
3.  Model Fitting

In this section we apply the statistical tools introduced in Section 2 to 
explore: 

how to estimate model parameters
how to test the goodness of fit of models.

We will consider:

3.2 The method of least squares
3.3 The principle of maximum likelihood
3.4 Least squares as maximum likelihood estimators
3.5 Chi-squared goodness of fit tests
3.6   More general hypothesis testing
3.7   Computational methods for minimising / maximising functions 
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But before we do,  we first introduce an important pdf: 
the  bivariate normal distribution
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In fact, for any two variables  x  and  y,  we define
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Isoprobability contours for 
the bivariate normal pdf
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3.2 The method of Least Squares

o ‘workhorse’ method for fitting lines and curves to data 
in the physical sciences

o method often encountered (as a ‘black box’?) in 
elementary courses

o useful demonstration of underlying statistical 
principles

o simple illustration of fitting straight line to  (x,y) data



Ordinary Linear Least Squares
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( ) LSLS aaE =ˆ

( ) LSLS bbE =ˆ
We can show that                                            i.e. LS estimators are  unbiased. 
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Choosing the          so that                    we can make    and         independent. LSâ LSb̂{ }ix ∑ = 0ix



Weighted Linear Least Squares

( Common in astronomy )
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Weighted Linear Least Squares

( Common in astronomy )

Define

Again we find Least Squares estimators of  a  and  b satisfying
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Solving, we find
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Extensions and Generalisations

o Errors on  both variables?

Need to modify  merit function  accordingly.
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Extensions and Generalisations

o Errors on  both variables?

Need to modify  merit function  accordingly.

Renders equations  non-linear ;  no simple analytic solution!

(3.22)

Not examinable, but see e.g. 
Numerical Recipes 15.3



Extensions and Generalisations

o General linear models?

e.g.

We can write

Can formulate as a matrix equation and solve for parameters
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Matrix approach to Least Squares

Define
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Model: Vector of model 
parameters

ε+= Xay (3.25)
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Matrix approach to Least Squares:  weighting by errors

Define
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Weighted Model: Vector of model 
parameters

eAab += (3.26)
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Extensions and Generalisations

o Non-linear models?

Suppose

Then

Model parameters

iε drawn from pdf with mean zero, variance 2
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Extensions and Generalisations

o Non-linear models?

Suppose

Then

But no simple analytic method to minimise sum of squares
( e.g. no analytic solutions to                    ) 

Model parameters
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3.3    The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,  
L  =  probability of obtaining the observed data, given the value of 

the parameter θ
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We set the parameter equal to 
the value that makes the actual 
data sample we did observe –
out of all the possible random 
samples we could have observed 
– the most likely. 



Likelihood function has same definition in Bayesian probability theory, but subtle difference in    
meaning and interpretation – no need to invoke idea of (infinite) ensemble of different samples.

Aside:
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3.4    Least squares as maximum likelihood estimators

To see the maximum likelihood method in action,  let’s consider again 
weighted least squares  for the simple model

Let’s assume the pdf is a Gaussian

(From Section 3.3)
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3.4    Least squares as maximum likelihood estimators

To see the maximum likelihood method in action,  let’s consider again 
weighted least squares  for the simple model

Let’s assume the pdf is a Gaussian

Likelihood

(note:  L is a product of 1-D Gaussians because we are assuming the      are independent)

(From Section 3.3)
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Substitute

and the ML estimators of      and      satisfy                 and
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defined in Section 3.3
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and the ML estimators of      and      satisfy                 and

But maximising        is equivalent to maximising

Here

So in this case maximising L is  exactly equivalent to minimising the sum of squares.

i.e. for Gaussian, independent errors,  ML and weighted LS estimators are identical.
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3.5  Chi-squared goodness of fit test

In the previous 3 sections we have discussed how to estimate 
parameters of an underlying pdf model from sample data.

We now consider the related question:

How good is our pdf model in the first place?

We now illustrate the frequentist approach to this question using the 
chi-squared goodness of fit test, for the (very common) case where 
the model pdf is a Gaussian.

