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5. Fourier Methods

As we remarked in Section 1,  a lot of astronomical data is collected or 
processed as Fourier components.

In this section we briefly discuss the mathematics of Fourier series 
and Fourier transforms.   Some of these methods will be applied to 
astronomical problems in ADA II.

5.1  Fourier Series

Any ‘well-behaved’ function              can be
expanded in terms of an infinite sum of sines
and cosines.  The expansion takes the form:

Joseph Fourier
(1768-1830)
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The Fourier coefficients are given by the formulae:

These formulae follow from the  orthogonality properties of sin and cos:
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Some examples from Mathworld, approximating functions with a finite number of Fourier series terms



“Fourier's Theorem is not only one of the most beautiful
results of modern analysis, but it is said to furnish an 
indispensable instrument in the treatment of nearly  
every recondite question in modern physics”

The Fourier series can also be written in complex form:

where

and recall that
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The Fourier transform can be thought of simply as extending the idea of a 
Fourier series from an infinite sum over discrete, integer Fourier modes to 
an infinite integral over continuous Fourier modes.

Consider, for example, a physical process that is varying in the time domain,
i.e. it is described by some function of time         .

Alternatively we can describe the physical process in the  frequency domain 
by defining the Fourier Transform function             .

It is useful to think of           and             as two different representations 
of the same function;  the information they convey about the underlying 
physical process should be equivalent.
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5.2  Fourier Transform:  Basic Definition
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We define the Fourier transform as

and the corresponding inverse Fourier transform as

If time is measured in seconds then frequency is measured in cycles per 
second, or Hertz. 
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In many astrophysical applications it is common to define the frequency 
domain behaviour of the function in terms of  angular frequency

This changes eqs. (5.8) and (5.9) accordingly:

Thus the symmetry of eqs. (5.8) and (5.9) is broken.

In this course we will adopt the definitions given in (5.8) and (5.9) 
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5.3  Fourier Transform:  Further properties

The FT is a  linear operation:  

(1) the FT of the sum of two functions is equal to the sum of their FTs
(2) the FT of a constant times a function is equal to the constant times the 

FT of the function.

If the time domain function           is a real function, then its FT is complex.

However, more generally we can consider the case where          is also a 
complex function – i.e. we can write

may also possess certain symmetries:   even function

odd function
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The following properties then hold:

Note that in the above table a star  (*)  denotes the  complex conjugate, 

i.e. if     z  =  x  +  i y then     z*  =  x  − i y

See Numerical Recipes, Section 12.0



For convenience we will denote the FT pair by

It is then straightforward to show that
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Suppose we have two functions             and

Their  convolution is defined as

We can prove the  Convolution Theorem

i.e. the FT of the convolution of the two functions is equal to the product 
of their individual FTs.

Also their  correlation, which is also a function of  t ,  is defined as 
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Known as the  lag



We can prove the  Correlation Theorem

i.e. the FT of the first time domain function, multiplied by the complex 
conjugate of the FT of the second time domain function, is equal to the 
FT of their correlation.

The correlation of a function with itself is called the  auto-correlation

In this case

The function                    is known as the  power spectral density,  or 
(more loosely)  as the  power spectrum.

Hence, the power spectrum is equal to the Fourier Transform of the 
auto-correlation function for the time domain function 
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5.4   The power spectral density

The power spectral density is analogous to the pdf we defined in previous 
sections.

In order to know how much power is contained in a given interval of 
frequency, we need to integrate the power spectral density over that 
interval.

The  total power in a signal is the same, regardless of whether we 
measure it in the time domain or the frequency domain:
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Parseval’s Theorem

We can, therefore, think of moving between the time and frequency domain 
as analogous to the change of variables we employed for pdfs in Section 4



Often we will want to know how much power is contained in a frequency 
interval without distinguishing between positive and negative values.

