  M


1

0

dX)(Evidence XLZ

Advanced Data Analysis Course, 2019-20



Skilling (2006)


1

0

dX)(Evidence XLZ

Example:  2-D Likelihood function
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Example:  2-D Likelihood function        (from Mackay 2005)

• Contours of constant likelihood,  L

• Each contour encloses a different

fraction,  X, of the area of the
square

• Each point in the plane has an

associated value of  L and  X

However, mapping systematically 
the relationship between  L and   
X everywhere may be computationally very costly
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However, mapping systematically the relationship between  
L and  X everywhere may be computationally very costly
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Skilling (2006)

Approximation procedure
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Skilling (2006)
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