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6. Data Acquisition

In section 5 we approximated the continuous function h(t) andits FT
H(f) by afinite set of N +1 discretely sampled values.

How good is this approximation?  The answer depends on the form of
h(t) and H(f). In this short section we will consider:

1.  under what conditions we can reconstruct h(t) and H(f)
exactly from a set of discretely sampled points?

2. what is the minimum sampling rate (or density, if h is a spatially
varying function) required to achieve this exact reconstruction?

3. what is the effect on our reconstructed h(t) and H(f) if our
data acquisition does not achieve this minimum sampling rate?



6.1 The Nyguist - Shannon Sampling Theorem

Suppose the function h(t) is bandwidth limited. This means that
the FT of h(t) is non-zero over a finite range of frequencies.

i.e. there exists a critical frequency f_ such that

H(f)=0 forall |f|2> f,

The Nyquist - Shannon Sampling Theorem (NSST) is a very important
result from information theory. It concerns the representation of h(t)
by a set of discretely sampled values

hk = h(tk) where t, = KA, k=..-2-101,2,..



The NSST states that, provided the sampling interval A satisfies

[ A=1/2fc] or less

then we can exactly reconstruct the function h(t) from the discrete
samples {hk } It can be shown that

4 )
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f_ is also known as the Nyquist frequency and A =2f_ is known as
the Nyquist rate.



We can re-write equation (6.4) as h(t) = Zh Sm[{i t kX)A/)A/]A]

So the function h(t) is the sum of the sampled values {hk} , weighted
by the normalised sinc function, scaled so that its zeroes lie at those
sampled values.
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The NSST is a very powerful result.

We can think of the interpolating sinc functions, centred on each sampled
point, as ‘filling in the gaps’ in our data. The remarkable fact is that they
do this job perfectly, provided h(t) is bandwidth limited. i.e. the
discrete sampling incurs no loss of information about h(t) and H(f).

Suppose, for example, that h(t) = Sin(27z' fCt) . Then we need only
sample h(t) twice every period in order to be able to reconstruct
the entire function exactly.

(Note that formally we do need to sample an /nfinite number of
discretely spaced values, {hk } . If we only sample the {hk } over a
finite time interval, then our interpolated h(t) will be approximate).



Sampling h(t) at (infinitely many of) the red points is sufficient to

reconstruct the function for all values of t, with no loss of information.



6.2 Aliasing

There is a downside, however.

If h(t) is not bandwidth limited (or, equivalently, if we don't sample
frequently enough - i.e. if the sampling rate A™ <2 f.) thenour
reconstruction of N(t) and H(f) isbadly affected by aliasing.

This means that all of the power spectral density which lies outside the
range — f, < T < T, is spuriously moved /nside that range, so that the
FT H(f) of h(t) will be computed incorrectly from the discretely
sampled data.

Any frequency component outside the range (— f., fc) is falsely
translated ( aliased ) into that range.



Consider h(t) as shown. h(f)
Suppose h(t) is zero /\ | //\\\) >

outside the range T . T

h(t) sampled at regular intervals A
This means that H(f)
extends to + oo . A
H(f)
The contribution to the
true FT from outside the i 7
range (-1/2A,1/2A) gets
aliased into this range,
appearing as a ‘mirror
image'.

Thus, at f =+1/2A our
computed value of H(f)
is equal to fwice the true
value.

From Numerical Recipes, Chapter 12.1



How do we combat aliasing?

o Enforce some chosen f_ e.g.by filtering h(t) toremove the
high frequency components ‘ f ‘ > f.. (Also known as anti-aliasing)

o Sample h(t) at ahigh enough rate A™ so that A~ >2f_ -ie.at
least two samples per cycle of the highest frequency present

To check for / eliminate aliasing without pre-filtering:

o Givenasampling interval A, compute f. =1/2A

o Check if discrete FT of h(t) is approaching zero as f — f

lim

o If not, then frequencies outside the range (-1/2A,1/2A) are
probably being folded back into this range.

o Try increasing the sampling rate, and repeat...



6.2 Analog to Digital Conversion and Data Compression

The NSST is important in digital signal processing, in particular when
taking an analog input and converting it into a digital signal. This is
done using an analog-to-digital converter (ADC): an electronic circuit
that translates continuous input signals into discrete digital output.

According to the NSST, if the analog input is bandwidth limited, then
provided we sample it at the Nyquist rate (or higher), then the digital
signal this produces has exactly the same information content as the
original analog signal.

This means that, if we convert the digital signal back into an analog
signal (using a digital-to-analog converter, or DAC) then we recover the
original analog input signal exactly.



ADC is also a powerful technique for data compression.

Again, provided the analog input signal is bandwidth limited, by
converting it to a digital signal, sampled at the Nyquist rate or better,
we can compress the information content of the original analog input
into the minimum number of bits of information, with no loss.

This can be particularly important for spacecraft, where we want to
transmit the acquired astronomical data as cheaply and efficiently as
possible, without losing valuable information content.

Consider, for example, the
proposed LISA satellite

NASA / ESA, planned for
~2015 or later, to measure
gravitational waves from space.







A major target of LISA will be to detect mergers of
supermassive black holes in the cores of distant
galaxies.
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The (measurable) GW signal from
Coalescence of these mergers is bandwidth limited to

Massive Black Holes
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A sampling interval of A ~1/0.2=5sec
should be adequate to describe the h(t)
for SMBH mergers.
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In fact, LISA mock data is sampled every 3.76202 seconds, implying a
Nyquist frequency of 0.133 Hz.



