
6. Data Acquisition

In section 5 we approximated the continuous function           and its FT   
by a finite set of             discretely sampled values.

How good is this approximation?     The answer depends on the form of
and            .    In this short section we will consider:

1. under what conditions we can reconstruct            and        
exactly from a set of discretely sampled points?

2. what is the minimum sampling rate (or density, if      is a spatially 
varying function)  required to achieve this exact reconstruction?

3. what is the effect on our reconstructed            and          if our 
data acquisition does  not achieve this minimum sampling rate?  
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6.1 The Nyquist – Shannon Sampling Theorem

Suppose the function            is  bandwidth limited.   This means that  
the FT of           is non-zero over a finite range of frequencies.

i.e.  there exists a  critical frequency such that

The  Nyquist – Shannon Sampling Theorem  (NSST) is a very important 
result from information theory.   It concerns the representation of            
by a set of discretely sampled values 
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The  NSST  states that, provided the sampling interval        satisfies

then we can  exactly reconstruct the function            from the discrete 
samples          .    It can be shown that

is also known as the  Nyquist frequency  and                   is known as
the  Nyquist rate.
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πWe can re-write equation (6.4) as

So the function           is the sum of the sampled values      ,  weighted 
by the  normalised sinc function,  scaled so that its zeroes lie at those 
sampled values.  
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Normalised sinc function

Sampled values

(compare with Section 5)
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The NSST is a very powerful result.

We can think of the interpolating sinc functions, centred on each sampled 
point, as ‘filling in the gaps’ in our data.  The remarkable fact is that they 
do this job  perfectly,  provided           is bandwidth limited.    i.e. the 
discrete sampling incurs no loss of information about           and             .

(Note that formally we do need to sample an infinite number of 
discretely spaced values,          .   If we only sample the    over a 
finite time interval, then our interpolated          will be approximate).
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Suppose, for example, that                             .   Then we need only 
sample           twice every period in order to be able to reconstruct 
the entire function exactly.
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Sampling            at (infinitely many of) the  red points is sufficient to 
reconstruct the function for all values of  t, with no loss of information.
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There is a downside, however.

If          is  not bandwidth limited   (or, equivalently,  if we don’t sample   
frequently enough – i.e.  if the sampling rate                    )  then our 
reconstruction of           and              is badly affected by  aliasing.

This means that all of the power spectral density which lies outside the 
range                            is spuriously moved inside that range, so that the 
FT             of            will be computed  incorrectly from the discretely 
sampled data.

Any frequency component outside the range                     is falsely 
translated  ( aliased )  into that range.  
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6.2 Aliasing

Consider         as shown.

Suppose         is zero 

outside the range  T .

This means that               
extends to        .

The contribution to the 
true FT from outside the 
range                        gets 
aliased into this range, 
appearing as a ‘mirror 
image’.

Thus, at                     our 
computed value of               
is equal to  twice the true 
value.
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From Numerical Recipes, Chapter 12.1



How do we combat aliasing?

o Enforce some chosen         e.g. by filtering to remove the 
high frequency components              .    (Also known as anti-aliasing)

o Sample           at a high enough rate          so that      - i.e. at 
least two samples per cycle of the highest frequency present
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To check for / eliminate aliasing  without pre-filtering:

o Given a sampling interval      ,  compute

o Check if discrete FT of            is approaching  zero as

o If  not, then frequencies outside the range                        are 
probably being folded back into this range.

o Try increasing the sampling rate, and repeat…
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6.2 Analog to Digital Conversion and Data Compression

The NSST is important in digital signal processing,  in particular when 
taking an analog input and converting it into a  digital signal.  This is 
done using an  analog-to-digital converter (ADC): an electronic circuit 
that translates continuous input signals into discrete digital output.

According to the NSST,  if the analog input is bandwidth limited, then 
provided we sample it at the  Nyquist rate (or higher),  then the digital 
signal this produces has exactly the same information content as the 
original analog signal.

This means that, if we convert the digital signal back into an analog
signal (using a digital-to-analog converter, or DAC) then we recover the 
original analog input signal exactly.



ADC is also a powerful technique for data compression.

Again, provided the analog input signal is bandwidth limited,  by 
converting it to a digital signal,  sampled at the Nyquist rate or better, 
we can compress the information content of the original analog input 
into the minimum number of bits of information, with no loss.

This can be particularly important for spacecraft, where we want to 
transmit the acquired astronomical data as cheaply and efficiently as 
possible, without losing valuable information content.

Consider, for example, the 
proposed LISA satellite

NASA / ESA, planned for
~2015 or later, to measure
gravitational waves from space.

A major target of LISA will be to detect mergers of  
supermassive black holes in the cores of distant 
galaxies.

The (measurable) GW signal from 
these mergers is bandwidth limited to 
~ 0.1 Hz, or lower.

A sampling interval of
should be adequate to describe the     
for SMBH mergers.   
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In fact,  LISA will be sampled every  ~3.76 seconds,  implying a Nyquist
frequency of  0.133 Hz.


