3. Model Fitting

In this section we apply the statistical tools introduced in Section 2 to
explore:

> how to estimate model parameters
> how to test the goodness of fit of models.

We will consider:

3.2 The method of least squares

3.3 The principle of maximum likelihood

3.4 Least squares as maximum likelihood estimators

3.5 Chi-squared goodness of fit tests

3.6 More general hypothesis testing

3.7 Computational methods for minimising / maximising functions
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But before we do, we first introduce an important pdf:
the bivariate normal distribution



3.1 The bivariate normal distribution

Let = and y be RVs with the following joint pdf
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3.1 The bivariate normal distribution

Let = and y be RVs with the following joint pdf

1 1
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where the quadratic form, Q(x, y) is given by
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Then p(x, y) is known as the bivariate normal pdf and is specified

by the 5 parameters ik, fty, 0x, oy and p. This pdf is used often in

the physical sciences to model the joint pdf of two random variables.



The first 4 parameters of the bivariate normal pdf are. in fact, equal

to the following expectation values:-

E(z) = px
E(y) = py
var(z) = o2
var(y) = o2

p(ff,y)
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The parameter p is known as the correlation coefficient and

satisfies

[ El(z —p)(y —ny)] = poxoy }

Note that if p = 0 then = and y are independent.

El(x — px)(y — py)] is known as the covariance of x and y and is

often denoted by cov(z,y).



The parameter p is known as the correlation coefficient and

satisfies

[ El(z —p)(y —ny)] = poxoy }

Note that if p = 0 then = and y are independent.

El(x — px)(y — py)] is known as the covariance of x and y and is

often denoted by cov(z,y).

In fact, for any two variables X and Yy, we define

E cov(X,y) = E[(X— E(X))(y— E(Y))] J




Isoprobability contours for
the bivariate normal pdf

p>0: positive correlation

y tends to increase as x increases

0 <0 : negative correlation

y tends to decrease as x increases




Isoprobability contours for
the bivariate normal pdf

p>0: positive correlation

y tends to increase as x increases

0 <0 : negative correlation

y tends to decrease as x increases

Contours become narrower and
steeper as ‘ ,0‘ — 1

= stronger (anti) correlation
between x and .

i.e. Given value of x, value of
y is tightly constrained.




3.2 The method of Least Squares

o ‘'workhorse' method for fitting lines and curves to data
in the physical sciences

o method often encountered (as a 'black box'?) in
elementary courses

o useful demonstration of underlying statistical
principles

o simple illustration of fitting straight line to (X,y) data



Ordinary Linear Least Squares

Suppose that the scatter in a plot of {x;, y;} is assumed to arise from
errors in only one of the two variables. This case is called Ordinary
Least Squares. We then call = the independent variable, and
y the dependent variable. Thus we suppose that we can write,

for each data point:-
¥i = a+ bz;+¢

where €; is known as the residual of the i data point — i.e. the
difference between the observed value of y;., and the value predicted

by the best-fit straight line, characterised by parameters a and b.



We assume that the {¢;} are an independently and identically dis-
tributed random sample from some underlying pdf with mean zero
and variance 02 — i.e. the residuals are equally likely to be positive

or negative and all have equal variance.
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The least squares estimators of a and b minimise
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Solving these equations, apg and bpg are given by
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where n denotes the sample size and all sums are for i = 1, ..., n.



E (é' LS ) = ag ) _ ]
We can show that i.e. LS estimators are unbiased.
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We can show that i.e. LS estimators are unbiased.
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Choosing the {x, } so that Z X; =0 wecanmake 4 and b . independent.



Weighted Linear Least Squares

" residual, {e;}, is assumed to be drawn from some

Suppose the
underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.  ( Common in astronomy )
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Weighted Linear Least Squares

Suppose the i'"

residual, {€;}, is assumed to be drawn from some
underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.  ( Common in astronomy )

n

Y . 2
Define S = x%(a,b) = Z [ye (a + bﬂ"@-)]

) 0,
i=1 3

Again we find Least Squares estimators of a and b satisfying
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Solving, we find
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In the case where o2 is constant, for all 7, these formulae reduce to

those for the unweighted case.



Extensions and Generalisations

o Errors on both variables?

Need to modify merit function accordingly.
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Extensions and Generalisations

o Errors on both variables?

