
2. A Basic Statistical Toolbox

“Statistics is a mathematical science pertaining to the 
collection, analysis, interpretation, and presentation of 
data.”

Wikipedia definition

Mathematical statistics:   concerned with theoretical foundations
(probability theory)

Applied statistics: concerned with modelling of data, and the errors,
or uncertainties, in our observations, to make 
inferences about the physical system we are 
observing.

Important distinction between random (statistical) error and 
systematic error.



Statistical error:

Uncertainty in the measurement of a physical 
quantity that is essentially unpredictable – just 
as likely to yield a measurement that is too large
as one that is too small.

Example: Measuring length of the brick in 
Astronomy 2 asteroid collision experiment.

Some students measure brick as slightly longer, others as slightly 
shorter.

‘Common sense’ principle: if we repeat our measurements many 
times and average the results then
average length  =  ‘true’ length

(We will discuss shortly the basis in probability theory for 
this common sense result)
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Systematic error:

Uncertainty in the measurement of a physical 
quantity that is always systematically too large
or too small.   (Measurement is biased)

Example: Measuring volume of the brick in 
Astronomy 2 asteroid collision experiment.

Suppose we measure the length, breadth and height of the brick, 
and calculate the volume as                   .

This will always yield a volume that is systematically too large, 
because it ignores the fact that the brick has holes.

No matter how often (how accurately) we measure l, b and h 
we will continue to measure a volume that is too large.

Note that here the systematic error enters not when we make our measurements, but 
when we analyse them.   Systematic flaws in our data analysis methods, rather than in 
our data themselves, are just as serious (although often easier to fix!)
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What is probability?…

“Probability theory is nothing 
but common sense reduced to 
calculation”Pierre-Simon Laplace

(1749 – 1827)



Laplace (1812)

Mathematical  framework for probability 
as a basis for plausible reasoning:

Probability measures our degree of 
belief that something is true 



Mathematical  framework for probability 
as a basis for plausible reasoning:

Laplace (1812)

Probability measures our degree of 
belief that something is true 

Prob( X )  =  1         ⇒ we are  certain that
X is true

Prob( X )  =  0         ⇒ we are  certain  that
X is false



Our degree of belief always depends on the 
available background information:-

We write Prob( X | I )

Vertical line denotes conditional probability:

our state of knowledge about  X is 
conditioned by background info,  I

Background information

“Probability that  X is 
true,  given  I ”

(We will drop explicit reference to the background information in subsequent equations)



Rules for combining probabilities
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denotes the proposition that  X  is falseX
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),( YX denotes the proposition that  X  and Y are true

=  Prob( X is true, given  Y is true))|( YXp

)(Yp =  Prob( Y is true, irrespective of  X )



In astronomy we generally measure continuous variables which can
take on  infinitely many values
(e.g. distance, mass, temperature, luminosity, colour etc).

In this case                 is no longer a probability, but a  
probability density function

Probabilities are never negative, so                   for all  x

We compute probabilities by measuring
the area under the pdf curve, i.e.

‘Normalisation’
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We can also define joint pdfs of two (or more) variables,
e.g.
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Statistical Independence

If the conditional pdf of  y given  x does not depend on  x, this means that  x and  
y are statistically independent, since the observed value of  y is unaffected by 
the observed value of  x.

Equivalently,  x and  y are independent if and only if the joint pdf of  x and y 
can be written as the product of their marginal pdfs, i.e.
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Some important pdfs: Discrete case

1) Poisson pdf

e.g. number of photons / second counted by a CCD,

number of galaxies / degree2 counted by a galaxy survey

r  =  number of detections

Poisson pdf assumes detections are independent, and 
there is a constant rate µ

!
)(

r
erp

r µµ −

= (2.8)



Some important pdfs: Discrete case

1) Poisson pdf

e.g. number of photons / second counted by a CCD,

number of galaxies / degree2 counted by a galaxy survey

r  =  number of detections

Poisson pdf assumes detections are independent, and 
there is a constant rate

(For proof, see non-examinable handout)
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Some important pdfs: Discrete case

1) Poisson pdf

e.g. number of photons / second counted by a CCD,

number of galaxies / degree2 counted by a galaxy survey
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Poisson pdf assumes detections are independent, and 
there is a constant rate
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(See examples sheet 1)



Some important pdfs: Discrete case

1) Poisson pdf

e.g. number of photons / second counted by a CCD,

number of galaxies / degree2 counted by a galaxy survey
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Some important pdfs: Continuous case

1) Uniform pdf
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Some important pdfs: Continuous case

1) Central, or normal pdf
(also known as Gaussian )
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Cumulative distribution function (CDF)
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Measures and moments of a pdf

The  nth  moment of a pdf is defined as:-
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Continuous case



Measures and moments of a pdf

The  1st moment is called the  mean or expectation value:-

∫

∑

∞

∞−

∞

=

==

==

dxxpxxxE

xpxxxE
x

)()(

)()(
0

Discrete case

(2.14)

