
5. Fourier Methods

As we remarked in Section 1,  a lot of astronomical data is collected or 

processed as Fourier components.

In this section we briefly discuss the mathematics of Fourier series 

and Fourier transforms.   Some of these methods will be applied to 

astronomical problems in ADA II.

5.1  Fourier Series

Any ‘well-behaved’ function              can be

expanded in terms of an infinite sum of sines

and cosines.  The expansion takes the form:
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The Fourier coefficients are given by the formulae:

These formulae follow from the  orthogonality properties of sin and cos:
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Some examples from Mathworld, approximating functions with a finite number of Fourier series terms

“Fourier's Theorem is not only one of the most beautiful
results of modern analysis, but it is said to furnish an 
indispensable instrument in the treatment of nearly  
every recondite question in modern physics”

The Fourier series can also be written in complex form:

where

and recall that
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The Fourier transform can be thought of simply as extending the idea of a 

Fourier series from an infinite sum over discrete, integer Fourier modes to 

an infinite integral over continuous Fourier modes.

Consider, for example, a physical process that is varying in the time domain,

i.e. it is described by some function of time         .

Alternatively we can describe the physical process in the frequency domain 

by defining the Fourier Transform function             .

It is useful to think of           and            as two different representations 

of the same function;  the information they convey about the underlying 

physical process should be equivalent.
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5.2  Fourier Transform:  Basic Definition
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We define the Fourier transform as

and the corresponding inverse Fourier transform as

If time is measured in seconds then frequency is measured in cycles per 

second, or Hertz. 
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In many astrophysical applications it is common to define the frequency 

domain behaviour of the function in terms of  angular frequency

This changes eqs. (5.8) and (5.9) accordingly:

Thus the symmetry of eqs. (5.8) and (5.9) is broken.

In this course we will adopt the definitions given in (5.8) and (5.9) 
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5.3  Fourier Transform:  Further properties

The FT is a linear operation:

(1) the FT of the sum of two functions is equal to the sum of their FTs

(2) the FT of a constant times a function is equal to the constant times the 

FT of the function.

If the time domain function           is a real function, then its FT is complex.

However, more generally we can consider the case where          is also a 

complex function – i.e. we can write

may also possess certain symmetries: even function

odd function
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The following properties then hold:

Note that in the above table a star  (*)  denotes the complex conjugate,

i.e. if     z  =  x  +  i y then z*  =  x i y

See Numerical Recipes, Section 12.0

For convenience we will denote the FT pair by

It is then straightforward to show that
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Suppose we have two functions             and

Their convolution is defined as

We can prove the  Convolution Theorem

i.e. the FT of the convolution of the two functions is equal to the product 
of their individual FTs.

Also their correlation, which is also a function of t , is defined as 
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Known as the  lag

We can prove the  Correlation Theorem

i.e. the FT of the first time domain function, multiplied by the complex 

conjugate of the FT of the second time domain function, is equal to the 

FT of their correlation.

The correlation of a function with itself is called the  auto-correlation

In this case

The function         is known as the power spectral density,  or 

(more loosely)  as the power spectrum.

Hence, the power spectrum is equal to the Fourier Transform of the 

auto-correlation function for the time domain function 
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5.4   The power spectral density

The power spectral density is analogous to the pdf we defined in previous 

sections.

In order to know how much power is contained in a given interval of 

frequency, we need to integrate the power spectral density over that 

interval.

The total power in a signal is the same, regardless of whether we 

measure it in the time domain or the frequency domain:
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Parseval’s Theorem

We can, therefore, think of moving between the time and frequency domain 
as analogous to the change of variables we employed for pdfs in Section 4

Often we will want to know how much power is contained in a frequency 

interval without distinguishing between positive and negative values.

In this case we define the one-sided power spectral density:

And

When            is a real function

With the proper normalisation, the total power (i.e. the integrated area 

under the relevant curve) is the same regardless of whether we are 

working with the time domain signal, the power spectral density or the 

one-sided power spectral density. 
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From Numerical Recipes,
Chapter 12.0

Time domain 

One-sided PSD 

Two-sided PSD 
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5.5  Examples
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The sinc function occurs frequently in 

many areas of astrophysics

The function has a maximum at 

and the zeros occur at

for positive integer m
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This function is a Lorentzian and is 

commonly modelled as the shape of 

spectral line profiles in astronomy.

One can also show that the  Power

Spectrum corresponding to this FT 

is also a Lorentzian.  (See examples).
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i.e. the FT of a Gaussian function in the time domain is  also a Gaussian in 

the frequency domain.

The broader the Gaussian is in the time domain, then the narrower the 

Gaussian FT in the frequency domain, and vice versa.
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Although we have discussed FTs so far in the context of a continuous, 

analytic function,        ,  in many practical situations we must work instead 

with observational data which are sampled at a discrete set of times.

Suppose that we sample          in total            times at evenly spaced time 

intervals     , i.e.  (for      even)

[  If            is non-zero over only a finite interval of time, then we 

suppose that the             sampled points contain this interval.   Or if

has an infinite range, then we at least suppose that the sampled points 

cover a sufficient range to be representative of the behaviour of          ].
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5.6   Discrete Fourier Transforms
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We therefore approximate eq. (5.8) as

Since we are sampling          at        discrete timesteps,  in view of the 

symmetry of the FT and inverse FT  it makes sense also to compute

only at a set of             discrete frequencies:

(The frequency          is known as the Nyquist (critical) frequency

and it is a very important value.  We discuss its significance in Section 6).
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Then

Note that

Hence, in eq. (5.29) there are only       independent values.

Also, note that

So we can re-define eq. (5.29) as:
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Discrete Fourier Transform of the kh

The discrete inverse FT, which recovers the set of         from the set of 

is

Parseval’s theorem for discrete FTs takes the form

There are also discrete analogues to the convolution and correlation 

theorems.
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Consider again the formula for the discrete FT.  We can write it as

This is a matrix equation:   we compute the            vector of

by  multiplying the             matrix             by the       vector of        .

In general, this requires of order    multiplications  (and the         

may be complex numbers).

e.g. suppose   .   Even if a computer can perform 

(say) 1 billion multiplications per second, it would still require more 

than 115 days to calculate the FT.

5.7   Fast Fourier Transforms

(5.34)
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Fortunately, there is a way around this problem.

Suppose (as we assumed before) is an even number.  Then we can write

where

So we have turned an FT with       points into the weighted sum of  two FTs

with            points.  This would reduce our computing time by a factor of two.    
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Even values of  k Odd values of  k
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Why stop there, however?...

If        is also even, we can repeat the process and re-write the FTs of 

length         as the weighted sum of two FTs of length           .

If         is a power of two (e.g. 1024, 2048, 1048576 etc)  then we can 

repeat iteratively the process of splitting each longer FT into two FTs half 

as long.

The final step in this iteration consists of computing FTs of length unity:

i.e. the FT of each discretely sampled data value is just the data value itself.
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This iterative process converts         multiplications into

operations.

So our           operations are reduced to about

operations.

Instead of 100 days of CPU time,  we can perform the 

FT in less than 3 seconds.

The Fast Fourier Transform (FFT) has revolutionised our ability to tackle 

problems in Fourier analysis on a desktop PC which would otherwise be 

impractical, even on the largest supercomputers.

)( 2NO

)log( 2 NNO

This notation means ‘of the order of’

1610
9107.2