Need to modify merit function accordingly.

4 )
N

j{z(ﬂ, b) = Z (yi — a — bx;)?

i=1 Jgi T bgﬂ'ii
\ J

Renders equations non-linear; no simple analytic solution!

Not examinable, but see e.g.
Numerical Recipes 15.3




Extensions and Generalisations

o General linear models?

€.g. [ y(x) = a1 + agx + {13;1‘-2 + e 4 a.MI_M—l }

e I
We can write N '

M -
.. Yi — —q ap Xg(x;)
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Can formulate as a matrix equation and solve for parameters



Matrix approach to Least Squares

Define

a=

aM \
Vector of model
parameters

| xl(xl) XM (Xl)_

X, (%) X (%) |

Yi

YN

AN

Vector of
observations

Design matrix of

model basis functions



Model:

Vector of model
parameters

/

Y = Xa + &

Vector of
observations
&
=\ :

Vector of
\ errors
Design matrix of
model basis functions

where we assume ¢&; is drawn from some
pdf with mean zero and variance &>



Matrix approach to Least Squares: weighting by errors

Define

a=

AN

Vector of model
parameters

X1 (Xp)

. Xm (%)

| Y1/61 )

_yN/.GN_\

Vector of
weighted
observations

\

Weighted design
matrix of model basis
functions



WeighTed Model: Vector of model

parameters

/

b = Aaz+e

Vector of
\ weighted
Vector of , , eITorsS
weighted Welghted design '
observations matrix of model basis
functions
81
O,
e = ; where we assume &; is drawn from some
. . 2
EN pdf with mean zero and variance O;
O\




We solve for the parameter vector 8,5 that minimises

n
S=e"-e=>e’

i—1
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This has solution aLS — (AT A) AT . b
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M xM matrix



Extensions and Generalisations

o Non-linear models? ymodel — — gmodel 9., 0

/

Model parameters

Suppose yobs = gmodel L,

&; drawn from pdf with mean zero, variance o;’

Then g 5 i ypbs o yl_nodel B N
S= xX° = [ : : ]

i=1 Ti
\_ ),




Extensions and Generalisations

o Non-linear models? y;mdel
Suppose  yo® = ymodel 4

Model parameters

€s

&; drawn from pdf with mean zero, variance o;’

~N

Then (

_obs

Y;

~model

— Y

T ;

:
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But no simple analytic method to minimise sum of squares

( e.g. no analytic solutions to 8S/066 =0 )



3.3 The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,

L = probability of obtaining the observed data, given the value of
the parameter ¢



3.3 The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,

L = probability of obtaining the observed data, given the value of
the parameter ¢

Now define likelihood function: (infinite) family of curves

generated by regarding L as
a function of @, for data fixed.

Principle of Maximum Likelihood

A good estimator of & maximises L -

2
i.e. i = O and a L < O
06 0’




3.3 The principle of maximum likelihood

Frequentist approach:

A parameter is a fixed (but unknown) constant

From actual data we can compute Likelihood,

L = probability of obtaining the observed data, given the value of
the parameter ¢

Now define likelihood function: (infinite) family of curves
generated by regarding L as
a function of @, for data fixed.

Principle of Maximum Likelihood e Y
We set the parameter equal to
) o the value that makes the actual
A good estimator of § maximises L - data sample we did observe -
5 out of all the possible random
ie. % —0 and oL <0 samples we could have observed

60 602 k— the most Ilkely j




Aside: Likelihood function has same definition in Bayesian probability theory, but subtle difference in
meaning and interpretation - no need to invoke idea of (infinite) ensemble of different samples.

Principle of Maximum Likelihood

A good estimator of & maximises L -

: oL o%L
ie. —=0 and =
00 06> <0

" >

Observed value
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Principle of Maximum Likelihood

A good estimator of & maximises L -

A 5L
e —=0 and
€ 20 > <0
0= 6,
O
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Observed value



3.4 Least squares as maximum likelihood estimators

To see the maximum likelihood method in action, let's consider again
weighted least squares for the simple model ¥ = a + bx; +¢;

(From Section 3.3)

h

Suppose the i"* residual, {¢;}, is assumed to be drawn from some

underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.

Let's assume the pdf is a Gaussian
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To see the maximum likelihood method in action, let's consider again
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Suppose the it residual., {€i}, is assumed to be drawn from some

underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.