In this case we define the  one-sided power spectral density:

And

When            is a real function

With the proper normalisation, the total power (i.e. the integrated area 
under the relevant curve) is the same regardless of whether we are 
working with the time domain signal, the power spectral density or the 
one-sided power spectral density. 
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From Numerical Recipes,
Chapter 12.0

Time domain 

One-sided PSD 

Two-sided PSD 
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5.5  Examples



xy sinc=

x

1=y

π−=xatzero1st
π=xatzero1st

⎩
⎨
⎧ ≤≤−

=
otherwise0
for1

)( 2
1

2
1 t

th

t

)(th

0

(3)

)(sinc)( ffH π=

f

)( fH

0

Imaginary part = 0

The sinc function occurs frequently in 
many areas of astrophysics

The function has a maximum at 
and the zeros occur at
for positive integer  m
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This function is a  Lorentzian and is 
commonly modelled as the shape of 
spectral line profiles in astronomy.

One can also show that the  Power 
Spectrum corresponding to this FT 
is also a Lorentzian.  (See examples).
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i.e. the FT of a Gaussian function in the time domain is  also a Gaussian in 
the frequency domain.

The broader the Gaussian is in the time domain, then the narrower the 
Gaussian FT in the frequency domain, and vice versa.
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Although we have discussed FTs so far in the context of a continuous, 
analytic function,        ,  in many practical situations we must work instead 
with observational data which are sampled at a discrete set of times.

Suppose that we sample          in total             times at evenly spaced time 
intervals     , i.e.  (for      even)

[  If            is non-zero over only a finite interval of time, then we 
suppose that the             sampled points contain this interval.   Or if            
has an infinite range, then we at least suppose that the sampled points 
cover a sufficient range to be representative of the behaviour of          ].  

5.6   Discrete Fourier Transforms
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We therefore approximate eq. (5.8) as

Since we are sampling          at            discrete timesteps,  in view of the 
symmetry of the FT and inverse FT  it makes sense also to compute      
only at a set of             discrete frequencies:

(The frequency                      is known as the  Nyquist (critical) frequency
and it is a very important value.  We discuss its significance in Section 6).
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Then

Note that

Hence, in eq. (5.29) there are only       independent values.

Also, note that

So we can re-define eq. (5.29) as:
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Discrete Fourier Transform of the kh



The discrete inverse FT, which recovers the set of          from the set of 
is

Parseval’s theorem for discrete FTs takes the form

There are also discrete analogues to the convolution and correlation 
theorems.   
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Consider again the formula for the discrete FT.  We can write it as

This is a  matrix equation:   we compute the            vector of
by  multiplying the             matrix             by the       vector of        .

In general, this requires of order         multiplications  (and the         
may be complex numbers).    

e.g. suppose                                       .   Even if a computer can perform 
(say)  1 billion multiplications per second, it would still require more 
than  115 days to calculate the FT.            

5.7   Fast Fourier Transforms
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Fortunately, there is a way around this problem.

Suppose (as we assumed before)        is an even number.  Then we can write

where

So we have turned an FT with       points into the weighted sum of  two FTs
with            points.  This would reduce our computing time by a factor of two.    
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Why stop there, however?...

If        is also even, we can repeat the process and re-write the FTs of 
length         as the weighted sum of two FTs of length           .

If         is a   power of two (e.g. 1024, 2048, 1048576 etc)  then we can 
repeat iteratively the process of splitting each longer FT into two FTs half 
as long.   

The final step in this iteration consists of computing FTs of length unity:

i.e. the FT of each discretely sampled data value is just the data value itself.
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This iterative process converts                 multiplications into                                 
operations.

So our           operations are reduced to about
operations.

Instead of 100 days of CPU time,  we can perform the 
FT in less than 3 seconds.

The Fast Fourier Transform (FFT) has revolutionised our ability to tackle 
problems in Fourier analysis on a desktop PC which would otherwise be 
impractical, even on the largest supercomputers.
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