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4. Monte Carlo Methods

In many data analysis problems it is useful to create ‘mock’ 
datasets, in order to test models and explore possible systematic 
errors.

e.g. Mock galaxy catalogues:

From Cole et al. (1998)
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In many data analysis problems it is useful to create ‘mock’ 
datasets, in order to test models and explore possible systematic 
errors.

e.g. Mock galaxy catalogues:

We need methods for
generating random variables –
i.e. samples of numbers which 
behave as if they are drawn 
from some particular pdf (e.g. 
uniform, Gaussian, Poisson etc).

We call these  Monte Carlo methods
From Cole et al. (1998)



4.1 Uniform random numbers

Generating uniform random numbers, drawn 
from the pdf U[0,1], is fairly easy.  Any scientific 
Calculator will have a  RAN function…

Better examples of U[0,1] random 
number generators can be 
found in  Numerical Recipes.

http://www.numerical-recipes.com/
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4.1 Uniform random numbers

Generating uniform random numbers, drawn 
from the pdf U[0,1], is fairly easy.  Any scientific 
Calculator will have a  RAN function…

Better examples of U[0,1] random 
number generators can be 
found in  Numerical Recipes.

In what sense are they better?…

http://www.numerical-recipes.com/
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Algorithms only generate pseudo-random
numbers:   very

x

long (deterministic) sequences of numbers which are 
approximately random  (i.e. no discernible pattern).

The better the RNG, the better it approximates  U[0,1] 



We can test pseudo-random numbers for randomness in several ways:

(a)   Histogram of sampled values.    
We can use hypothesis tests to see if the sample is consistent with the 
pdf we are trying to model.

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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We can test pseudo-random numbers for randomness in several ways:

(a)   Histogram of sampled values.    
We can use hypothesis tests to see if the sample is consistent with the 
pdf we are trying to model.

e.g. Chi-squared test, applied to the
to the numbers in each histogram bin.
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Assume the bin number counts are subject 
to Poisson fluctuations, so that pred2

ii n=σ

Note:  no. of degrees of freedom  = nbin – 1
since we know the total sample size. 

(4.1)



(b)   Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the 
phase portraits – scatterplots of the  ith value against the  (i+1)th value etc.
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(b)   Correlations between neighbouring pseudo-random numbers

Sequential patterns in the sampled values would show up as structure in the 
phase portraits – scatterplots of the  ith value against the  (i+1)th value etc.

We can compute the
Auto-correlation function

j is known as the Lag

If the sequence is uniformly random,  we expect  
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{ forρ(j) = 1 j = 0

otherwiseρ(j) = 0



The procedure is similar to changing
variables in integration.

Let                              be  monotonic

Then 
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Because probability 
must be positive

4.2 Variable transformations

Generating random numbers from other 
pdfs can be done by transforming random 
numbers drawn from simpler pdfs. 

Suppose, e.g.

(4.3)
(4.4)



We can extend the expression given in eq. (4.4) to the case where    
is not monotonic, by calculating

so that
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Example 1

Suppose we have

Then

Define

So

i.e.
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Example 2

Numerical recipes provides a program to turn                    into

Suppose we want

We define                                                    so that

Now

so
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Variable transformation formula also the basis for error propagation 
formulae we use in the lab.   See example sheet 3 for more on this.



Suppose we can compute the CDF of
some desired random variable

4.3     Probability integral transform

One particular variable transformation merits special attention.
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1) Sample a random variable

2) Compute         such that                       i.e.

3) Then                            i.e.        is drawn from the pdf 
corresponding to the cdf
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Example
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Method can be very slow if the shaded region is too large.

Ideally we want to find a pdf              that is:    (a)  easy to sample from

(b) close to

4.4     Rejection sampling
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4.5     Markov Chain Monte Carlo

This is a very powerful, new  (at least in astronomy!)  method for sampling 
from pdfs.  (These can be complicated and/or of high dimension).

MCMC widely used e.g. in cosmology to determine ‘maximum likelihood’ 
model to CMBR data.

Angular power spectrum of CMBR temperature fluctuations

ML cosmological model, 
depending on 7 different 
parameters.



Consider a 2-D example  (e.g. bivariate normal distribution);
Likelihood function depends on parameters  a and  b.

Suppose we are trying to find the
maximum of

1) Start off at some randomly
chosen value

2) Compute                and gradient

3) Move in direction of steepest
+ve gradient – i.e. is
increasing fastest

4) Repeat from step 2 until              converges on maximum of likelihood 
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Consider a 2-D example  (e.g. bivariate normal distribution);
Likelihood function depends on parameters  a and  b.

Suppose we are trying to find the
maximum of

1) Start off at some randomly
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OK for finding maximum, but not for generating a sample from
or for determining errors on the the ML parameter estimates. 

L(a,b)



MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)
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MCMC provides a simple  Metropolis algorithm for 
generating random samples of points from L(a,b)

a

Slice through
L(a,b)

b
1. Sample random initial point

2. Centre a new pdf,  Q,  called the
proposal density,  on

3. Sample tentative new point        
from  Q

4. Compute 

P1 =  ( a1 , b1 )
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5. If R > 1   this means        is  uphill from      . 

We  accept as the next point in our chain,  i.e.

6. If   R < 1   this means        is  downhill from      .

In this case we  may reject        as our next point.

In fact,  we accept with probability  R . 

P’ P1

P’ P2 =  P’

P’ P1

P’

P’

How do we do this?…

(a)   Generate a random number   x  ~  U[0,1]

(b)  If  x < R  then accept         and set

(c)  If  x > R  then reject          and set

P’ P2 =  P’

P’ P2 =  P1



5. If R > 1   this means        is  uphill from      . 

We  accept as the next point in our chain,  i.e.

6. If   R < 1   this means        is  downhill from      .

In this case we  may reject        as our next point.

In fact,  we accept with probability  R . 

P’ P1

P’ P2 =  P’

P’ P1

P’

P’

How do we do this?…

(a)   Generate a random number   x  ~  U[0,1]

(b)  If  x < R  then accept         and set

(c)  If  x > R  then reject          and set

P’ P2 =  P’

P’ P2 =  P1

Acceptance probability depends only on the previous point  - Markov Chain



So the Metropolis Algorithm generally  (but not always)  moves uphill, 
towards the peak of the Likelihood Function.

Remarkable facts

Sequence of points

represents a sample from the LF

Sequence for each coordinate, e.g.

samples the  marginalised likelihood  of

We can make a histogram of

and use it to compute the mean and variance of         ( i.e.

to attach an error bar to      )  
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Why is this so useful?…

Suppose our LF was a 1-D Gaussian.  We could estimate the mean and 
variance quite well from a histogram of e.g. 1000 samples.

But what if our problem is,
e.g. 7 dimensional?

‘Normal’ sampling would
need  (1000)7 samples!

MCMC provides a short-cut.

To compute a new point in our
Markov Chain we need to compute
the LF.   But the computational cost does not grow so dramatically as we 
increase the number of dimensions of our problem.

This lets us tackle problems that would be impossible by ‘normal’ sampling.
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Example:  CMBR constraints from WMAP 3 year data

Angular power spectrum of CMBR temperature fluctuations

ML cosmological model, 
depending on 7 different 
parameters.

Possible Honours Lab Project!