Let's assume the pdf is a Gaussian

1 ¢
Likelihood expl — ———
H 2ro, P 2 o



3.4 Least squares as maximum likelihood estimators

To see the maximum likelihood method in action, let's consider again
weighted least squares for the simple model y; = a + bx; +¢;

(From Section 3.3)

Suppose the it residual., {€i}, is assumed to be drawn from some

underlying pdf with mean zero and variance o2, where the variance

is allowed to be different for each residual.

Let's assume the pdf is a Gaussian

1 5
Likelihood expl — ———
H 2ro, P 2 o/

(note: L is a product of 1-D Gaussians because we are assuming the &, are independent)



Substitute ¢ =y, —a—Dbx

LN 1 (y,—a—bx )
L = 2\ i
~ i=1 \/ﬂai GXP{ 2 O'iz }

and the ML estimators of a and b satisfy dL/éa=0 and oL/ob=0



Substitute ¢ =y, —a—Dbx

LN 1 (y,—a—bx )
L = 2\ i
- i=1 \/ﬂai GXP{ 2 O'i2 }

and the ML estimators of a and b satisfy dL/éa=0 and dL/ob=0

But maximising L is equivalent to maximising ¢ =InL

n

2
Here —, _ ‘21‘1(2”)‘1“2@_;Ziyi_a_bmj
i=1

i=] oF

This is exactly the same
sum of squares we
defined in Section 3.3

= constant — 5 S



Substitute ¢ =y, —a—Dbx
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and the ML estimators of a and b satisfy oL/dga=0 and dL/db=0

But maximising L is equivalent to maximising ¢ =InL

2
Here —, _ _gln(zﬂ)_lnzgi_;ZLyi—a_in]
i=1

i=] oF

= constant — 5 S

This is exactly the same
sum of squares we
defined in Section 3.3

So in this case maximising L is exactly equivalent to minimising the sum of squares.

i.e. for Gaussian, independent errors, ML and weighted LS estimators are identical.



3.5 Chi-squared goodness of fit test

In the previous 3 sections we have discussed how to estimate
parameters of an underlying pdf model from sample data.

We now consider the related question:

How good is our pdf model in the first place?

We now illustrate the frequentist approach to this question using the
chi-squared goodness of fit test, for the (very common) case where
the model pdf is a Gaussian.

PHIL GREGORY
Bayesian Logical
Data Analysis
for the Physical Sciences

We take an example from Gregory (Chapter 7)

(book focusses mainly on Bayesian probability, but
/s very good on frequentist approach too)
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Model: radio emission from a galaxy is constant in time.

Assume residuals are iid, drawn from N(O,c)



Goodness-of-fit Test: the basic ideas

l.

_[‘nJ

Choose as our null hypothesis that the galaxy has an unknown but constant flux density.
If we can demonstrate that this hypothesis i1s absurd at say the 95% confidence level, then this

provides indirect evidence that the radio emission is variable. Previous experience with the
measurement apparatus indicates that the measurement errors are independently normal
with a o = 2.7.
Select a suitable statistic that (a) can be computed from the measurements, and (b) has a
predictable distribution. More precisely, (b) means that we can predict the distribution of
values of the statistic that we would expect to obtain from an infinite number of repeats of the
above set of radio measurements under 1dentical conditions. We will refer to these as our
hypothetical reference set. More specifically, we are predicting a probability distribution for
this reference set.

To refute the null hypothesis, we will need to show that scatter of the individual measure-
ments about the mean 1s larger than would be expected from measurement errors alone.

. Evaluate the y? statistic from the measured data. Let’s start with the expression for the y?2

statistic for our data set:

From Gregory, pg. 164
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Here v is known as the number of degrees of freedom of the pdf.