Continuous case



Measures and moments of a pdf

The  2nd moment is called the  mean square:-
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Measures and moments of a pdf

The  variance is defined as:-

and is often written as

is called the standard deviation 
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Measures and moments of a pdf

The  variance is defined as:-

In general
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Measures and moments of a pdf

pdf mean variance
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Measures and moments of a pdf

The  Median divides the CDF into two equal halves
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Measures and moments of a pdf

The  Median divides the CDF into two equal halves

µ=x
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Prob( x < xmed )  = Prob( x > xmed )  =  0.5 
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Measures and moments of a pdf

The  Mode is the value of  x  for which the pdf is a maximum

p(x)
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Measures and moments of a pdf

The  Mode is the value of  x  for which the pdf is a maximum

p(x)

5.0=σ

1=σ

µ=x x

For a normal pdf,  mean  =  median  =  mode  =  µ



This approach to probability theory has recently become very popular 
again, and is the basis of  Bayesian Probability Theory

But BPT was rejected for several centuries.

Probability  ≡ degree of belief was seen as too 
subjective

Frequentist approach

Probability measures our degree of 
belief that something is true 

Consider again Laplace’s
definition of probability:



Probability  =  ‘long run relative frequency’ of an event
in principle can be measured objectively

e.g. rolling a die. What is          ? )1(p



Probability  =  ‘long run relative frequency’ of an event
in principle can be measured objectively

e.g. rolling a die. What is          ? 

If die is ‘fair’ we expect

These probabilities are fixed (but unknown) numbers.

Can imagine rolling die  M  times.

Number rolled is a random variable – different outcome each time.

We define                               If                die is ‘fair’

6
1)6()2()1( ==== ppp K

)1(p

M
np

M

)1(lim)1(
∞→

= 6
1)1( =p



But objectivity is an illusion:

assumes each outcome equally likely

(i.e.  equally probable)
M

np
M
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Also assumes infinite series of identical trials;

What can we say about the fairness of the die after
(say)  5 rolls, or 10, or 100 ?



But objectivity is an illusion:

assumes each outcome equally likely

(i.e.  equally probable)
M

np
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Also assumes infinite series of identical trials;

What can we say about the fairness of the die after
(say)  5 rolls, or 10, or 100 ?

In the frequentist approach, a lot of mathematical machinery is defined 
to let us address this type of question:

Model underlying population by probability density function

Observed data is a random sample of size M , drawn from pdf

Compute sampling distribution, derived from pdf (depends on M )

Define an estimator – function of sample data used to estimate 
properties of pdf

Carry out Hypothesis test to decide if estimator is ‘acceptable’ for the 
given sample size,  i.e. to test Goodness of fit of our data.
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Example:

Sample of random numbers from EXCEL random number generator.

These numbers are assumed drawn from U[0,1].

Is the histogram of sampled values sufficiently close to the model pdf? 



Examples of Estimators:  The Sample Mean

=  random sample from  pdf with mean
and variance

=   sample mean

Can show that unbiased estimator

as sample size increases, sample 
and mean increasingly concentrated

near to true mean
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The Central Limit Theorem

For any  pdf with finite variance      ,  as  M →
follows a normal pdf with mean      and variance  
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The Central Limit Theorem

Explains importance of normal pdf in statistics.

But still based on asymptotic behaviour of an 
infinite ensemble of samples that we didn’t 
actually observe!

A Bayesian approach to probability avoids some of these issues:
No philosophical distinction between observed data  (random 
variables)  and pdf model parameters.

Can make inferences about our model parameters using

Bayes formula



Thomas Bayes
(1702 – 1761 AD)
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Recall eqn. (2.6) for conditional pdf of y given x 

This is known as Bayes’ formula.
We can re-write it in the following form: 
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Thomas Bayes
(1702 – 1761 AD)

Recall eqn. (2.6) for conditional pdf of y given x 

This is known as Bayes’ formula. This is known as Bayes’ formula.
We can re-write it in the following form: 
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Likelihood PriorPosterior

Evidence
(2.22)
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Thomas Bayes
(1702 – 1761 AD)

Recall eqn. (2.6) for conditional pdf of y given x 

This is known as Bayes’ formula. This is known as Bayes’ formula.

Or, equivalently: 

)|model(),model|data()data,|model( IpIpIp ×∝

Likelihood PriorPosterior

What we know now Influence of our 
observations

What we knew 
before



Consider again our example of rolling a die, and trying to
decide if it is fair.

In the Bayesian approach, we can test our model, in the light of our data (i.e. rolling 
the die) and see how our degree of belief in its ‘fairness’ evolves, for any sample size, 
considering only the data that we did actually observe

)|model(),model|data()data,|model( IpIpIp ×∝

Likelihood PriorPosterior

What we know now Influence of our 
observations

What we knew 
before

Deeper discussion contrasting the Bayesian vs Frequentist approach will be 
considered in MSci course.

For some practical illustrations of the Bayesian approach, see the example 
sheets. 