We take an example from Gregory (Chapter 7)

(book focusses mainly on Bayesian probability, but
is very good on frequentist approach too)



Model:  radio emission from a galaxy is constant in time.

Assume residuals are iid, drawn from  N(0,σ)



Goodness-of-fit Test:   the basic ideas

From Gregory, pg. 164

(3.33)
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n = 15 data points, but ν = 14 degrees of 
freedom, because      statistic involves the 
sample mean  and not the true mean.

We subtract one d.o.f. to account for this.

( )2
14 χp
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n = 15 data points, but ν = 14 degrees of 
freedom, because      statistic involves the 
sample mean  and not the true mean.

We subtract one d.o.f. to account for this.
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If  the null hypothesis is true,  how probable is it that we 
would measure as large, or larger, a value of     ?

(3.35)



If  the null hypothesis were true,  how probable is it that we 
would measure as large, or larger, a value of     ?

This is an important quantity, referred to as the  P-value
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If  the null hypothesis were true,  how probable is it that we 
would measure as large, or larger, a value of     ?

This is an important quantity, referred to as the  P-value

What precisely does the P-value mean?

If we obtain a very small P-value  (e.g. a few percent?)   we can interpret this as 
providing little support for the null hypothesis, which we may then choose to reject.

(Ultimately this choice is subjective, but       may provide objective ammunition for doing so)
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“If the galaxy flux density really is constant,  and we repeatedly obtained sets 
of 15 measurements under the same conditions,  then only 2% of the       
values derived from these sets would be expected to be greater than our one 
actual measured value of 26.76”

2χ

From Gregory, pg. 165

2χ
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Nevertheless,  P-value based frequentist hypothesis testing remains very 
common in the literature:

Type of problem test References

Line and curve NR: 15.1-15.6
goodness-of-fit

Difference of means Student’s  t NR: 14.2

Ratio of variances F test NR: 14.2

Sample CDF K-S test NR: 14.3, 14.6
Rank sum tests

Correlated variables? Sample correlation NR: 14.5, 14.6
coefficient

Discrete RVs test  / NR: 14.4
contingency table                  

test

See also supplementary handout



3.7  Minimising and Maximising Functions

Least squares and maximum likelihood involve, in practice, a lot of 
minimising and maximising of functions – i.e. solving equations of the form:

In general these equations may not have an analytic solution, especially if 
our pdf is a function of two or more parameters.

Some computational strategies for minimising/maximising functions:

0=∂∂ iL θ (3.37)

1. Solve                         where                       (may be easier to solve)

2. Perform  grid search over     , evaluating             at each point  

0=∂∂ iθl Lln=l

)(θLθ



3.7  Minimising and Maximising Functions

Least squares and maximum likelihood involve, in practice, a lot of 
minimising and maximising of functions – i.e. solving equations of the form:

In general these equations may not have an analytic solution, especially if 
our pdf is a function of two or more parameters.

Some computational strategies for minimising/maximising functions:

0=∂∂ iL θ (3.37)

1. Solve                         where                       (may be easier to solve)

2. Perform  grid search over     , evaluating             at each point

3. Use  gradient ascent / descent for increased efficiency  
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2. Perform  grid search over     , evaluating             at each point  )(θLθ

1-D example

Regularly spaced grid points.

No need to compute 
derivatives of likelihood

But we need very fine grid 
spacing to obtain accurate 
estimate of the maximum

This is computationally very 
costly, particularly if we need 
to search a multi-dimensional 
parameter space.
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1-D example

Regularly spaced grid points.

No need to compute 
derivatives of likelihood

But we need very fine grid 
spacing to obtain accurate 
estimate of the maximum

This is computationally very 
costly, particularly if we need 
to search a multi-dimensional 
parameter space.

)(θL

θ

Estimated 
maximum of )(θL

3. Method of Steepest Ascent / Descent  

Make jumps in direction where gradient of           is changing most rapidly.

Need to estimate derivatives of likelihood, i.e.                (See Num. Rec. Chap. 10)
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