The mean value of the pdf is v and the variance is 2v.
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s N (=) i(.\}-—l%)j .
2 Nl — 26.76.

i=1 i=1 272

n =15 data points, but v =14 degrees of
Day Number — Flux Density (mJy) freedom, because X~ statistic involves the

0.0 14.2 sample mean and not the true mean.
718.0 5.0
1097.0 33 We subtract one d.o.f. to account for this.
1457.1 15.5
25241 4.2 008 | ( 2) ]
3607.7 9.2 | Pis\¥ ) |
3630. 1 8.2 _ -
4033.1 32 Z o006} ]
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5355.9 9.9 > _
5469.1 74 5 004¢ 1
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n =15 data points, but v =14 degrees of

Day Number Flux Density (mJy) freedom, because X~ statistic involves the
0.0 14.2 sample mean and not the true mean.
718.0 5.0
1097.0 33 We subtract one d.o.f. to account for this.
1457.1 15.5
25241 4.2 [ AN
3607.7 9.2 "% P14 (Z ) ]
3630.1 8.2 [ ‘
4033.1 3.2 Z 0.06 |
4161.3 5.6 s
5355.9 9.9 = -
5469. 1 7.4 § 0047
6012.4 6.9 £
6038.3 10.0 0.02 I
6063.2 5.8 '
6089.3 11.4

If the null hypothesis is tfrue, how probable is it that we
would measure as large, or larger, a value of y*?




If the null hypothesis were true, how probable is it that we
would measure as large, or larger, a value of x*?

This is an important quantity, referred to as the P-value

( )

2

Zob

P-value = 1—P(;(§bs) = 1—_[ D, x> exp(—%]dx = 0.02
0

\_ J




If the null hypothesis were true, how probable is it that we
would measure as large, or larger, a value of x*?

This is an important quantity, referred to as the P-value

(" ) )
A obs , X
P-value = 1- P(;(jbs) = 1- j D, X2~ exp(— 5] dx = 0.02

0
. J

What precisely does the P-value mean?

“If the galaxy flux density really iS constant, and we repeatedly obtained sets
of 15 measurements under the same conditions, then only 2% of the y°
values derived from these sets would be expected to be greater than our one

actual measured value of 26.76” From Gregory, pg. 165

If we obtain a very small P-value (e.g. a few percent?) we can interpret this as
providing little support for the null hypothesis, which we may then choose to reject.

(Ultimately this choice is subjective, but Y > may provide ob jective ammunition for doin 50)
Y J Y p J 4



Nevertheless, P-value based frequentist hypothesis testing remains very
common in the literature:

Type of problem test References

Line and curve ,‘(2 test NR: 15.1-15.6

goodness-of-fit h

Difference of means Student’s t NR: 14.2

Ratio of variances F test NR: 14.2

Sample CDF K-S test NR: 14.3, 14.6
Rank sum tests

Correlated variables? Sample correlation NR: 14.5, 14.6
coefficient

Discrete RV X test / NR: 14.4

contingency table

See also supplementary handout



3.7 Minimising and Maximising Functions

Least squares and maximum likelihood involve, in practice, a lot of
minimising and maximising of functions - i.e. solving equations of the form:

oL/00, =0

In general these equations may not have an analytic solution, especially if
our pdf is a function of two or more parameters.

Some computational strategies for minimising/maximising functions:
1. Solve 0//06.=0 where [(=InL (may be easier to solve)

2. Perform grid search over @, evaluating L(0) at each point



3.7 Minimising and Maximising Functions

Least squares and maximum likelihood involve, in practice, a lot of
minimising and maximising of functions - i.e. solving equations of the form:

oL/66, =0

In general these equations may not have an analytic solution, especially if
our pdf is a function of two or more parameters.

Some computational strategies for minimising/maximising functions:
1. Solve 0//06. =0 where [(=InL (may be easier to solve)
2. Perform grid search over @, evaluating L(0) at each point

3. Use gradient ascent / descent for increased efficiency



Perform grid search over @ , evaluating L(0) at each point

1-D example

Regularly spaced grid points.

No need to compute
derivatives of likelihood

But we need very fine grid
spacing to obtain accurate
estimate of the maximum

This is computationally very
costly, particularly if we need
to search a multi-dimensional
parameter space.

L),

Estimated
maximum of (@)



3.

Perform grid search over @ , evaluating L(0) at each point

1-D example

Regularly spaced grid points.

No need to compute
derivatives of likelihood

But we need very fine grid
spacing to obtain accurate
estimate of the maximum

This is computationally very
costly, particularly if we need
to search a multi-dimensional
parameter space.

Method of Steepest Ascent / Descent

L),

Estimated
maximum of (@)

Make jumps in direction where gradient of L(@) is changing most rapidly.

Need to estimate derivatives of likelihood, i.e. VL(0)

(See Num. Rec. Chap. 10)



